Some probability and stats refreshers

Iterated expectation: $E(g(X,Y)) = E(E(g(X,Y)|X))$.

Total Variation: $\text{Var}(Y) = E(\text{Var}(Y|X)) + \text{Var}(E(Y|X))$.

Example: $Y=\text{height}$, $X=\text{sex}$, $Y|X=F \sim N(165,25)$, $Y|X=M \sim N(175,35)$, $\mathbb{P}(X=F) = 0.5$.

Then: $E(Y) = E(E(Y|X)) = 0.5 \times 165 + 0.5 \times 175 = 170$.

$\text{Var}(Y) = 0.5 \times 25 + 0.5 \times 35 + 0.5 \times 5^2 + 0.5 \times 5^2 = 55$.

Exponential distribution: $X \sim \text{exp}(\lambda)$, $\mathbb{P}(X \geq t) = e^{-\lambda t}$.

It has the lack of memory property:

$$\mathbb{P}(X > u + a|X > a) = \frac{e^{-\lambda (u + a)}}{e^{-\lambda a}} = e^{-\lambda u},$$

so regardless of our waiting time so far a, the probability we will wait u longer is fixed.

Note that other distributions don’t have this property, for example for $X \sim N(0,1)$:

$$\mathbb{P}(X \geq 0|X \geq -5) \approx 0.5, \quad \mathbb{P}(X \geq 5|X \geq 0) = 2\mathbb{P}(X \geq 5) \approx 0.$$

Renewal process: Assume $X_i \sim \text{exp}(\lambda)$ i.i.d and we wait X_1 for the first event, then X_2 for the second etc. In a given time T the number of events:

$$k(T) = \max \{i : X_1 + \ldots + X_i \leq T\}.$$

Claim: $k(T) \sim \text{Poiss}(\lambda T)$.

Partial proof:

$$\mathbb{P}(k = 0) = \mathbb{P}(X_1 > T) = e^{-\lambda T}.$$

$$\mathbb{P}(k = 1) = \int_0^T f(X_1 = t)\mathbb{P}(X_2 > T - t)dt = \int_0^T \lambda e^{-\lambda t}e^{-\lambda (T-t)}dt = e^{-\lambda T} \int_0^T \lambda dt = \lambda T e^{-\lambda T}.$$
Poisson and binomial: If \(n \) is big, \(p \) is small then \(\text{Bin}(n, p) \approx \text{Pois}(np) \).

Intuition: \(n \) independent increments, in each one fixed probability of event \(\Rightarrow \) a memoryless process, approximately in continuous time.

Example: Molecular clock calculations

Assume now we have \(n \) generations of mutations father\(\rightarrow \)son\(\rightarrow \)grandson etc.
Assume every generation has fixed probability \(p \) of mutation ("Molecular clock").
Then number of mutations \(k \) in \(n \) generations: \(\text{Bin}(n, p) \approx \text{Pois}(np) \).

Rather than in discrete generations, we can also think of this continuously, where a mutation can happen in every point in time at a fixed rate \(\lambda \), so the waiting time for mutation has \(\exp(\lambda) \) distribution with mean \(1/\lambda \).
If we now assume generation length is \(t_0 \), then the number of mutations in \(n \) generations has a \(\text{Pois}(nt_0\lambda) \) distribution, that is the binomial \(p \) above is \(t_0\lambda \).

When we look at genetic sequences and observe differences the classical problems are:

1. **Calibration:** Given time (\(n \) or \(nt_0 \)) estimate the mutation rate \(\lambda \) or \(p \).

2. **Time estimation:** Given the rate \(\lambda \) estimate the time \(T = nt_0 \) separating between sequences of species.