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SUMMARY

Since the early 1980s, a bewildering array of methods for constructing bootstrap con"dence intervals have
been proposed. In this article, we address the following questions. First, when should bootstrap con"dence
intervals be used. Secondly, which method should be chosen, and thirdly, how should it be implemented. In
order to do this, we review the common algorithms for resampling and methods for constructing bootstrap
con"dence intervals, together with some less well known ones, highlighting their strengths and weaknesses.
We then present a simulation study, a #ow chart for choosing an appropriate method and a survival analysis
example. Copyright ( 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION: CONFIDENCE INTERVALS AND COVERAGE ERROR

An accurate estimate of the uncertainty associated with parameter estimates is important to avoid
misleading inference. This uncertainty is usually summarized by a con"dence interval or region,
which is claimed to include the true parameter value with a speci"ed probability. In this paper we
shall restrict ourselves to con"dence intervals. We begin with an example which illustrates why
we might want bootstrap con"dence intervals.

1.1. Example: Remission from acute myelogenous leukaemia

Embury et al. [1] conducted a clinical trial to evaluate the e$cacy of maintenance chemotherapy
for acute myelogenous leukaemia. Twenty-three patients who were in remission after treatment
with chemotherapy were randomized into two groups. The "rst group continued to receive
maintenance chemotherapy, while the second did not. The objective of the trial was to examine
whether maintenance chemotherapy prolonged the time until relapse. The preliminary results of
the study are shown in Table I. We wish to test the hypothesis that maintenance chemotheraphy
does not delay relapse by constructing a con"dence interval for the treatment e!ect.
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Table I. Remission times (weeks) for
patients with acute myelogenous leukae-
mia; group 1 with maintenance chemo-
therapy; group 2 none. An entry such
as'13 means that the only information
available is that at 13 weeks the patient

was still in remission.

Treat 1 Treat 2

9 5
13 5

'13 8
18 8
12 12
23 '16
31 23
34 27

'45 30
48 33

'161 43
45

Figure 1. Plot of non-parametric estimate of cumulative hazard function for the data in Table I, on a log-log
scale. The upper line corresponds to treatment group 2.

Figure 1 shows a log-log plot of the cumulative hazard function, and suggests that a propor-
tional hazards model

h(t)"h
0
(t) exp(bx)
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will be adequate, where h (t) is the hazard at time t, h
0
( ) ) is the baseline hazard and x is an

indicator covariate for treatment 2. Fitting this model gives bK "0.924 with standard error
p("0.512. A standard 95 per cent normal approximation con"dence interval for b is therefore
bK $1.96]0.512, that is, (!0.080, 1.928).

However, the accuracy of this interval depends on the asymptotic normality of bK and this
assumption is questionable with so few observations. Accordingly, we may want to construct
a con"dence interval that does not depend on this assumption. Bootstrapping provides a ready,
reliable way to do this. The principal questions are which bootstrap con"dence interval method
should be chosen and what should be done to implement it. These are the questions this article
seeks to answer in a practical context, by reviewing the methods available, highlighting their
motivation, strengths and weaknesses. After doing this, we return to this example in Section 7.

We begin by de"ning coverage error, which is a key concept in comparing bootstrap con"dence
interval methods. Suppose (!R, h

U
) is, for example, a normal approximation con"dence inter-

val, with nominal coverage 100(1!a) per cent (a typically 0.05). Then it will often have a coverage
error so that

P (h(h
U
)"(1!a)#C

for some unknown constant C, where typically CP0 as n, the sample size, PR.
Bootstrap con"dence intervals aim to reduce this coverage error by using simulation to avoid

the assumptions inherent in classical procedures. While they are often calculated for small data
sets (for example, to check on the assumption of asymptotic normality), they are equally
applicable to large data sets and complex models; see for example Carpenter [2] and LePage and
Billard [3].

Thus, bootstrap con"dence intervals will at the least validate the assumptions necessary to
construct classical intervals, while they may further avoid misleading inferences being drawn. The
way they go about this, and the extent on which they succeed, are described in Sections 2 and
3 and illustrated in Sections 5 and 7. First, however, we describe the bootstrap principle and the
terms non-parametric and parametric simulation.

In many statistical problems we seek information about the value of a population parameter
h by drawing a random sample Y from that population and constructing an estimate hK (Y) of the
value of h from that sample. The bootstrap principle is to obtain information about the
relationship between h and the random variable hK (Y) by looking at the relationship between
hK (y

0"4
) and hK (Y*), where Y* is a resample characterized by the sample y

0"4
. Y* can either be

constructed by sampling with replacement from the data vector y
0"4

, the so-called non-parametric
bootstrap, or by sampling from the distribution function parameterized by hK (y

0"4
), the so-called

parametric bootstrap.
Before we discuss the various methods for bootstrap con"dence interval construction, we give

algorithms for non-parametric and parametric simulation, and illustrate these in a regression
context, where the bootstrap is frequently applied.

2. RESAMPLING PLANS

Here we give algorithms for non-parametric and semi-parametric resampling plans, and illustrate
them with a linear model example. We "rst describe this example.
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Table II. Weights of 14 babies at birth and 70}100 days. From Armitage
and Berry (Reference [4], p. 148).

Case number Birthweight (oz) Weight at 70}100 days (oz)

1 72 121
2 112 183
3 111 184
4 107 184
5 119 181
6 92 161
7 126 222
8 80 174
9 81 178

10 84 180
11 115 148
12 118 168
13 128 189
14 128 192

Figure 2. Plot of data in Table II, with least squares regression line 70}100 day weight"a#b]birth-
weight. Estimates (standard errors) are bK "0.68 (0.28), a("104.89 (29.65).

Table II gives the weight at birth and 70}100 days of 14 babies, from Armitage and Berry
(Reference [4], p. 148). The data are plotted in Figure 2, together with the least squares regression
line. Parameter estimates are given in the caption. It appears that there is a borderline association
between birthweight and weight at 70}100 days. However, the data set is small, and we may wish
to con"rm our conclusions by constructing a bootstrap con"dence interval for the slope. To do
this, we "rst need to construct bootstrap versions bK *, of b. We now outline how to do this
non-parametrically and parametrically.

1144 J. CARPENTER AND J. BITHELL

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1141}1164



2.1. Non-parametric resampling

Non-parametric resampling makes no assumptions concerning the distribution of, or model for,
the data. Our data is assumed to be a vector y

0"4
of n independent observations, and we are

interested in a con"dence interval for hK (y
0"4

). The general algorithm for a non-parametric
bootstrap is as follows:

1. Sample n observations randomly with replacement from y
0"4

to obtain a bootstrap data set,
denoted Y*.

2. Calculate the bootstrap version of the statistic of interest, hK *"hK (Y*).
3. Repeat steps 1 and 2 a large number of times, say B, to obtain an estimate of the bootstrap

distribution.

We discuss the value of B appropriate for con"dence intervals in Section 2.4.
In the context of the birthweight data in Table II, each &observation' in the original data set

consists of a pair, or case, (x, y). For example, the "rst case is (72, 121). The algorithm then
proceeds as follows:

1. Sample n cases randomly with replacement to obtain a bootstrap data set. Thus, a typical
bootstrap data set might select the following cases:

4 5 2 4 9 10 3 3 6 2 1 6 9 8.

2. Fit the linear model to the bootstrap data and obtain the bootstrap slope, bK *. For the
speci"c bootstrap data set in step 1, bK *"0.67.

3. Repeat steps 1 and 2 a large number, say B, of times to obtain an estimate of the bootstrap
distribution.

The bootstrap slopes bK *
1
, 2 , bK *

B
, can then be used to form a non-parametric bootstrap con"-

dence interval for b as described in Section 3.

2.2. Parametric resampling

In parametric resampling we assume that a parametric model for the data, F
Y
(y ; . ), is known up

to the unknown parameter vector, h, so that bootstrap data are sampled from F
Y
(y ; hK ), where hK is

typically the maximum likelihood estimate from the original data. More formally, the algorithm
for the parametric bootstrap is as follows:

1. Let hK be the estimate of h obtained from the data (for example, the maximum likelihood
estimate). Sample n observations, denoted Y* from the model F

Y
( . ; hK ).

2. Calculate hK *"hK (Y*).
3. Repeat 1 and 2 B times to obtain an estimate of the parametric bootstrap distribution.

In the linear model example, &assuming the model' means treating the assumptions of the linear
model as true, that is, assuming that the x1s (the birthweights) are known without error and that
the residuals are normally distributed with mean zero and variance given by the residual standard
error, which is p2"14.1. We then sample n"14 residuals and pass these back through the model
to obtain the bootstrap data. The algorithm is as follows:

1. Draw n observations, z
1
, 2 , z

14
, from the N(0, p2) distribution.
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2. Calculate bootstrap responses, y*
i
, as y*

i
"a(#bK x

i
#z

i
, i31, 2 , 14. For example, if

z
1
"31.2

y*
1
"104.89#0.68]72#31.2"185.05.

The bootstrap data set then consists of the n"14 pairs (y*
i
, x

i
).

3. Calculate the bootstrap slope, bK *, as the least squares regression slope for this bootstrap
data set.

4. Repeat 1}3 B times to obtain an estimate of the parametric bootstrap distribution.

As before, the resulting bootstrap sample, bK *
1
, 2 , bK *

B
, can be used to construct a bootstrap

con"dence interval.

2.3. Semi-parametric resampling

This resampling plan is a variant of parametric resampling, appropriate for some forms of
regression. Since it involves non-parametric resampling of the residuals from the "tted parametric
model, we term it semi-parametric resampling. As before, we begin with a general presentation.

Suppose we have responses y"(y
1
, 2 , y

n
) with covariates x"(x

1
, 2 , x

n
), and we "t the

model

y"g (b, x)#r

obtaining estimates bK of the parameters b and a set of residuals r
i
, i3(1, 2 , n).

Without loss of generality, suppose we are interested in a con"dence interval for b
1
. The

algorithm for semi-parametric resampling is as follows:

1. Adjust the residuals r"(r
1
, 2 , r

n
) so that they have approximately equal means and

variances. Denote this new set by (rJ
1
, 2 , rJ

n
).

2. Sample with replacement from the set of adjusted residuals (rJ
1
, 2 , rJ

n
) to obtain a set of

bootstrap errors, r*"(rJ *
1
, 2 , rJ *

n
).

3. Then obtain bootstrap data y*"(y*
1
, 2 , y*

n
) by setting

y*"g (bK , x)#r*.

4. Next "t the model,

Ey*"g (b, x)

to obtain the bootstrap estimate bK *.
5. Repeat steps 1}4 above B times to obtain an estimate of the bootstrap distribution.

It is important to note that this resampling plan is only appropriate when it is reasonable to
assume that the adjusted residuals, rJ

i
, are independent and identically distributed (henceforth

i.i.d.). If this is reasonable, then this resampling plan is usually preferable to the straight
parametric plan, as it does not force the residuals to conform to a known distribution.

However, if the rJ
i
, are not i.i.d. so that, for example, the variance of y depends on its mean, then

this must be modelled, and the sampling algorithm revised. An algorithm for this situation is
given by Davison and Hinkley (Reference [5], p. 271).
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In the linear model example, having obtained the least squares estimates of a( and b) , we
calculate the residuals as

r
i
"y

i
!aL !bK x

i
, i31, 2 , 14

Let rN"+14
i/1

r
i
/14, the mean of the residuals, and let rJ

i
"r

i
!rN , i31, 2 , 14. We then proceed as

follows:

1. Sample from the set of adjusted residuals rJ
i
, i31, 2 , 14, randomly with replacement, so

obtaining r*
1
, 2 , r*

14
.

2. The calculate the bootstrap data as

y*
i
"aL #bK x

i
#r*

i
, i31, 2 , 14.

3. Fit the linear model to the bootstrap data (y*
i
, x

i
), obtaining bK *.

4. Repeat steps 1}3 B times to obtain an estimate of the bootstrap distribution.

2.4. How many bootstrap samples

A key question faced by anyone using the bootstrap is how large should B be. For 90}95 per cent
con"dence intervals, most practitioners (for example, Efron and Tibshirani, Reference [6], p. 162,
Davison and Hinkley, Reference [5], p. 194) suggest that B should be between 1000 and 2000.

Further, estimating a con"dence interval usually requires estimating the 100a percentile of the
bootstrap distribution. To do this, the bootstrap sample is "rst sorted into ascending order. Then,
if a (B#1) is an integer, the percentile is estimated by the a (B#1)th member of the ordered
bootstrap sample (Cox and Hinkley, Reference [7], Appendix A). Otherwise, interpolation must
be used, between the xa (B#1)yth and (xa (B#1)y#1)th members of the ordered sample, where
x.y denotes the integer part, using the formula (10) below. Consequently, choosing B"999 or
B"1999 leads to simple calculations for the common choices of a.

2.5. Choosing the simulation method

Clearly, parametric and non-parametric simulation make very di!erent assumptions. The general
principle that underlies the many algorithms given by Davison and Hinkley [5] and Efron and
Tibshirani [6] is that the simulation process should mirror as closely as possible the process that
gave rise to the observed data.

Thus, if we believe a particular model, which is to say we believe that the "tted model di!ers
from the true model only because true values of the parameters have been replaced by estimates
obtained from the data, then the parametric (or in regression, preferably semi-parametric)
resampling plan is appropriate. However, examination of the residuals may cast doubt on the
modelling assumptions. In this case, non-parametric simulation is often appropriate. It is
interesting to note that, in practice, non-parametric simulation gives results that generally mimic
the results obtained under the best "tting, not the simplest parametric model (see Hinkley, and
Young in reply to Hinkley [5,8]).
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3. BOOTSTRAP CONFIDENCE INTERVALS

The previous section has described how to obtain parametric and non-parametric bootstrap
samples in general, and illustrated the particular case of linear regression. In this section we
assume that we have obtained B"999 bootstrap samples of h, the parameter of interest, and that
we have sorted them into order. Let

hK *
1
, 2 , hK *

999
(1)

denote this ordered set, so that hK *
i
(hK *

j
, for 1)i(j)999. Of course, in the linear regression

example the parameter of interest is h"b, the slope.
All the established methods we discuss below are described in more technical detail by Hall [9].

The test-inversion intervals are reviewed, and some theory given, by Carpenter [2]. More
practical examples of con"dence interval construction are given by Efron and Tibshirani [6] and
Davison and Hinkley [5], together with some S-plus software. DiCiccio and Efron [10] give
a further review of most of the methods described below. An alternative viewpoint is given by
Young [8].

Here, we emphasize the underlying principles of the methods and their relationship to each
other, together with practical implementation.

For each method, we outline its rationale, show how to calculate a one-sided 95 per cent
interval (two-sided 95 per cent intervals are formed as the intersection of two one-sided 97.5 per
cent intervals; for general 100(1!a) per cent intervals, interpolation may be needed, as described
in Section 3.4). We further list the advantages and disadvantages of each method. In the course of
this we indicate whether a method is transformation respecting or not. By this we mean the
following. Suppose a bootstrap con"dence interval method gives (!R, h

U
) as a 100(1!a) per

cent interval for h. Let g be a monotonic transformation, and suppose we require an interval for
g(h). Then if it is simply (!R, g (h

U
)), we say the method is transformation respecting. Otherwise,

we could get a markedly di!erent interval when we repeated the bootstrap calculations with
h replaced by g(h), hK by g (hK ) and so on.

We also give each method's one-sided coverage error. This is a theoretical property of the
method, whose proof is only valid under a certain regularity conditions, namely that (hK !h)/p( is
a smooth function of sample moments with an asymptotic normal distribution [9]. Coverage
errors are typically O(n~j), j"1

2
or 1.

Figure 3 schematically describes the evolution of bootstrap con"dence intervals and
divides them into three families. The pivotal family arguably represents the most natural
approach to the problem. In this family, the con"dence interval is constructed in the
usual way except that the quantiles of known distributions (normal, Student's-t etc.) are
replaced by their bootstrap estimates. Non-pivotal methods are less intuitive, and have
been primarily championed by Efron and co-workers [6]. The simplest of these, the percentile
method, has been described as tantamount to &looking up the wrong statistical tables backwards'
(Hall, Reference [9] p. 36). The other methods in the non-pivotal family have successively more
complex analytical corrections for this. Finally, the test-inversion intervals exploit the duality
between con"dence intervals and tests. They can be used in semi-parametric and parametric
situations, but not in non-parametric situations, and are particularly useful for regression style
problems [2].

We begin with pivotal methods.
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Figure 3. Schematic diagram describing relationship of bootstrap methods for constructing con"dence
intervals, with early references. Consistent coverage means the coverage error is O(n~1@2); ,rst-order correct

coverage means the coverage error is O(n~1). See the introduction and Table III for more details.

3.1. Non-Studentized pivotal method (sometimes called *basic+)

3.1.1. Rationale. Arguably the most natural way of setting about constructing a con"dence
interval for h is to seek a function of the estimator and parameter whose distribution is
known, and then use the quantiles of this known distribution to construct a con"dence interval
for the parameter. However, in the absence of detailed knowledge about the distribution F

Y
( . ; h)

from which the observations are drawn, it is not clear which function of the parameter and
estimator should be chosen. Indeed, the procedure outlined below could, in principle, be applied
to any statistic="g(#) ; h), provided g is continuous. However, in view of the fact that many
estimators are asymptotically normally distributed about their mean, it makes sense to use
="#) !h.

Suppose that the distribution of = were known, so that we could "nd wa such that
P (=)wa )"a. Then a one-sided 100(1!a) per cent con"dence interval for h would be

(!R, hK !wa) (2)

The problem is that, in practice, the distribution of = is not known. However, the bootstrap
principle implies that we can learn about the relationship between the true parameter value h and
the estimator hK by pretending that hK is the true parameter value and looking at the relationship
between hK and estimates of hK , denoted by hK *, which we construct from data simulated from the
model parameterized by hK .

In other words, the bootstrap procedure tells us to replace the quantile, wa , of= in (2) with the
appropriate quantile, w*a , of=*"(#) *!hK ), calculated as described below. The non-Studentized
pivotal interval is thus

(!R, hK !w*a ) (3)
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3.1.2. Calculation of 95 per cent interval. Recall we have already calculated and ordered our
bootstrap sample (1).

1. Set w*
i
"hK *

i
!hK , for i31, 2 , 999.

2. The 0.05th quantile of =* is then estimated by w*
j
, where j"0.05](999#1)"50.

3. The one-sided 95 per cent con"dence interval is thus

(!R, hK !wL *
50

)

Note that there are two distinct sources of error in this procedure. The "rst, termed bootstrap
error, arises from appealing to the bootstrap principle to replace the quantile of= in (2) with that
of=*. The second, termed Monte Carlo error, arises because Monte Carlo simulation is used to
estimate the 100ath percentile of=* (steps 1 and 2 above). Provided the number of simulations in
step 2 is su$ciently large, (see Section 2.4), the Monte Carlo error is usually negligible compared
to the bootstrap error. The accuracy of the method therefore depends critically on the similarity
of the distributions of = and =*. Unfortunately, these are generally not close (Davison and
Hinkley, Reference [5], p. 211).

3.1.3. Advantages. Often provides an accurate, simple to calculate, con"dence interval for the
sample median (Davison and Hinkley, Reference [5], p. 42).

3.1.4. Disadvantages. Typically substantial coverage error because the distributions of = and
=* di!er markedly. If there is a parameter constraint (such as h'0) then the interval often
includes invalid parameter values.

3.1.5. Coverage error [9].

P (hK !w*a'h)"1!a#O(n~1@2)

3.2. Bootstrap-t method (Studentized pivotal)

3.2.1. Rationale. As discussed above, the non-Studentized pivotal method is generally unreliable
because the distributions of= and =* di!er markedly. If y

0"4
were a sample from the normal

distribution, then the reason for this would be that the variance of=would not equal that of=*.
Denote an estimate of the standard deviation of hK by p( . Then the obvious way around this
di$culty would be to work with ¹"(hK !h)/p( instead of =. The bootstrap-t method is just
a generalization of this principle. Thus the interval (3) becomes

(!R, hK !p( t*a ) (4)

where t*a is the 100ath percentile of ¹*"(hK *!hK )/pL *, the bootstrap version of ¹.

3.2.2. Calculation of 95 per cent interval. To use this method, an estimate of the standard error of
each hK *

i
in (1) has to be calculated, for every i. For instance, if hK (y)"+n

i/1
y
i
/n, the sample mean,

then p( 2(hK )"+n
i/1

(y
i
!hK (y))2/n(n!1). For more complicated statistics, estimating p can be

problematic, although a variety of approximations exist. A moderately technical review is given
by Davison and Hinkley Reference [5], Chapters 2 and 3. In regression problems, however, the
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standard error of the parameters is readily available. In our simple linear regression example, it is
given by

Residual standard error

+n
i/1

(x
i
!xN )2

For the calculations below, we therefore assume that for each member of the bootstrap sample (1)
we have calculated the corresponding standard error p( *

i
, i31, 2 , B. We then proceed as follows:

1. Set t*
i
"(hK *

i
!hK )/p( *

i
, i31, 2 , 999"B. Order this set of t*

i
's.

2. Denote by tK *
50

the 50th largest t* (where 50"0.05](B#1)).
3. The con"dence interval is then

(!R, hK !p( tK *
50

).

As already discussed, this method clearly depends on being able to calculate p( . In many problems,
for this method to be computationally feasible, an analytic form of p( must be known. However,
for some statistics, even analytic approximations to p( may prove elusive. In this case, one option
[5] is to carry out a computationally heavy, but routine, &second level bootstrap' to estimate p( * as
follows.

From y*
i

obtain, using either parametric or non-parametric simulation, M y**'s and the
corresponding values of hK **"hK (y**). Then the variance of hK (y*

i
) is estimated by

p( *2"
1

M!1

M
+
j/1

(hK **
j

!hK (y*
i
))2

This procedure must be repeated for each of the B hK *'s. Finally, the variance of hK (y
0"4

) can be
estimated by

p( 2"
1

B!1

B
+
i/1

(hK *
i
!hK (y

0"4
))2

Usually, M"25 is su$cient for each of these second level bootstraps. Clearly though, this
process is computationally heavy, as for every simulation required for the basic bootstrap-t
method, a further M are now required, making MB altogether.

An additional problem with this method is that it will perform very poorly if p( is not (at least
approximately) independent of hK . This assumption can easily be checked by plotting p( * against
hK *, as shown in Section 7. If it is violated, we construct the variance stabilized bootstrap-t interval,
as follows:

1. Use either parametric or non-parametric simulation to obtain B pairs (hK *, p( *), together with
a second set of B hK *'s.

2. Use a non-linear regression technique on the B pairs to estimate the function s such that
p( *"s(hK *). Having estimated s, use numerical integration to estimate f (x)":x 1/s (h) dh.
A Taylor series expansion shows that f is the approximate variance stabilizing transforma-
tion.

3. Transform the (hitherto unused) B hK *'s to the variance stabilized scale. Since the variance is
now assumed stable, we can construct a non-Studentized pivotal interval for f (h).

4. Finally, calculate an estimate of f~1 and back transform the interval obtained in step 3 to
the original scale.
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In spite of all the numerical calculations, the variance stabilized bootstrap-t interval usually
alleviates the problems of the bootstrap-t when the variance of hK * is not constant (Efron and
Tibshirani, Reference [6], p. 162 ! ; Carpenter [2]).

3.2.3. Advantages. Provided p( is easily available, the method performs reliably in many exam-
ples, in both its standard and variance stabilized forms (see Davison and Hinkley, Reference [5],
p. 231, for a simulation study and references to others).

3.2.4. Disadvantages. The method is computationally very intensive if p( * is calculated using
a double bootstrap. Intervals can include invalid parameter values and it is not transformation
respecting.

3.2.5. Coverage error [9].

P (h!p( t*a'h)"1!a#O(n~1)

3.3. Percentile Method

We now move to the second arm of Figure 3. These methods are in some ways less intuitive than
those described above, but have the advantage of not requiring p( .

3.3.1. Rationale. Consider a monotonically increasing function g ( . ), and write /"g(h), /K "g(hK )
and /K *"g(hK *). Choose (if possible) g ( . ), such that

/K *!/K &/K !/&N(0, p2) (5)

Then, since /K !/&N(0, p2), the interval for h is

(!R, g~1(/K !pza)) (6)

where za is the 100a per cent point of the standard normal distribution. However, (5) implies that
/K !pza"F~1

(K *
(1!a). Further, since g is monotonically increasing, F~1

(K *
(1!a)"g (F~1hK * (1!a)).

Substituting in (6) gives the percentile interval

(!R, F~1hK * (1!a)) (7)

3.3.2. Calculation of 95 per cent interval. Recall the set of B"999 bootstrap samples (1). The
upper end point of the one-sided 95 per cent percentile interval is F~1hK * (0.95), which is estimated by
the 950th member of (1), since 950"0.95](B#1). The percentile interval is then

(!R, hK *
950

)

3.3.3. Advantages. Simplicity is the attraction of this method, and explains its continued popula-
rity. Unlike the bootstrap-t, no estimates of the p are required. Further, no invalid parameter
values can be included in the interval.

Another advantage of this group of methods over the pivotal methods is that they are
transformation respecting.

3.3.4. Disadvantages. The coverage error is often substantial if the distribution of hK is not nearly
symmetric (Efron and Tibshirani, Reference [6], p. 178 ! ). The reason is that the justi"cation of
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the method rests on the existence of a g ( . ) such that (5) holds, and for many problems such
a g does not exist.

3.3.5. Coverage error [9].

P(hK *
1~a'h)"1!a#O(n~1@2)

3.4. Bias corrected method

The quickly recognized shortcomings of the percentile method [11] led to the development of the
bias corrected or BC method.

3.4.1. Rationale. Again, consider a monotonically increasing function g ( . ), and write /"g (h),
/K "g(hK ) and /K *"g(hK *). However, now (if possible) choose g ( . ), such that

/K *!/K &/K !/&N(!bp, p2) (8)

for some constant b. An analogous (but slightly more complex) argument than that used in the
case of the percentile interval then yields the BC interval

(!R, F~1h) * ('(2b!za))) (9)

where b is estimated by '~1 (P (hK *)hK )) and '~1 is the inverse cumulative distribution function
of the normal distribution.

3.4.2. Calculation of 95 per cent interval.

1. Count the number of members of (1) that are less than hK (calclated from the original data).
Call this number p and set b"'~1(p/B).

2. Calculate Q"(B#1)'(2b!z
0.05

), where z
0.05

"!1.64. Q is the percentile of the boot-
strap distribution required for the upper endpoint of the bias corrected con"dence interval.

3. Estimate the endpoint of the interval by h) *xQy , where x.y means &take the integer part'. If
a more accurate estimate is required, interpolation can be used between the members of (1),
as follows. Let the nearest integers to Q be a, b, so that a(Q(b and b"a#1. Then the
Qth percentile is estimated by

hK *
Q
+hK *

a
#

'~1 ( Q
B`1

)!'~1 ( a
B`1

)

'~1 ( b
B`1

)!'~1 ( a
B`1

)
(hK *

b
!hK *

a
) (10)

The bias corrected interval, (7), is

(!R, hK *
Q
).

3.4.3. Advantages. The advantages are as for the percentile method, but see below.

3.4.4. Disadvantages. This method was devised as an improvement to the percentile method for
non-symmetric problems. Hence, if the distribution of hK * is symmetric about hK , then b"0 and the
bias corrected and percentile intervals agree. However, the coverage error is still often substantial,
because the validity of the method depends upon the existence of a g( . ) such that (8) holds, and for
many problems such a g does not exist. In consequence, it has been omitted altogether from

BOOTSTRAP CONFIDENCE INTERVALS 1153

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1141}1164



recent discussions [5, 6]. It is worth mentioning, though, as it is still the most accurate method
implemented in the software package stata.

3.4.5. Coverage error [9].

P(hK *
Q
'h)"1!a#O(n~1@2)

3.5. Bias corrected and accelerated method

The shortcomings of the BC method in turn led [12] to the development of the bias corrected and
accelerated or BCa method. The idea is to allow not only for the lack of symmetry of F#) ( . ; h), but
also for the fact that its shape, or skewness, might change as h varies.

Note that the later abc method [13] is an analytic approximation to this method.

3.5.1. Rationale. Again, consider a monotonically increasing function g ( . ), and write /"g (h),
/K "g(hK ) and /K *"g(hK *). However, now (if possible) choose g ( . ), such that

/K &N(/!bp (/), p2(/))

/K *&N(/K !bp(/K ), p2 (/K ))

where p (x)"1#ax. Again, an analogous argument to that used to justify the BC interval yields
the BCa interval

A!R, F~1#) * A'Ab!
za!b

1#a (za!b)B ; hK BB (11)

where b is de"ned as before and a formula for estimating a is given below.

3.5.2. Calculation of 95 per cent interval.

1. Calculate b as for the BC interval.
2. Next we need to calculate a. This calculation depends on whether the simulation is

non-parametric or parametric, and in the latter case, whether nuisance parameters are
present. For completeness we give a simple jack-knife estimate of a; details about more
sophisticated and accurate estimates can be found elsewhere [5, 6]. Let yi

0"4
represent the

original data with the ith point omitted, and hK i"hK (yi
0"4

) be the estimate of h constructed
from this data. Let hI be the mean of the hK i's. Then a is estimated by

+n
i/1

(hI !hK i)3
6 [+n

i/1
(hI !hK i)2]3@2

3. Let QI be the integer part of (B#1)'(b! z0.05~b
1`a (z0.05~b)

), where z
0.05

"!1.64.
4. Estimate the QI th percentile of the bootstrap distribution (1) as in step 3 of the bias corrected

interval calculation. Then, the BCa interval, (11), is estimated by

(!R, hK *
QI
)

3.5.3. Advantages. The advantages are as for the percentile method, plus this method generally
has a smaller coverage error than the percentile and BC intervals (Efron and Tibshirani,
Reference [6], p. 184 ! ), but see below.
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3.5.4. Disadvantages. The calculation of a can be tortuous in complex parametric problems.
The coverage error of this method increases as aP0. To see why this is so, note that as this
happens, the right hand endpoint of the interval should be estimated by ever larger elements of
the set of ordered h) *'s. However, this is not the case: as aP0

'Ab!
za!b

1#a (za!b)BP'(b!1/a)O1

This anomaly means that coverage can be erratic for small a, typically a(0.025. (Davison and
Hinkley, Reference [5], p. 205, p. 231 and Section 5 below).

3.5.5. Coverage error [9].

P(hK *
QI
'h)"1!a#O(n~1)

3.6. Test-inversion bootstrap (TIB) method

The third class of methods we consider exploit the duality between con"dence intervals and
test-inversion (Rao, Reference [14], p. 471). These methods are less well known than those
described hitherto, but enjoy certain advantages. A full discussion is given by Carpenter [2].

3.6.1. Rationale. The duality between con"dence intervals and test-inversion means that the
correct endpoint, h

U
, of the 100(1!a) per cent interval (!R, h

U
) satis"es

F#) (hK (y0"4 ); h
U
, g)"a. (12)

If g, the nuisance parameters, were known, then (12) could, in principle, be solved to "nd h
U
.

However, in reality, g is unknown. Applying the bootstrap principle, we replace g by g( and
estimate h

U
by hK

U
, which satis"es

F#) (hK (y0"4 ); hK
U
, gL )"a. (13)

We call hK
U

the endpoint of the test-inversion bootstrap interval.

3.6.2. Calculation of 95 per cent. In order to solve (13), we need to be able to simulate from the
bootstrap distribution at di!erent values of h. Clearly, this is not possible with non-parametric
&case' resampling. However, it is possible within the parametric or semi-parametric resampling
plans.

Recall the semi-parametric resampling plan for the linear regression example. To "nd the upper
endpoint of the test-inversion interval for b, we replace bK in step 2 of the semi-parametric
resampling plan in Section 2.3 by the value of the current estimate of the upper endpoint, bi

U
, and

leave the intercept, a, "xed at its estimate a( . We then resample from residuals in the same way as
before, obtaining bootstrap samples, bK *, which we use to assess whether

P (bK *(bK D b"bi
U
)"a (14)

If the left hand side of (14) is less than a, we decrease bi
U
; otherwise we increase it, until a solution is

found to the required accuracy.
In general, to determine the solution to (13), we "rst need to write a program to simulate from

F#) ( . ; h, g), at various values of h. We then need a stochastic root "nding algorithm to determine
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the solution of (13). Various algorithms have been proposed, but a careful comparison across
a range of distributions showed that the Robbins}Monro algorithm was the most e$cient
[2, 15, 16]. FORTRAN code implementing this algorithm [16] is available from statlib.

3.6.3. Advantages. In problems where there are no nuisance parameters present, (12) and (13)
coincide, so that the endpoint of the test-inversion bootstrap interval has no bootstrap error. This
interval is tranformation respecting, and does not require any knowledge of the standard
deviation of hK .

3.6.4. Disadvantages. This method is only suited to problems in which (13) can be simulated
from, at various values of h. For a two-sided interval, 2B (B typically 999, as before) simulations
are required, B for each endpoint, so the method is twice as heavy computationally compared to
those discussed so far. Clearly, the accuracy of the method depends on the di!erence between the
tails of distributions (12) and (13). In applications [2] this is not nearly as problematic as the
performance of the non-Studentized pivotal method might suggest, though.

3.6.5. Coverage error [2]. The coverage error is zero if no nuisance parameters present;

P(hK
U
'h)"1!a#O(n~1@2)

otherwise.

3.7. Studentized test-inversion bootstrap (STIB) method

3.7.1. Rationale. By analogy with Section 3.2, an obvious proposal to reduce the coverage error
of the TIB interval is a replace #) with a Studentized statistic. Explicitly, suppose we simulate at
(h, g( ), obtaining hK * and its standard deviation p( *. Then let ¹"(hK *!h)/p( * be the simulated
t-statistic and t

0"4
"(hK (y

0"4
)!h)/p( be the &observed' t-statistic. Then, the endpoint of the Studen-

tized test-inversion bootstrap interval (!R, hI
U
) satis"es

F
T
(t
0"4

; hI
U
, g( )"a (15)

3.7.2. Calculation. Obviously, p( and p( * are needed for this interval; see Section 3.2. However,
note that

¹)t
0"4

8hK *)
(hK (y

0"4
)!h)p( *
p(

#h

The observation enables existing code for the TIB interval to be used to calculate the STIB
interval. Note that if p( is a known function of h alone, so that p( *"p("g (h), for some g, then
¹)t

0"4
8hK *)hK , so that the STIB interval is equivalent to the TIB interval.

3.7.3. Advantages. As theory suggests, this method is generally more accurate in practical
applications than the TIB interval. In the light of experience with the bootstrap-t, it might be
supposed that some form of variance stabilizing transformation would improve this method.
However, this is not so; in fact, variance stabilising the STIB interval yields the TIB interval [2].

1156 J. CARPENTER AND J. BITHELL

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1141}1164



3.7.4. Disadvantages. The "rst two disadvantages of the TIB interval apply to the STIB interval.
In addition, this method is not transformation respecting. Clearly, this method requires p( and p( *,
which might not be known (see Section 3.2).

3.7.5. Coverage error [2].

P(hI
U
'h)"1!a#O(n~1)

3.8. Summary

We conclude this section with Table III which summarizes the properties of the various methods.
The explanation of the "rst six categories is given in the preceeding text.

The seventh category, &use for functions of parameters', refers to whether the method can be
used to construct a con"dence interval for a function of parameters estimated from the data.
Methods in the pivotal and non-pivotal families can readily be used to do this. For example,
suppose we estimate a and b from the data, and require a con"dence interval for some function
g(a, b)"h, say. Then from the original data, we can calculate a( and bK , giving hK "g (a( , bK ).
Similarly, from each bootstrap data set, we can calculate a( *, bK * and hence hK *"g (a( *, bK *). We thus
obtain the set of hK *'s needed to construct both the pivotal and non-pivotal bootstrap con"dence
intervals.

4. SOFTWARE

Recall from the linear model example that the appropriate form of bootstrap resampling can vary
considerably with the model chosen and the assumptions made about that model. Consequently,
it is hard to come up with a general &bootstrap program' and this has hindered the implementa-
tion of bootstrap methods in procedure-based statistical packages, while favouring those which
are interactive and relatively easy to develop.

It is not possible to give here an exhaustive description of what is available in the host of
statistical software packages on the market. We give instead brief comments on what is currently
available in four statistical packages commonly used by medical statisticians; a more exhaustive
list is given by Efron and Tibshirani (Reference [6], p. 398). Further developments are taking
place all the time } the fact that a package is not mentioned here does not re#ect on its suitability
or capability for bootstrapping.

The two recent applied books on the bootstrap both come with S-plus [17] code [5, 6], making
it the most well provided-for platform for bootstrapping. As mentioned in Section 3.4, stata [18]
has a routine that calculates percentile and bias corrected percentile intervals given a user-written
problem-speci"c program; an extension of this routine to include BCa intervals is available from
the authors. SAS [19] o!ers general purpose jackknife and bootstrap capabilities via two macros
available in the "le jack-boot.sas at http://ftp.sas.com/techsup/download/stat/. In addition,
PROC MULTTEST can be used to output bootstrap or permutation resamples, and they can
subsequently be analysed with BY processing in any other SAS procedure. Mooney [20]
describes various bootstrapping procedures for the interactive software GAUSS [21].

For large coverage simulations, such as the one reported below, it is sometimes necessary to use
a lower level language, such as C or FORTRAN, to obtain results in reasonable time. However,
such simulations are far from a necessary part of routine bootstrapping for applied problems.
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Table IV. Number of times, out of 10 000 replications, that equitailed 99 per
cent con"dence intervals constructed for the mean of an inverse exponential
distribution, based on a sample of size 20 from the distribution, fail to include
the true parameter value, 1. Figures in parenthesis next to the interval coverage

are standard errors based on the binomial distribution.

Method Interval Mean length (SE)
above 1 below 1

Expected 50 50 1.333
Theoretical 45 (7) 52 (7) 1.332 (0.003)
Non-Studentized pivotal 0 (0) 530 (22) 1.157 (0.003)
Bootstrap-t 48 (7) 47 (7) 1.347 (0.003)
Percentile 1 (1) 215 (14) 1.157 (0.003)
BC percentile 5 (2) 169 (13) 1.178 (0.003)
BCa percentile 50 (7) 56 (7) 1.330 (0.003)
Test-inversion 46 (7) 50 (7) 1.351 (0.003)

5. SIMULATIONS STUDY: EXPONENTIAL DISTRIBUTION

We present the results of a simulation study comparing the simulation based methods described
so far applied to the problem of estimating a con"dence interval for the mean of an inverse
exponential distribution, with density function

f
X
(x)"(1/j) exp(!x/j), j'0

based on a small sample from the distribution.
Table IV gives results for the bootstrap methods and the test-inversion method. The

program repeatedly simulated an &observed' sample of size 20 from the inverse exponen-
tial distribution with mean 1 and constructed intervals for the mean based on that
sample. For each &observed' sample from the inverse exponential distribution all the
bootstrap intervals were constructed using the same set of B simulated observations.
The TIB interval (which coincides with the STIB interval in this example) was estimated
using the Robbins}Monro algorithm [16]. The Robbins}Monro search used B/2
simulated observations in the search for each interval endpoint, making a total of B,
which is equivalent to the number used to estimate the bootstrap intervals. The value of
B was 3999. Standard errors, calculated using the binomial distribution, are given in
parentheses.

Table IV shows that the most reliable methods for estimating equitailed con"dence intervals
for the mean of the inverse exponential distribution are the bootstrap-t and the test-inversion
method (both happen to have theoretical coverage error zero in this example). The bias corrected
and accelerated (BCa) percentile method cannot be relied on as the nominal coverage increases
and the sample size decreases. For example, with a sample size of "ve, the BCa interval was below
1 a total of 180 times, while the test-inversion and bootstrap-t intervals remained below 1 50}60
times, as expected.
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Figure 4. Guide to choosing a bootstrap con"dence interval method when using
non-parametric simulation.

Figure 5. Guide to choosing a bootstrap con"dence interval method when using parametric simulation, or
simulating in a regression framework, as described in Section 2.3.

6. GUIDE TO CHOOSING A METHOD

The advantages and disadvantages of the above methods, together with our experience on
various examples, are summarized by Figures 4 and 5. These are decision trees, which can be used
to select an appropriate method for a particular application when using non-parametric and
parametric resampling, respectively. Where the box at the end of the decision tree has more than
two methods, we slightly prefer the "rst method given. However, as a check, both methods can be
used and the resulting intervals compared.
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7. WORKED EXAMPLE: REMISSION TIMES FROM ACUTE MYELOGENOUS
LEUKAEMIA

We now continue with our motivating example 1.1. Recall that we "tted a proportional hazards
model to the data. This gave an estimate bK "0.924 of the treatment e!ect b and a standard error
p("0.512. A standard normal approximation con"dence interval for b is therefore bK $1.96]
0.512, which yields (!0.080, 1.928). We wish to con"rm the accuracy of this interval using the
bootstrap.

Depending on the statistic of interest, there are a variety of possible bootstrap sampling
schemes for survival data (Davison and Hinkley, Reference [5], Chapter 7; Veraverbeke [22]).
For simplicity, we consider only non-parametric (that is, case resampling) bootstrapping here.
The non-parametric resampling proceeds as described in Section 2.1.

We sample with replacement from the set of 23 triples (t
i
, c

i
, x

i
) (representing the remission

time, a binary variable indicating censoring and a binary variable indicating treatment) to obtain
a bootstrap data set of 23 triples. We then re"t the proportional hazards model to this data to
obtain a bootstrap estimate bK *.

The procedure in the previous paragraph was repeated 1999 times. Examination of the results
showed that one of the bK *'s was over 20 times greater than the largest of the rest of the bK *'s. This is
an example of a problem that occurs from time to time in bootstrap simulation, when an
extremely unusual data set is generated. For example, in non-parametric sampling, a bootstrap
data set might consist of many copies of the same observation, and it might be impossible to "t
the statistical model to such a data set.

Such an extreme data set would have little impact on the bootstrap con"dence interval
if it were possible to construct the complete set of every possible bootstrap data set and
calculate the con"dence interval from this. However, this is not possible in practice. In
order to avoid the chance occurrence of an extreme data set unduly in#uencing the
bootstrap con"dence interval, we therefore advocate discarding such extreme data sets.
Of course, if it is impossible to "t the statistical model to more than a few per cent of bootstrap
data sets, then, since such data sets can no longer be viewed as extreme data sets within
the complete set of bootstrap data sets, this probably indicates that the statistical model is
inappropriate.

In this case, we discarded the extreme data set, to avoid problems with the numerical routines
used to calculate the variance stabilized bootstrap-t interval.

A Q-Q plot of the 1998 remaining (bK *!bK )'s is shown in the upper left panel of Figure 6. It
appears to be slightly overdispersed relative to the normal distribution. This overdispersion is still
present in the upper tail of the distribution of (bK *!bK )/p( *, shown in the lower left panel of
Figure 6. Moreover, as the top right panel of Figure 6 shows, there is a strong relationship
between the value of bK * and its standard error p( *. With this information in mind, we now refer to
Figures 4 and 5 to choose an appropriate method.

Since we carried out non-parametric simulation, Figure 4 is appropriate. Starting at top, p( and
p( * are available from the information matrix of the proportional hazards model "tted to the
original and bootstrap data sets, respectively. Next, the top right panel of Figure 6 shows there is
a strong correlation between the value of bK * and its standard error p( *. We are thus led to the
variance stabilized bootstrap-t or, as an alternative, the BCa interval.

These intervals are the last two entries in Table V, and they agree well. The results for various
other methods are also given, for comparison. We conclude that there is not quite enough
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Figure 6. Diagnostic plots for the bootstrap con"dence intervals for the AML data: top left panel, Q-Q plot
of the distribution of bK *!bK ; bottom left panel, Q-Q plot of the distribution of (bK *!bK )/p( *; top right panel,

plot of p* against bK *!bK ; bottom right, jackknife-after-bootstrap plot } details in the text.

Table V. Ninety-"ve per cent bootstrap con"dence intervals for
treatment e!ect, b, obtained using various methods. The maximum
likelihood estimate of b, bK "0.916, with standard error, calculated

in the usual way from the information matrix, of 0.512.

Method 95% interval

Normal approx. (bK $1.96]SE bK ) (!0.088, 1.920)
Non-Studentized pivotal (!0.335, 1.856)
Bootstrap-t (!0.148, 1.883)
Percentile (!0.0253, 2.166)
BCa (!0.159, 2.011)
Variance stabilized bootstrap-t (!0.170, 2.067)

evidence to reject the hypothesis that the two treatments are di!erent at the 5 per cent level, and in
particular that there is less evidence than suggested by the standard normal theory interval.

Before leaving this example, we perform a bootstrap diagnostic, to examine whether the
conclusions depend heavily on any single observation. To do this we look at the estimated
distribution of bK *!bK when observations 1, 2, 2 , 23 are left out in turn. No additional
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calculations are needed for this; we simply note, as we go along, which observations are included
in which bootstrap samples. Then, the bK *'s arising from those bootstrap samples which do not
include observation 1 can be used to estimate the distribution of bK *!bK were observation 1 not to
have been observed, and so on. The results are shown in the lower right panel of Figure 6. They
are plotted against jackknife estimates of the in#uence values for the 23 observations (Davison
and Hinkley, Reference [5], p. 113). These are the di!erence between the mean of the bK *'s in the
bootstrap samples in which a particular observation does not occur and the mean of all the bK *'s.
The results indicate that the estimate of the distribution of bK *!bK , and hence the con"dence
intervals, do not depend strongly on a particular observation.

8. CONCLUSIONS

In common with Young [8], our experience suggests there are three principal reasons for the
somewhat reticent use of the bootstrap in the medical statistics community. The "rst is a fear that
in a particular problem, the bootstrap may &fail' } in some sense } resulting in misleading
inference. The second is uncertainty about which of the plethora of techniques available is
appropriate in a particular problem. The third is uncertainty over how to implement the methods
in practice.

We have sought to address these issues under the following headings: when should bootstrap
con"dence intervals be used; which method should be used, and what should be done to
implement the method. In summary, our answers to these questions are as follows:

We suggest that bootstrap con"dence intervals should be used whenever there is cause to
doubt the assumptions underlying parametric con"dence intervals. They will either validate such
assumptions, or avoid misleading inferences being drawn. With regard to the anxiety that the
bootstrap may unexpectedly &fail' in a particular application, reassurance can be drawn from
Young [8]:

&Undoubtedly, the bootstrap has been successfully demonstrated to be a sensible
approach for2con"dence interval construction in many statistical problems.'

While there exist examples where the bootstrap will fail, these are generally pathological [5, 6, 8],
and hence unlikely to cause trouble in practice. Concerned readers should consult Davison and
Hinkley (Reference [5], p. 37 ! ).

Turning to the second issue, we have discussed the advantages and disadvantages of all the
commonly used methods, and combined this information into two decision trees to help choose
a method appropriate to the problem in hand.

In response to the third issue, we have given a detailed description of the implementation of
each method and drawn attention to the issues that need to be considered in deciding between
parametric and non-parametric simulation.
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