
On Non-Approximability for Quadratic Programs

Sanjeev Arora∗ Eli Berger Elad Hazan Guy Kindler† Muli Safra
Princeton University Institute for Advanced Study

Princeton, NJ, USA
{arora,ehazan}@cs.princeton.edu{eberger,gkindler, safra}@ias.edu

Abstract

This paper studies the computational complexity of
the following type of quadratic programs: given an arbi-
trary matrix whose diagonal elements are zero, findx ∈
{−1, 1}n that maximizesxT Mx. This problem recently
attracted attention due to its application in various clus-
tering settings (Charikar and Wirth, 2004) as well as
an intriguing connection to the famousGrothendieck
inequality (Alon and Naor, 2004). It is approximable
to within a factor ofO(log n) [Nes98, NRT99, Meg01,
CW04], and known to be NP-hard to approximate within
any factor better than13/11 − ε for all ε > 0 [CW04].
We show that it is quasi-NP-hard to approximate to a
factor better thanO(logγ n) for someγ > 0.

The integrality gap of the natural semidefinite relax-
ation for this problem is known as theGrothendieck
constant of the complete graph, and known to be
Θ(log n) (Alon, K. Makarychev, Y. Makarychev and
Naor, 2005 [AMMN]). The proof of this fact wasnon-
constructive, and did not yield an explicit problem in-
stance where this integrality gap is achieved. Our tech-
niques yield an explicit instance for which the integrality
gap isΩ( log n

log log n ), essentially answering one of the open
problems of [AMMN].

1 Introduction

This paper deals with the following class of quadratic
programs, henceforth denoted MAX QP. For a square
matrix M over the reals where all diagonal entries are
zero, the quadratic program is given by

Maximize xT Mx

Subject toxi ∈ {−1, 1} ∀i ∈ [n]

This subcase of quadratic programming has attracted
a lot of attention recently thanks to a surprising web of
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connections. To begin with, it is an attractive subcase,
being a generalization of problems such as MAX-CUT,
in which the constraints involvepairs of vertices. In ad-
dition, the obvious generalization of the seminal MAX-
CUT algorithm of Goemans and Williamson fails for
this problem — the negative entries ofM cause prob-
lems for the GW rounding algorithm. One would hope
that investigating this problem would lead to new tech-
niques for analyzing SDP relaxations for other prob-
lems.

Also, this variant seems to capture the essential dif-
ficulty of a natural optimization problem calledcor-
relation clustering introduced by Bansal, Blum, and
Chawla [BBC], which was the motivation for its study
in Charikar and Wirth [CW04]. (It is also studied in
physics in context ofspin glass models, see [Tal03]).

Finally, the integrality gap of the obvious SDP relax-
ation of this problem seems related to questions stud-
ied in analysis. In particular, the famousGrothendieck’s
inequality implies anO(1)-approximation to thebipar-
tite case of this problem where the objective isxT My
and x, y are vectors in{−1, 1}n. This was pointed
out by Alon and Naor [AN04], who gave an algo-
rithmic version of Grothendieck’s inequality (in other
words, arounding algorithmfor the obvious SDP re-
laxation). They used this algorithm to derive anO(1)-
approximation to thecut normof a matrix, which plays
an important role in approximation algorithms for dense
graph problems [FK99].

Motivated by the Goemans-Williamson work, Nes-
terov [Nes98], and following him Nemirovskii et
al. [NRT99], obtainedO(log n)-approximations to
MAX QP. This algorithm was later rediscovered in the
clustering context by Charikar and Wirth, who also
pointed that the known hardness results for MAX-CUT
implied that13/11− ε approximation is NP-hard. They
raised the obvious question, whether the approximation
ratio can be improved fromlog n to O(1).



1.1 Our results

In this paper we show that unlessP = NP , the ap-
proximation factor of MAX QP cannot be made constant,
and prove the following:

Theorem 1. There exists a constantγ > 0 such that
unlessNP ⊆ DTIME(nlog3 n), MAX QP cannot be
approximated in polynomial time up to a factor smaller
thenO(logγ n).

In fact, we show that the existence of suffi-
ciently strong PCPs implies that achievingO(log n)-
approximation is also hard.

Independently, Khot and O’Donnell [KO] have
proved that MAX QP cannot be approximated in poly-
nomial time up to a factor smaller thenO(log log n), as-
suming Khot’sunique games conjecture[Kho02]. How-
ever, the matrices they obtain come from a more re-
stricted set, and are useful for proving lower bounds for
different variants of the problem.

The second part of our work gives a better under-
standing of the standard SDP relaxation for the MAX QP
problem, which is used both in the above-mentioned
O(log n)-approximation, as well as in a formal study by
Alon et al [AMMN] of the Grothendieck constantof
a graph. The Grothendieck constant of ann-node graph
G = (V,E) is the maximum integrality gap of the above
SDP among all matricesM whose entries are zero for all
{i, j} that are not edges inE. Alon et al. proved that this
integrality gap, the Grothendieck constant, isΩ(log n)
for the complete graph. This improved upon Kashin and
Szarek [KS03], who obtained a bound ofΩ(

√
log n).

However, both proofs are non-constructive, in the sense
that they do not generate an explicit matrix for which
the integrality gap is achieved. We essentially settle a
question by Alon et al. and provide an explicit quadratic
form for which the integrality gap isΩ( log n

log log n ).
The rest of the paper is organized as follows. First

we present a few definitions and previous results & con-
jectures in Section 2. In Section 3 we prove Theorem 1.
Finally Section 4 contains the explicit construction of an
instance that achieves integrality gap ofΩ( log n

log log n ).

2 Preliminaries

The MAX QP problem we consider is defined as fol-
lows

Definition 1 (MAX QP). An instance of theMAX QP
problem is a matrixM ∈ Rn×n with diagonal entries
equal to zero and a set of variables{x1, ..., xn}. The
objective is to find an assignmentf : {xi} 7→ {−1, 1}
that maximizes the quadratic formxT Mx. The objective
value of an instanceM under assignmentf is denoted

by M(f). The maximal objective value of an instance
M is denotedval(M) = maxf M(f).

The natural semi-definite relaxation for MAX QP is
defined as

Definition 2 (MAX QP relaxed version). Given a matrix
M ∈ Rn×n with diagonal entries equal to zero, assign
unit vectors (i.e. vectors ofl2 norm 1)vi ∈ Rn such as
to maximize the expression

∑
ij Mij · 〈vi, vj〉.

A common starting point for our hardness results is
the Label Cover problem defined below.

Definition 3. The Label Cover problem
L(V,W,E, [R], {σv,w}(v,w)∈E) is defined as fol-
lows. We are given a regular bipartite graph with left
side vertices V , right side vertices W, and a set of edges
E. In addition, for every edge(v, w) ∈ E we are given
a mapσv,w : [R] → [R]. A labellingof the instance is
a function` assigning one label to each vertex of the
graph, namelỳ : V ∪W → [R]. A labelling` satisfies
an edge(v, w) if

σv,w(`(v)) = `(w) .

Thevalueof a Label Cover instance, denotedval(L),
is defined to be the maximum, over all labellings, of the
fraction of edges satisfied.

The PCP Theorem [AS98, ALM+98] combined with
Raz’s parallel repetition theorem [Raz98] yields the fol-
lowing theorem, which is used in the proof of Theorem
1

Theorem 2 (Quasi-NP-hardness). There exists a con-
stantγ > 0 so that for any languageL in NP, any in-
put w and anyR > 0, one can construct a labeling
instanceL, with |w|O(log R) vertices, and label set of
sizeR, so that: Ifw ∈ L, val(L) = 1 and otherwise
val(L) < R−γ . Furthermore,L can be constructed in
time polynomial in its size.

A better lower bound can be achieved if we assume a
strengthened version of the above theorem. Specifically,
the parameterγ in Theorem 2 translates directly to theγ
of Theorem 1, and therefore a PCP with parameterγ =
1 would imply the optimal hardness of approximation
ratio for MAX QP , namelyΘ(log n).

2.1 Notions from analysis

In this paper we consider properties of real-valued
and Boolean-valued functions over Boolean variables.
We consider functionsf : {−1, 1}n 7→ R and say a
function isBoolean-valuedif its range is{−1, 1}. The
domain{−1, 1}n is implicitly equipped with the uni-
form probability measure, unless specified otherwise.
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This implies a natural inner product over the space of
real-valued functionsf : {−1, 1}n 7→ R, defined by
〈f, g〉 = E[fg]. The associated norm in this space is
given by‖f‖2 =

√
E[f2]. We also define thep-norm

for every1 ≤ p < ∞, by ‖f‖p = (E[|f |p])1/p. In
addition, let‖f‖∞ = max {|f(x)|}.

Fourier expansion. The character functions over
{−1, 1}n are defined as follows. ForS ⊆ [n], define
χS by χS(x) =

∏
i∈S xi. It is well known that the set

of all such functions (characters) forms an orthonormal
basis for our inner product space and thus every function
f : {−1, 1}n → R can be uniquely expressed as

f =
∑

S⊆[n]

f̂(S)χS , (1)

and the coefficients above satisfyPlancherel’s identity,
namely〈f, g〉 =

∑
S f̂(S)ĝ(S). In particular,‖f‖2

2 =∑
S f̂(S)2. The right-hand side of (1) is called the

Fourier expansionof f , and the coefficientŝf(S) =
〈f, χS〉 are called theFourier coefficientsof f . Note
that if f is Boolean-valued then

∑
S f̂(S)2 = 1, and if

f : {−1, 1}n → [−1, 1] then
∑

S f̂(S)2 ≤ 1.
We refer to the Fourier coefficients{f̂(S) s.t. |S| =

1} corresponding to the linear functions{χi|i ∈ [n]} as
the linear coefficients.

We speak off ’s squared Fourier coefficients as
weights, and we speak of the setsS being stratified into
levelsaccording to|S|. So for example, by theweight of
f at level 1we mean

∑
|S|=1 f̂(S)2.

For a functionf as above we denote its linear part by

f=1 =
∑

S⊂[n],|S|=1

f̂(S)χS

and similarly its non-linear part by

f 6=1 =
∑

S⊆[n],|S|6=1

f̂(S)χS .

Vector functions. In the analysis of the integrality gap
we consider functionsf : {−1, 1}n 7→ Sd−1, i.e. func-
tions that map into vectors ofl2 norm 1 (vectors that lie
on the unitd-dimensional sphere). Such functions also
have a Fourier representation

f =
∑

S⊆[n]

f̂(S)χS .

however the Fourier coefficientŝf(S) are now vectors.
Consider then ”coordinate mappings”fi : {−1, 1}n 7→
[−1, 1], defined byfi(x) def= (f(x))i (i.e., the value offi

atx is equal to thei’th coordinate of the vectorf(x)). It

is easy to see that the Fourier coefficients off are vectors
whose coordinates are the corresponding coefficients of
the functionsfi. The coefficients off are vectors of
norm at most 1, that is, lie inside the unitd-dimensional
ball f̂(S) ∈ Bd−1.

3 Hardness of QP

In this section we prove Theorem 1, showing
MAX QP to be hard to approximate. The proof is by
reduction from Label Cover to MAX QP, obtained by us-
ing the long code to encode assignments to a given label
cover instance. An assignment over the long code vari-
ables is regarded as a Boolean function, and the objec-
tive value can easily be expressed in terms of the Fourier
coefficients of these functions.

Our construction is somewhat similar to other in-
approximability results, such as that for MAX-CUT
[KKMO] and for SPARSEST-CUT [CKK+05, KV].
The techniques in these results, however, are lim-
ited to proving gaps ofO(log log n) (technically, this
arises from the tightness of Bourgain’s theorem from
Fourier analysis) [Bou02]. The key for achieving poly-
logarithmic in-approximability factors for MAX QP is
the option of using negative coefficients in instances of
MAX QP. This allows for long-code tests that incur se-
vere penalty on certain illegal codewords. Specifically,
looking at long-code words as Boolean functions, we
use negative entries in the MAX QP matrix to signifi-
cantly reduce the value obtained by our long-code test
when applied to words that have any non-linear Fourier
coefficients.

3.1 The reduction

Given an instance of label coverL =
L(V,W,E, [R], {σv,w}(v,w)∈E), we describe a re-
duction which constructs an instance of MAX QP
denotedML. The diagonal entries of our initial con-
struction will not be zero, however in Subsection 3.4 we
eliminate all non-zero diagonal entries inML.

Parameters. Let L =
L(V,W,E, [R], {σv,w}(v,w)∈E) be an instance of label
cover, where the size of the instance isn = |V | + |W |,
andR < log10 n. The reduction uses three parameters,
ν, b, andd, which are set by

ν
def=

1
2n

, and b, d
def= e10R + 4ν−6 .

The variables. For every vertexu ∈ V ∪ W of the
original instanceL, the reduction generatesd sets of
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new variables, denoted
{
Ci

u

}
i∈[d]

. (The reader may pre-
fer to think of d as 1 in first reading. We later need
to make many “copies” of each variable by settingd
to a larger value, in order to set the diagonal elements
of the generated instance to zero). Each setCi

u will
correspond to an encoding of the assignment tou, and
will contain on variableCi

u(x) ∈ Ci
u for every element

x ∈ {−1, 1}R of theR-dimensional discrete hypercube.
The MAX QP instanceML will therefore be defined over
N

def= d(|V |+ |W |)2R variables.

The quadratic form. When restricted to a subsetCi
u,

an assignmentf to the variables of the MAX QP in-
stance can be viewed as a Boolean functionf i

u, defined
by f i

u(x) def= f(Ci
u(x)). Let fu

def= Ei∈[d][f i
u]. We write

our quadratic form as a convex combination of bilinear
forms, defined over the functionsf i

u. We have two kinds
of forms: theinternalandexternalforms.

• Internal Forms. For everyu ∈ V ∪ W and every
i, j ∈ [d] we write

Tu,i,j(f) def= − b
∑

S⊆[R], |S|6=1

f̂ i
u(S)f̂ j

u(S) .

In addition, let

Tu(f) = Ei,j∈[d][Tu,i,j(f)] = −b
∑

S⊆[R], |S|6=1

f̂u

2
(S).

Note that because of the large value ofb, even tiny
non-zero non-linear coefficients offu makeTu(f)
become very negative.

• External Forms. For every edge(v, w) ∈ E and
everyi, j ∈ [d] we write

Tv,w,i,j(f) =
∑

k∈[R]

f̂ i
v({k})f̂ j

w({σv,w(k)}) ,

and let

Tvw(f) = Ei,j∈[d][Tv,w,i,j(f)]

=
∑

k∈[R] f̂v({k})f̂w({σv,w(k)}).

Our MAX QP instance is given by the following
quadratic form.

ML(f) def= νEu∈V ∪W [Tu(f)]
+ (1− ν)E(v,w)∈E [Tvw(f)] (2)

This concludes the description of our reduction except
for a small modification, discussed in Subsection 3.4,

needed to obtain zero diagonal entries. In the next two
subsections we proceed in proving completeness and
soundness properties for the reduction (Lemma 1 and
Lemma 2 respectively). We then show in Subsection 3.4
that removing diagonal entries does not change the prop-
erties ofML significantly, and finally in Subsection 3.5
we conclude the proof of Theorem 1.

3.2 Completeness

Let L andML be as above. Recall that the value of
L is the maximal fraction of edges that can be satisfied
by a labelling, and that the value ofML, val(ML), is
the maximal value that the quadratic form can obtain by
a Boolean assignment. The following lemma states that
the value ofL is a lower bound for the value ofML.

Lemma 1. If val(L) ≥ 1 − ε, thenval(ML) ≥ (1 −
ε)(1− ν).

PROOF: According to the assumption,L has some la-
belling l : V ∪W → [R] satisfying at least1 − ε of its
constraints. We define an assignmentf for the MAX QP
instance byf i

u(x) def= xl(u).

The Fourier coefficients off i
u are f̂ i

u({l(u)}) = 1,
andf̂ i

u(S) = 0 wheneverS 6= {l(u)}. Hence for every
u ∈ V ∪ W andi, j ∈ [d] we haveTu,i,j(f) = 0, and
thereforeTu = 0. Next, let(v, w) ∈ E andi, j ∈ [d].
If the edge(v, w) is satisfied by the labelling, namely
σvw(l(v)) = l(w) (this is true for at least a(1 − ε)-
fraction of the edges), then

Tv,w,i,j(f) =
∑

k∈[R]

δk,l(v)δσvu(k),l(w) = 1.

If the edge(v, w) is not satisfied by the labelling then
the expression above yields0. Hence the overall value
of the MAX QP instance is

ML(f) = νEu∈V ∪W [Tu(f)] + (1− ν)E(v,w)∈E [Tvw(f)]
≥ (1− ν)(1− ε) .

�

3.3 Soundness

The following lemma states the soundness property
of the reduction.

Lemma 2. If ML(f) ≥ ε ≥ 1
R2 for an assignmentf ,

then there exists a labelling forL which satisfies at least
anΩ(ε)-fraction of the edges.
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Proof. Consider any assignment withML(f) ≥ ε. As
a first step, we show that the functionsfu induced by
such an assignment are extremely close to being linear
functions.

Claim 1. For all verticesu ∈ V ∪ W it holds that
‖Tv(f)‖2

2 ≤ 1√
b
.

PROOF: Note that, being averages of Boolean functions,
the functionsfu take values in[−1, 1]. Their L2 norm
is thus bounded by 1. In particular, their Fourier coeffi-
cients are each bounded by 1 in absolute value.

According to the construction, the absolute value of
every external formTvw is bounded by:

|Tvw(f)| =
∣∣Ei,j∈[d][Tvw(i, j)]

∣∣
=
∑R

k=1

∣∣∣f̂v({k})
∣∣∣ ∣∣∣f̂w({{σv,w(k)}})

∣∣∣ ≤ R

For an internal formTv we have

Tv(f) = −b
∑
|S|6=1

f̂v(S)2 = −b‖f 6=1
v ‖2

2 ,

By equation 2 and the assumptionML(f) ≥ ε we
have:

ε ≤ ML(f)
= νEu∈V ∪W [Tu(f)] + (1− ν)E(v,w)∈E [Tvw(f)]

≤ −νbEu∈V ∪W [‖f 6=1
u ‖2

2] + R

Which impliesEu∈V ∪W [‖f 6=1
u ‖2

2 ≤ R−ε
νb ≤ R

2νb . Now
suppose that there exists au such that‖f 6=1

u ‖2
2 > 1√

b
.

This implies:

Eu∈V ∪W

[
‖f 6=1

u ‖2
2

]
≥ 1

n

[
1 · 1√

b
+ (n− 1) · 0

]
= 1

n
√

b
> R

2νb

In contradiction to the previous conclusion.
�

Claim 2. For all verticesu ∈ V ∪ W it holds that∑R
k=1 |f̂v({k})| ≤ 2.

PROOF: By the previous Lemma,‖f 6=1
v ‖2

2 ≤ 1√
b
≤

e−5R.
Now suppose that

∑R
k=1 |f̂v({k})| > 2. Sincef=1

v

is a linear function with coefficients{f̂v({k})|k ∈ [R]},
there exists a valuey ∈ {+1,−1}R for whichf=1

v (y) =∑R
k=1 |f̂v({k})| > 2. For thisy we havef 6=1

v (y) =
fv(y)− f=1

v (y) ≤ −1. Therefore,

‖f 6=1
v ‖2

2 ≥ 2−R ,

and this is a contradiction.�

The following simple argument shows that the expected
value ofTvw is large for the assignmentf .

Claim 3. E(v,w)∈E [Tvw(f)] ≥ 1
2ε.

PROOF: We are assuming thatML(f) = νEu[Tu(f)] +
(1 − ν)E(v,w)∈E [Tvw(f)] ≥ ε. Note thatTu(f) ≤ 0.
Hence,E(v,w)∈E [Tvw(f)] ≥ ε

1−ν ≥
1
2ε. �

Using the previous claims, we now define a random
label assignment as follows. The assignment to every
v ∈ V ∪W is randomly and independently chosen to be
k with probability 1

2 |f̂v({k})| (the sum of these proba-
bilities is at most one by Claim 2), and with probability
1− 1

2

∑
k |f̂v({k})| we leavev un-assigned.

Let cvw be an indicator random variable that is set to
1 if and only if the label assignment above satisfies the
label-cover constraint on the edge(v, w).

The expected number of constraints satisfied by our
assignment is:

E(v,w)∈E(L)[cv,w] =

Ev,w

[∑
k∈[R]

1
2 |f̂v({k})| · 1

2 |f̂w(σvw(k))|
]

≥ 1
4Ev,w[

∑
k∈[R] f̂v({k})f̂w(σvw(k))]

= 1
4Ev,w [Tvw] ≥ 1

8ε

Where the last inequality is by Claim 3. This com-
pletes the proof of Lemma 2.

3.4 Removing the diagonal

The instanceML constructed in the previous section
has non-zero diagonal entries. However since we took
care to haved “copies” of every set of variables, the in-
teraction of any variable setCi

u with itself (which occurs
only in the termsTv) is negligible. More formally, con-
sider the MAX QP instanceBL, that is obtained from
ML by removing all terms of the formTu,i,i(f).

Recall thatTu,i,j(f) = −b
∑

|S|6=1 f̂ i
u(S)f̂ j

u(S), and
therefore

|Tu,i,i(f)| ≤ b
∑
S

f̂ i
u

2
(S) = b .

Hence, for any specific assignmentf , the difference
in value ofML andBL is bounded by

|ML(f)−BL(f)| ≤ ν

(|V |+ |W |)d2

∑
u∈V ∪W

Tu,i,i

≤ νb

d2
=

ν

b
≤ e−10R
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3.5 Concluding the hardness proofs

Theorem 1 now follows as simple corollary of
Lemma 1 and Lemma 2.

Proof of Theorem 1.Given an instance of label coverL
as in theorem 2, constructML as described above. The
MAX QP instance has the following properties:

1. The size of the instance isN = O(nlog R · 2R).

2. By lemma 1, if there exists an assignment satisfy-
ing more than a1 − ε fraction of the equations of
L, then the value of the QP is at least1− ε− o(ε).

3. By lemma 2, if the value ofML is at leastδ > 1
R2 ,

then there exists an assignment that satisfiesΩ(δ)
of the constraints ofL.

Set R = log2 n. Suppose that we could approx-
imate val(ML) in polynomial time to a factor better
then O(logγ N). Then if the best assignment forL
satisfies fraction1 of the equations, we can find a so-
lution to the MAX QP instance of value1/ logγ(N) =
log−γ(nlog R2R) = Ω(log−γ(2log2 n)) = Ω(R−γ).

On the other hand, if every assignment satisfies at
mostR−γ of the constraints, then any QP solution will
have value at mostR−γ . Thus in timepoly(N) =
nO(log2 n) we can distinguish between the two cases of
the label cover instance. By theorem 2, this implies
NP ⊆ DTIME(nlog3 n).

4 Explicit Integrality Gap

In this section we prove Theorem 3, showing an ex-
plicit family of M AX QP instances with increasing inte-
grality gap. Our construction was inspired by the recent
embedding lower bound of Khot and Vishnoi [KV].

Theorem 3. There exists a family ofMAX QP instances
of unbounded size, where the integrality gap of instances
overn variables isΩ( log n

log log n ).

Notation. Fix any n ∈ N. Let F def= {f |f :
{1,−1}n 7→ {1,−1}} be the set of all Boolean func-
tions onn bits. LetR

def= 2n andN
def= 2R = 22n

. For
any f ∈ F andT ⊆ [n], let f ◦ T ∈ F denote the
function defined byf ◦ T (x) = f(x⊕ T ), wherex⊕ T
denotes the vector obtained fromx by flipping the value
of xk for everyk ∈ T .

Let f ∼η f ′ the distribution on pairs of functions
f, f ′ ∈ F wheref is chosen uniformly at random and
f ′ is obtained by flipping each value off independently
with probability η. Denote byρ ∼η {±1}n the distri-
bution onn-bit strings such that each entry is chosen

independently to be−1 with probabilityη and 1 other-
wise.

4.1 The construction

The construction makes use of three parameters that
we fix as follows. Letν = 1

R2 , b = N10 , d = b2 =
N20

Variables. We generate an instance of QP, denoted
Mn, over a set of variablesV such that|V | = n. It
will be more convenient for us to have more than one la-
bel for each variable. That is, we first define a quadratic
form over a larger number of variables, and then identify
some of them, thereby obtaining a form over a smaller
number of variables each having more than one label.
The initial set of variables isV = {〈f, g, i〉|f, g ∈
F , i ∈ [d]}. We define an equivalence relation over the
variables by setting〈f, g ◦ T, i〉 ≡ 〈fχT , g, i〉 for every
subsetT ⊆ [n], and identify all the variables that belong
to the same equivalence class.

We partition the labels into disjoint sets by setting

Vf,i = {〈f, g, i〉|g ∈ F}.

Given an assignmentA to the variables (whether a
Boolean or a vector assignment), its restriction toVf,i

can be viewed as a function overF . We denote this
function byAi

f .

The quadratic form. The final quadratic form is a
convex combination of bilinear forms over the functions
Ai

f , which are defined in terms of their Fourier represen-
tation. As in the case of the hardness reduction, we have
internal formsandexternal forms.

• Internal Forms. For everyf ∈ F we let Mf be
defined by

Mf (A) def= Ei,j∈[d]

−b
∑
|α|6=1

Âi
f (α)Âj

f (α)

 .

Note that if we defineAf
def= Ei∈[d][Ai

f ], then

Mf (A) = −b
∑
|α|6=1

Âf

2
(α) . (3)

• External forms. For everyf, f ′ ∈ F , let Mf,f ′ be
defined by

Mf,f ′(A) def= Ei,j∈[d]

∑
|α|=1

Âi
f (α)Âj

f ′(α)


=

∑
|α|=1

Âf (α)Âf ′(α) (4)
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The final quadratic form is given by the following con-
vex combination of the internal and external forms:

Mn(A) def= ν · Ef∈F [Mf ] + (1− ν) · Ef∼ηf ′ [Mf,f ′ ]

We now state the main lemma of this section,

Lemma 3. For every 0 < η < 1
2 , for every large

enoughn, the MAX QP instanceMn satisfies the fol-
lowing properties:

1. For every Boolean assignmentA, we have
Mn(A) ≤ 1

R
η

1−η

2. There exists a vector assignmentAv for which
Mn(A) ≥ 1− 2η.

Before we prove Lemma 3, let us show how it implies
Theorem 3.
PROOF:[Proof of Theorem 3.] The number of variables
in the instanceMn is N2·d

R = O(N22). According to

Lemma 3, the integrality gap isR
η

1−η · (1 − 2η). Fix
η = 1

2 −
1

log R , then the integrality gap becomes:

R
η

1−η · (1− 2η) = Ω(R1− 2
log R · 1

log R )

= Ω( R
log R ) = Ω( log N

log log N )

�

4.2 Integral solution

In this subsection we prove the first part of Lemma 3.

Lemma 4. For any Boolean assignmentA, the value of
theMAX QP instanceMn satisfiesMn(A) ≤ 1

R
η

1−η
.

To prove this lemma, we start by examining a few
properties of the Boolean functions{Af |f ∈ F}. The
fact that every variable of the instanceMn has several
labels implies a certain relationship between the Fourier
coefficients of the functionsAf . This is formalized in
the following claim.

Claim 4. For any T ⊆ [n] and anyf ∈ F it holds
∀x ⊆ [n] Âf (x) = ÂfχT

(x ◦ T ).

PROOF:
Consider a certain functionf ∈ F and subsetT ⊆

[n]. Since for every functiong ∈ F the vertices〈f, g ◦
T, i〉 ≡ 〈fχT , g, i〉 were identified, the assignmentA
must satisfy:

∀g Af (g ◦ T ) = AfχT
(g)

Writing these equations in Fourier basis we have:

∀g
∑

x⊆[n]

Âf (x)χx(g ◦ T ) =
∑

x⊆[n]

ÂfχT
(x)χx(g)

If the valuesÂf (x) are fixed, this system of lin-
ear equations has a possible solution∀x Âf (x) =
ÂfχT

(x ◦ T ). This is the only solution as the linear
system of equations has full rank.

�

Another property of any assignment withMn(A) >
0 is that eachAf is very close to being a linear func-
tion. The following two claims prove this fact for two
different measures of distance - thel1 andl2 norms.

Claim 5. For any assignment such thatMn(A) > 0 it
holds that∀f ∈ F ‖A6=1

f ‖2
2 ≤ 1

N6

PROOF: By equations 3 and 4 we have

Mn(A) = νEf

[
−b‖A6=1

f ‖2
2

]
+(1− ν)Ef∼ηf ′∈F

[∑
|α|=1 Âf (α)Âf ′(α)

]
(5)

AssumingMn(A) > 0 this translates to

0 < Mn(A) ≤ 1− ν − bEf

[
‖A6=1

f ‖2
2

]
≤ 2− νbEf

[
‖A6=1

f ‖2
2

]
According to the choice of parameters we obtain

Ef

[
‖A6=1

f ‖2
2

]
≤ 2

νb
<

1
N8

Now suppose that there exists anf such that‖A6=1
f ‖2

2 >
1

N6 . This implies:

Ef

[
‖A6=1

f ‖2
2

]
≥ 1

N

[
1 · 1

N6
+ (N − 1) · 0

]
>

1
N8

In contradiction to the previous conclusion.
�

Claim 6.
∀f ∈ F

∑
x⊆[n]

|Af (x)| ≤ 2

PROOF: By Claim 5, for everyf ∈ F we have
‖A6=1

f ‖2
2 < 1

N8 ≤ e−4R.
The rest of the argument is the same as in claim 2.
�

We can now proceed with the proof of Lemma 4.
PROOF:[Lemma 4] Consider any Boolean assignment
A to the variables ofMn. Suppose thatMn(A) > 0
(the assignment that achieves the maximum overMn(A)
definitely satisfies this). From equation 5 we have

Mn(A) ≤ Ef∼ηf ′∈F [
∑

x⊆[n]

Âf (x)Âf ′(x)]

7



Using the assignmentA, we proceed to define a func-
tion Φ = ΦA : F 7→ [R] as follows. For every set of the
form {fχS |S ⊆ [n]} we pick an arbitrary representative
f , and setΦ(f) to bex with probability 1

2 |Âf (x)| , and

with probability1 − 1
2

∑
x |Âf (x)| we set it arbitrarily

to zero (note that by Claim 6 the above probabilities are
indeed non-negative and sum up to1).

OnceΦ(f) has been set, we letΦ(fχT ) def= Φ(f)⊕ T
for everyT ⊆ [n]. Note that the resulting functionΦ
must be balanced, that is, it must satisfy

∀x ⊆ [n] . Pr
f∈F

[Φ(f) = x] =
1
R

(6)

This implies the following bound on the stability ofΦA,
attributed to O’Donnell [O’D04] and communicated to
us by Khot [Kho] (see proof in the Appendix)

Lemma 5 (O’Donnell). For any functionΨ : {±1}t 7→
[R] such that∀i ∈ [R] . Prx∈{±1}t [Ψ(x) = i] = 1

R it
holds that:

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′)] ≤ 1

R
η

1−η

.

In the following claim we show howΦA can be used
to boundMn(A).

Claim 7.

Mn(A) ≤ 4 Pr
f∼ηf ′∈F

[Φ(f) = Φ(f ′)] + ν

PROOF: Let N(f) = {fχT |T ⊆ [x]}, andPr[f, f ′] =
Prρ∼η{±1}R [f ′ = fρ] be the probability of obtaining
f ′ from f underη noise. LetI(f, f ′) be the indicator
random variable that is 1 if and only ifΦ(f) = Φ(f ′).
By definition ofΦ we have:

Pr
f∼ηf ′∈F

[Φ(f) = Φ(f ′)]

=
1
|F |2

∑
f,f ′∈F

Pr[f, f ′] · I(f, f ′)

=
1
|F |2

∑
f∈F

( ∑
f ′ /∈N(f)

Pr[f, f ′]I(f, f ′)

+
∑

T⊆[x]

Pr[f, fχT ]I(f, f ′)

)

≥ 1
|F |2

∑
f∈F

∑
f ′ /∈N(f)

Pr[f, f ′]I(f, f ′)

Now since forf /∈ N(f) the values ofΦ(f) andΦ(f ′)

are independent

=
1
|F |2

∑
f∈F

∑
f ′ /∈N(f)

Pr[f, f ′]
∑

x⊆[n]

1
4
|Âf (x)||Âf ′(x)|

=
1

4|F |2

( ∑
f,f ′∈F

Pr[f, f ′]
∑

x⊆[n]

|Âf (x)||Âf ′(x)|

−
∑
f∈F

∑
T⊆[n]

Pr[f, fχT ]
∑

x⊆[n]

|Âf (x)||ÂfχT
(x)|

)

≥ 1
4
Mn(A)− 2R

N
≥ 1

4
Mn(A)− 1

4
ν

�

This lemma together with the bound of Lemma 5 yields

Mn(A) ≤ 4

R
η

1−η

+ ν = O(
1

R
η

1−η

) , (7)

Proving Lemma (4).
�

4.3 Vector solution

Consider the vector assignment, given by the Fourier
coefficients:

∀α Âf (α) = Âi
f (α) =


1
RfχT |α| = 1, α = T ⊆ [n]

0 o/w

Notice that the vectorŝAf (α) are orthogonal, and their
norms satisfy

∀α ‖Âf (α)‖2 =


1
R |α| = 1

0 o/w
(8)

In the standard basis, these vectors can be written as:

Af (g) = Ai
f (g) =

1
R

∑
T⊆[n]

g(1 ◦ T ) · fχT

Khot and Vishnoi observed that the above vector as-
signment assigns the same vector to all vertices in the
equivalence classes{fχT |T ⊆ [n]}.

Lemma 6. For the vector solution above we have
Mn(A) ≥ 1− 2η.
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PROOF: Recall by equation 5

Mn(A) = νEf

[
−b‖A6=1

f ‖2
2

]
+ (1− ν)Ef∼ηf ′∈F

[∑
α

Âf (α)Âf ′(α)

]
by equation 8

= (1− ν)Ef∼ηf ′∈F

[∑
α

Âf (α)Âf ′(α)

]

= Ef∼ηf ′∈F

 ∑
T⊆[n]

1
R

fχT ·
1
R

f ′χT


= Ef∼ηf ′∈F

[
1
R
〈f, f ′〉

]
= (1− ν) · (1− 2η) ≥ 1− 2η

�

Lemma 3 now follows from Lemmas 4 and 6.

4.4 Removing the diagonal

As the parameterd is much largerb, we can apply a
modification very similar to the corresponding modifica-
tion in the hardness of approximation result (Subsection
3.4), to obtain a matrix with zero diagonal entries. The
details are omitted for brevity.
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A Stability of balanced multi-valued func-
tions

For completeness, we provide the proof O’Donnell’s
Lemma [O’D04]:
PROOF:[Lemma 5] GivenΨ, define∀j ∈ [R] Φj(x) :
{±1}t 7→ {0, 1} as follows:

Φj(x) def=

 1 Ψ(x) = j

0 o/w

Then:

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′) = j]

= Pr
x∼ηx′∈D

[Φj(x) = Φj(x′) = 1]

= Ex∼ηx′∈{±1}t [Φj(x)Φj(x′)]

= Ex,ρ[(
∑
α⊆[t]

Φ̂j(α)χα(x))(
∑
β⊆[t]

Φ̂j(β)χβ(x⊕ ρ))]

=
∑
α⊆[t]

Φ̂j

2
(α)Eρ∼η{±}t [χα(ρ)))]

=
∑
α⊆[t]

Φ̂j

2
(α)(1− 2η)|α|

= ‖T√1−2η[Φj ]‖2
2

WhereTδ[f ] is the Beckner operator:

Tδ[f ] =
∑
S

δ|S|f̂(S)χS

Now using the Beckner inequality (which states

‖Tδ[f ]‖p ≤ ‖f‖r for r ≤ p , δ ≤
√

r−1
p−1 ):

Prx∼ηx′∈{±1}t [Ψ(x) = Ψ(x′) = j]
= ‖T√1−2η[Φj ]‖2

2

≤ ‖Φj‖2
2−2η using Beckner

= Ex∈{±1}t [Φj(x)2−2η]2/2−2η

= ( 1
R )

1
1−η by properties ofΦj

Therefore:

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′)]

=
∑

j∈[R]

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′) = j]

≤ R · 1
R1/1−η

=
1

R
η

1−η

�
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