
Robust Boosting and its Relation to Bagging

Saharon Rosset
IBM T.J. Watson Research Center

P. O. Box 218
Yorktown Heights, NY 10598

srosset@us.ibm.com

ABSTRACT
Several authors have suggested viewing boosting as a gradi-
ent descent search for a good fit in function space. At each
iteration observations are re-weighted using the gradient of
the underlying loss function. We present an approach of
weight decay for observation weights which is equivalent to
“robustifying” the underlying loss function. At the extreme
end of decay this approach converges to Bagging, which can
be viewed as boosting with a linear underlying loss function.
We illustrate the practical usefulness of weight decay for im-
proving prediction performance and present an equivalence
between one form of weight decay and “Huberizing” — a
statistical method for making loss functions more robust.

1. INTRODUCTION
Boosting [9, 8] and Bagging [3] are two approaches to com-
bining “weak” models in order to build prediction models
that are significantly better. Much has been written about
the empirical success of these approaches in creating predic-
tion models in actual modeling tasks [4, 1] . The theoret-
ical discussions of these algorithms [4, 11, 12, 5, 16] have
viewed them from various perspectives. The general theo-
retical and practical consensus, however, is that the weak
learners for boosting should be really weak, while the “weak
learners” for bagging should actually be strong. In tree ter-
minology, one should use small trees when boosting and big
trees for bagging. In intuitive “bias-variance” terms, we can
say that bagging is mainly a variance reduction (or stabi-
lization) operation, while boosting, in the way it flexibly
combines models, is also a bias reduction operation, i.e., it
adds flexibility to the representation beyond that of a single
learner. In this paper we present a view of boosting and
bagging which allows us to connect them in a natural way,
and in fact view bagging as a form of boosting. This view is
interesting because it facilitates creation of families of “in-
termediate” algorithms, which offer a range of “degrees of
bias reduction” between boosting and bagging. Our exper-
iments indicate that, while bagging is always significantly
inferior to boosting in terms of predictive performance, in

KDD’05, August 21–24, 2005, Chicago, Illinois, USA.

some cases intermediate approaches can outperform stan-
dard boosting.

Our exposition concentrates on 2-class classification, this
being the most common application for both boosting and
bagging, but the results mostly carry through to other learn-
ing domains where boosting and bagging have been used,
such as multi-class classification, regression [10] and density
estimation [17].

2. BOOSTING, BAGGING AND A CONNEC-
TION

A view has emerged in the last few years of boosting as a
gradient-based search for a good model in a large implicit
feature space [16, 10]. More specifically, the components of
a 2-class classification boosting algorithm are:

• A data sample {xi, yi}n
i=1, with xi ∈ Rp and yi ∈

{−1, +1}
• A loss function C(y, f). The two most commonly used

are the exponential loss of AdaBoost [9] and the logis-
tic log-likelihood of LogitBoost [11]. We will assume
throughout that C(y, f) is a monotone decreasing and
convex function of the margin m = yf , and so we will
sometimes write it as C(m).

• A dictionary H of “weak learners”, where each h ∈ H
is a classification model: h : Rp → {−1, +1}.
The dictionary most commonly used in classification
boosting is classification trees, i.e., H is the set of all
trees with up to k splits.

Given these components, a boosting algorithm incremen-
tally builds a “good” linear combination of the dictionary
functions:

F (x) =
∑

h∈H
βhh(x)

Where “good” is defined as making the empirical loss small:
∑

i

C(yiF (xi))

The actual incremental algorithm is an exact or approxi-
mate coordinate descent algorithm. At iteration t we have
the “current” fit Ft, and we look for the weak learner ht

which maximizes the first order decrease in the loss, i.e., ht

maximizes

−
∑

i

∂C(yi, F (xi))

∂βh
|F=Ft

or equivalently and more clearly it maximizes

−
∑

i

∂C(yi, F (xi))

∂F (xi)
|F=Ft · h(xi)

which in the case of two-class classification is easily shown
to be equivalent to minimizing

∑
i

wiI{yi 6= h(xi)} (1)

Where wi =
∣∣∣ ∂C(yi,F (xi))

∂F (xi)
|F=Ft

∣∣∣. So we seek to find a weak

learner which minimizes weighted error rate, with the weights
being the gradient of the loss. If we use the exponential loss:

C(y, f) = exp(−yf) (2)

then it can be shown (e.g. [13]) that (1) is the exact clas-
sification task which AdaBoost [9], the original and most
famous boosting algorithm, solves for finding the next weak
learner. In their original AdaBoost implementation [8], Fre-
und and Schapire suggested solving (1) on a “new” training
data set of size n at each iteration, by sampling from the
training dataset “with return” with probabilities propor-
tional to wi. This facilitates the use of methods for solving
non-weighted classification problems for approximately solv-
ing (1). We will term this approach the “sampling” boosting
algorithm. [10] has argued that sampling actually improves
the performance of boosting algorithms, by adding much
needed randomness (his approach is to solve the weighted
version of (1) on a sub-sample, but the basic motivation
applies to “sampling boosting” as well). Here is a formal
description of a sampling boosting algorithm, given the in-
puts described above:

Algorithm 1. Generic gradient-based sampling boosting
algorithm

1. Set β0 = 0 (dimension of β is |H|).
2. For t = 1 : T ,

(a) Let Fi = βT
t−1h(xi), i = 1, . . . , n (the current fit,

where h(x) is the vector of “weak learner” values
at x).

(b) Set wi = | ∂C(yi,Fi)
∂Fi

|, i = 1, . . . , n.

(c) Draw a sample {x∗i , y∗i }n
i=1 of size n by re-sampling

with return from {xi, yi}n
i=1 with probabilities pro-

portional to wi

(d) Identify jt = arg minj

∑
i I{y∗i 6= hj(x

∗
i)}.

(e) Set βt,jt = βt−1,jt + ε and βt,k = βt−1,k, k 6= jt.

Comments:

1. Implementation details include the determination of
T (or other stopping criterion) and the approach for
finding the minimum in step 2(d).

2. We have fixed the step size to ε at each iteration (step
2(e)). While AdaBoost uses a line search to deter-
mine step size, it can be argued that a fixed (usually
“small”) ε step is theoretically preferable (see [10, 18]
for details).

3. An important issue in designing boosting algorithms is
the selection of the loss function C(·, ·). Extreme loss
functions, such as the exponential loss of AdaBoost
(2), are not robust against outliers and misspecified
data, as they assign overwhelming weight to observa-
tions which have the smallest margins. [11] have thus
suggested replacing the exponential loss with the lo-
gistic log likelihood loss:

C(y, f) = log(1 + exp(−yf)) (3)

but in many practical situations, in particular when
the two classes in the training data are separable in
sp(H), this loss can also be non-robust. See Section 4.

4. The algorithm as described here is not affected by pos-
itive affine transformations of the loss function, i.e.,
running Algorithm 1 using a loss function C(m) is ex-
actly the same as using C∗(m) = aC(m) + b as long
as a > 0.

Bagging for classification [3] is a different “model combin-
ing” approach. It searches, in each iteration, for the member
of the dictionary H which best classifies a bootstrap sample
of the original training data, and then averages the discov-
ered models to get a final “bagged” model. So, in fact, we
can say that:

Proposition 1. Bagging implements Algorithm 1, using
a linear loss, C(y, f) = −yf (or any positive affine trans-
formation of it)

Proof. From the definition of the loss we get:

∀Ft, ∀i, |∂ − yF (xi)

∂F (xi)
|F=Ft ≡ 1

So no matter what our “current model” is, all the gradients
are always equal, hence the weights will be equal if we apply
a “sampling boosting” iteration using the linear loss. In the
case that all weights are equal, the boosting sampling proce-
dure described above reduces to bootstrap sampling. Hence
the bagging algorithm is a “sampling boosting” algorithm
with a linear loss.

Thus, we can consider Bagging as a boosting algorithm uti-
lizing a very robust (linear) loss. This loss is so robust that
it requires no “message passing” between iterations through
re-weighting, since the gradient of the loss does not depend
on the current margins.

2.1 Robustness, convexity and boosting
The gradient of a linear loss does not emphasize low-margin
observations over high-margin (“well predicted”) ones. In
fact, it is the most robust convex loss possible, in the fol-
lowing sense:

Proposition 2. Any loss which is a differentiable, con-
vex and decreasing function of the margin has the property:

m1 < m2 ⇒ |C′(m1)| ≥ |C′(m2)|
And a linear loss is the only one which attains equality ∀m1, m2.

Proof. Immediate from convexity and monotonicity.

[16] have used arguments about generalization error bounds
to argue that a good loss for boosting would be even more
robust than the linear loss, and consequently non-convex.
In particular, they argue that both high-margin and low-
margin observations should have low weight, leading to a
sigmoid-shaped loss function. Non-convex loss functions
present a significant computational challenge, which [16]
have solved for small dictionary examples. Although the
idea of such “outlier tolerant” loss functions is appealing,
we limit our discussion to convex loss functions, which facil-
itate the use of standard fitting methodology, in particular
boosting.

Our view of bagging as boosting with linear loss allows us
to interpret the similarity — and difference — between the
algorithms by looking at the loss functions they are “boost-
ing”. The linear loss of bagging implies it is not emphasizing
the badly predicted observations, but rather treats all data
“equally”. Thus it is more robust against outliers and more
stable, but less “adaptable” to the data than boosting with
an exponential or logistic loss.

3. BOOSTING WITH WEIGHT DECAY
The view of bagging as a boosting algorithm, opens the door
to creating boosting-bagging hybrids, by “robustifying” the
loss functions used for boosting. These hybrids may combine
the advantages of boosting and bagging to give us new and
useful algorithms.

There are two ways to go about creating these intermediate
algorithms:

• Define a series of loss functions starting from a “boost-
ing loss” – the exponential or logistic – and converging
to the linear loss of bagging.

• Implicitly define the intermediate loss functions by de-
caying the weights wi given by the boosting algorithm
using a boosting loss. The loss implied will be the one
whose gradient corresponds to the decayed weights.

The two approaches are obviously equivalent through a dif-
ferentiation or integration operation. We will adopt the
“weight decay” approach, but will discuss the loss function
implications of the different decay schemes.

3.1 Weight decay functions
We would like to change the loss C(·, ·) to be more robust,
by first decaying the (gradient) weights wi, then considering
the implicit effect of the decay on the loss. In general, we
assume that we have a decay function v(p, w) which depends
on a decay parameter p ∈ [0, 1] and the observation weight
w ≥ 0. We require:

• v(1, w) = w, i.e., no decay

• v(0, w) = 1, i.e., no weighting, which implicitly as-
sumes a linear loss when considered as a boosting al-
gorithm and thus corresponds to Bagging

• Monotonicity: w1 < w2 → v(p, w1) < v(p, w2) ∀p.

• Continuity in both p and w.

And once we specify a decay parameter p, the problem we
solve in each boosting iteration, instead of (1), is to find the
dictionary function h to minimize:

∑
i

v(p, wi)I{yi 6= h(xi)} (4)

which we solve approximately as a non-weighted problem,
using the “sampling boosting” approach of Algorithm 1.

3.2 Windsorised weights and Huberized loss
For clarity and brevity, we concentrate in this paper on one
decay function — the bounding or ”Windsorising” operator:

v(p, w) =

{ 1
1−p

if w > p
1−p

w
p

otherwise
(5)

Since w is the absolute gradient of the loss, bounding w
means that we are “huberizing” the loss function, i.e., con-
tinuing it linearly beyond some point (this operation was
suggested, in the context of squared error loss for regres-
sion, by [14]). The loss function corresponding to the de-
cayed weights is thus:

C(p)(m) =

{
C(m)

p
m > m∗(p)

C(m∗(p))
p

− m−m∗(p)
1−p

otherwise
(6)

where m∗(p) is such that C′(m∗(p)) = − p
1−p

(unique be-

cause the loss is convex and monotone decreasing).

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3
p=1
p=0.4
p=0.1
p=0.01

Figure 1: “Huberized” logistic loss, for different val-
ues of p (as a function of the margin).

As we have mentioned, for the purpose of the sampling
boosting algorithm, only the relative sizes of the weights
are important, and thus multiplication of the loss function
by a constant of 1/p — which we have done to get C(p) from
C and achieve the desired properties of v(p, w) — does not

affect the algorithm for fixed p. Figure 1 illustrates the ef-
fect of bounding on the logistic log likelihood loss function,
for several values of p (for presentation, this plot uses the
non-scaled version of C, i.e., (6) multiplied by p).

There are many other interesting decay functions, such as
the power transformation:

v(p, w) = wp

This transformation is attractive because it does not entail
the arbitrary “threshold” determination, but rather decays
all weights, with the bigger ones decayed more. However, it
is less interpretable in terms of its effect on the underlying
loss. For the exponential loss C(m) = exp(−m), the power
transformation does not change the loss, since [exp(−m)]p =
exp(−mp). So the effect of this transformation is simply to
slow the learning rate (exactly equivalent to decreasing ε in
Algorithm 1).

4. PROPERTIES OF HUBERIZED BOOST-
ING LOSS FUNCTIONS

Our suggested “huberizing” transformation in (6) to the
original loss function (in our case, the exponential loss (2) or
the logistic loss (3)) gives a modified loss which is linear for
small margins, then as the margin increases starts behaving
like the original loss. We can therefore interpret boosting
with the huberized loss function as “bagging for a while”,
until the margins become big enough and reach the non-
huberized region. If we boost long enough with this loss,
we will have most of the data margins in the non-huberized
region, except for extreme outliers, and the resulting weight-
ing scheme will revert to the ”standard” boosting weights,
except for extreme outliers.

We can thus consider boosting with the huberized loss to be
more robust in the following sense:

By huberizing the loss function, we are allow-
ing the boosting algorithm to assign relatively
small weights to outliers and difficult examples
for a number of iterations, until most observa-
tions have become “well explained” by attaining
large margins

This robustness argument is related to that of [11] and oth-
ers for boosting with the logistic loss (3) rather than the
exponential (2), since the logistic loss is approximately lin-
ear for negative margins (as its second derivative vanishes
when the margin goes to −∞). However, the logistic loss is
very similar to the exponential for non-negative margins, as
shown in [18]. Huberizing, on the other hand, allows for a
flexible — and specific — definition of a linear region which
can be adapted to the modeling task at hand.

It is interesting to note that two desirable properties of
boosting loss functions are maintained for their huberized
versions:

The boosting property
This property states that if the hypothesis space of weak
learners allows “weak learning” — that is, weighted error

rate of the weak learners of at most 1/2−λ for each iteration
— then the training margins will increase, and generaliza-
tion error will go to 0 for large enough training samples (see
[20] for more details). Duffy and Helmbold ([7], Theorems 2-
4) give sufficient conditions for this property to hold, which
apply to the exponential and logistic loss functions. These
conditions include strict convexity, and so do not directly
apply to the huberized versions. However closer inspection
of their conditions exposes that we only need to re-state their
Theorem 2, which states that all the (non-normalized) mar-
gins are guaranteed to move beyond a fixed point U within
O(n2/λ2) iterations, and never cross it back. We re-prove
this result for Huberized loss functions, and take U = m∗

to be the “Huberizing” point. Once all the margins have
moved beyond m∗, the loss function becomes the logistic or
exponential, which are strictly convex, and Duffy and Helm-
bold’s results prove the boosting property1.

Theorem 3. Assume the weak learnability property for
Algorithm 1, i.e.,

∑
i wiI{ht(xi) 6= yi}∑

i wi
≤ 1

2
− λ , ∀t (7)

Then for the huberized version (6) of either the exponential
loss or the logistic loss, we get that after at most

T =
4n2C(p)(0)

C(p)(m∗(p))λ2

iterations we achieve total loss no bigger than C(p)(m∗(p)).
That is:

∑
i

C(p)(yi, Ft(xi)) ≤ C(p)(m∗(p)), ∀t ≥ T

and, consequently, all margins are guaranteed to be no bigger
than m∗(p) from that iteration on.

Proof outline. Combining the definition of wi with (7)
we get at each iteration:

−
∑

i

∂C(yi, F (xi))

∂βht

|F=Ft > 2λ
∑

i

wi (8)

If our overall loss is bigger than C(p)(m∗(p)) then we can
show that:

∑
i

wi >
C(p)(m∗(p))

2
(9)

(for the exponential loss this is a direct result of the prop-
erty:

∣∣∣∣
∂C(p)(m)

∂m

∣∣∣∣ = C(p)(m)

and for the logistic loss we also use Proposition 1 of [18]).

1Note that the generalization error property is proven for
“line search” boosting algorithms, not the “ε-boosting” ap-
proach we employ in our implementation below. [7]’s results
therefore imply that our suggested loss functions would also
enjoy this property, if embedded into line-search boosting
implementations.

Next, we bound the second derivative of the change in loss:

∑
i

∂2C(p)(yi, F (xi))

∂β2
ht

|F=Ft ≤
∑

i

∂2C(p)(mi)

∂m2
i

|F=Ft

≤ 2nC(p)(m∗(p)) (10)

because the loss is convex and its second derivative is prov-
ably bounded by 2C(p)(m∗(p)).

Taking these three facts (8,9,10) combined we get that at
each boosting iteration if we take a step of size λ

2n
we gain

an improvement in the loss of at least:

C(p)(m∗(p)) · λ2

4n

as long as the total loss exceeds C(p)(m∗(p)). The actual
step which a line-search boosting algorithm takes can be
bigger than λ

2n
, but the improvement in loss is guaranteed

to be at least that attained by taking this fixed step size.

Now, we observe that our initial loss is nC(p)(0) and thus
within this number of iterations:

T =
4n2C(p)(0)

C(p)(m∗(p))λ2

we are guaranteed to have a non-positive loss if we still have
loss bigger than C(p)(m∗(p)). This obviously gives a contra-
diction and we conclude that the total loss after T iterations
gives the desired result:

∑
i

C(p)(yi, FT (xi)) ≤ C(p)(m∗(p))

Since the overall loss always decreases in every iteration
in line-search boosting, it can never exceed C(p)(m∗(p)) in
subsequent iterations, and since the loss function is non-
negative decreasing, no margin can be smaller than m∗(p).

The margin maximizing property
[19] give sufficient conditions for regularized loss functions to
be lp-margin maximizing. This sufficient condition holds for
the logistic and exponential loss functions, and also for their
huberized versions, since it only depends on the loss func-
tion’s behavior as the non-normalized margin converges to
∞. [18] explain how this property extends “approximately”
to boosting. In essence, it implies that the boosting al-
gorithm is seeking to maximize the l1 margin of the data
examples, and under quite general conditions will succeed
in doing so.

5. EXPERIMENTS
We now discuss briefly some experiments to examine the
usefulness of weight decay and the situations in which it
may be beneficial. We use three datasets: the “Spam” and
“Waveform” datasets, available from the UCI repository [2];
and the “Digits” handwritten digits recognition dataset, dis-
cussed in [15]. These were chosen since they are reasonably
large and represent very different problem domains. Since
we have limited the discussion here to 2-class models, we se-
lected only two classes from the multi-class datasets: wave-
forms 1 and 2 from “Waveform” and the digits “2” and “3”
from “Digits” (these were selected to make the problem as

challenging as possible). The resulting 2-class data-sets are
reasonably large — ranging in size between about 2000 and
over 5000. In all three cases we used only 25% of the data
for training and 75% for evaluation, as our main goal is not
to excel on the learning task, but rather to make it difficult
and expose the differences between the models which the
different algorithms build.

Our experiments consisted of running Algorithm 1 using var-
ious loss functions, all obtained by decaying the observation
weights given by the exponential loss function (2). We used
“windsorising” decay as in (5) and thus the decayed ver-
sions correspond to “huberized” versions of (2). In all our
experiments, bagging performed significantly worse than all
versions of boosting, which is consistent with observations
made by various researchers, that well-implemented boost-
ing algorithms almost invariably dominate bagging (see for
example Breiman’s own experiments in [4]). It should be
clear, however, that this fact does not contradict the view
that bagging has some desirable properties, in particular a
greater stabilizing effect than boosting.

We present in Figure 2 the results of running Algorithm 1
with p = 1 (i.e., using the non-decayed loss function (2)),
and with p = 0.0001 (which corresponds to “huberizing”
the loss, as in (6), at around m = 9) on the three data-sets.
We use two settings for the “weak learner”: 10-node and
100-node trees. The “learning rate” parameter ε is fixed at
0.1. The results in Figure 2 represent averages over 20 ran-
dom train-test splits, with estimated 2-standard deviations
confidence bounds.

These plots expose a few interesting observations:

1. Weight decay leads to a slower learning rate. From an
intuitive perspective this is to be expected, as a more
robust loss corresponds to less aggressive learning, by
putting less emphasis on the hardest cases.

2. Weight decay is more useful when the “weak learners”
are not weak, but rather strong, like a 100-node tree.
This is particularly evident for the “Spam” dataset,
where the performance of the non-decayed exponen-
tial boosting deteriorates significantly when we move
from 10-node to 100-node learners, while that of the
decayed version actually improves significantly. This
phenomenon is also as we expect, given the more ro-
bust “Huberized” loss implied by the decay.

3. There is no consistent winner between the non-decayed
and the decayed versions. For the “Spam” and “Wave-
form” datasets it seems that if we choose the best set-
tings, we would choose the non-decayed loss with small
trees. For the “Digits” data, the decayed loss seems to
produce consistently better prediction models.

Note that in our examples we did not have big “robustness”
issues as they pertain to extreme or highly prevalent outliers
in the predictors or the response. Rather, we examine the
“bias-variance” tradeoff in employing more robust loss func-
tions in dealing with uncorrupted real-life datasets, and the
difficult cases they often contain. It is likely that in extreme

0 200 400 600 800 1000

0.055

0.06

0.065

Spam − 10 node trees

0 200 400 600 800 1000

0.055

0.06

0.065

Spam − 100 node trees

0 200 400 600 800 1000

0.085

0.09

0.095

Waveform − 10 node trees

0 200 400 600 800 1000

0.085

0.09

0.095

Waveform − 100 node trees

0 200 400 600 800 1000
0.015

0.02

0.025

0.03

0.035
Digits − 10 node trees

0 200 400 600 800 1000
0.015

0.02

0.025

0.03

0.035
Digits − 100 node trees

Figure 2: Results of running “sampling boosting” with p = 1 (solid) and p = 0.0001 (dashed) on the three
datasets. with 10-node and 100-node trees as the weak learners. The x-axis is the number of iterations, and
the y-axis is the mean test-set error over 20 random training-test assignments. The dotted lines are 2-sd
confidence bounds.

situations — of many and/or big outliers — the advantage
of using robust loss functions would be more pronounced.

6. DISCUSSION
The gradient descent view of boosting allows us to design
boosting algorithms for a variety of problems, and choose
the loss functions which we deem most appropriate. [18]
show that gradient boosting approximately follows a path
of l1-regularized solutions to the chosen loss function. Thus
selection of an appropriate loss is a critical issue in building
useful algorithms.

In this paper we have shown that the gradient boosting
paradigm covers bagging as well, and used it as rationale
for considering new families of loss functions — hybrids of
standard boosting loss functions and the bagging linear loss
function — as candidates for gradient-based boosting. The
results seem promising. There are some natural extensions
to this concept, which may be even more promising, in par-
ticular the idea that the loss function does not have to re-
main fixed throughout the boosting iterations. Thus, we
can design “dynamic” loss functions which change as the
boosting iterations proceed, either as a function of the per-
formance of the model or independently of it. It seems that
there are a lot of interesting theoretical and practical ques-
tions that should come into consideration when we design
such an algorithm, such as:

• Should the loss function become more or less robust as
the boosting iterations proceed?

• Should the loss function become more or less robust if
there are problematic data points?

In this context, it is interesting to note some previous work
on bounding the boosting weights to achieve more robust
performance by [6]. The main difference from our approach
is that they operate on the re-normalized AdaBoost weights.
Their approach thus lacks the gradient descent interpreta-
tion in a new loss, since AdaBoost’s re-normalization of the
weights is equivalent to re-scaling the underlying loss. Thus,
[6]’s approach amounts to Huberizing the exponential loss
at a different point in each iteration. Their algorithm also
lacks a guaranteed boosting property like the one we proved
in Section 4. However it would be interesting to compare
the empirical merit of their approach to ours and perhaps
draw conclusions with regard to using “adaptive” robust loss
functions.

7. ACKNOWLEDGMENTS
Jerry Friedman, Trevor Hastie and Ji Zhu contributed to
this paper through useful discussions and advice.

8. REFERENCES
[1] E. Bauer and R. Kohavi. An empirical comparison of

voting classification algorithms: bagging, boosting and
variants. Machine Learning, 36(1/2):105–139, 1999.

[2] C. Blake and C. Merz. Repository of machine learning
databases.
[http://www.ics.uci.edu/ mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science., 1998.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] L. Breiman. Arcing classifiers. Annals of Statistics,
26(3):801:849, 1998.

[5] P. Buhlmann and B. Yu. Analyzing bagging. Annals
of Statistics, 2003.

[6] C. Domingo and O. Watanabe. Madaboost: A
modification of adaboost. In 13th Annual Conference
on Comp. Learning Theory, 2000.

[7] N. Duffy and D. Helmbold. Potential boosters? In
Advance in Neural Information Processing, 1999.

[8] Y. Freund and R. Scahpire. Experiments with a new
boosting algorithm. In International Conference on
Machine Learning, 1996.

[9] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. In European Conference on Computational
Learning Theory, pages 23–37, 1995.

[10] J. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 29(5),
2001.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting.
Annals of Statistics, 28:337–407, 2000.

[12] J. H. Friedman and P. Hall. On bagging and nonlinear
estimation. preprint, 2000.

[13] T. Hastie, T. Tibshirani, and J. Friedman. Elements of
Statistical Learning. Springer-Verlag, New York, 2001.

[14] P. Huber. Robust estimation of a location parameter.
Annals of Mathematical Statistics, 35(1):73:101, 1964.

[15] Y. LeCun, B. Boser, J. Denker, D. Henderson,
R. Howard, W. Hubbard, and L. Jackel. Handwritten
digit recognition with a back-propagation network. In
Advances in Neural Information Processing Systems 2,
1990.

[16] L. Mason, J. Baxter, P. Bartlett, and M. Frean.
Boosting algorithms as gradient descent. In Neural
Information Processing Systems, volume 12, 1999.

[17] S. Rosset and E. Segal. Boosting density estimation.
In Advances in Neural Information Processing Systems
15, 2003.

[18] S. Rosset, J. Zhu, and T. Hastie. Boosting as a
regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5, 2004.

[19] S. Rosset, J. Zhu, and T. Hastie. Margin maximizing
loss functions. In Advances in Neural Information
Processing Systems 16, 2004.

[20] R. E. Schapire, Y. Freund, P. Bartlett, and W. Lee.
Boosting the margin: a new explanation for the
effectiveness of voting methods. Annals of Statistics,
26:1651–1686, 1998.

