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Abstract

This paper studies the computational complexity of
the following type of quadratic programs: given an arbi-
trary matrix whose diagonal elements are zero, find
{—1, 1}" that maximizes” M z. This problem recently
attracted attention due to its application in various clus-
tering settings (Charikar and Wirth, 2004) as well as
an intriguing connection to the famouSrothendieck
inequality (Alon and Naor, 2004). It is approximable
to within a factor ofO(logn) [Nes98/ NRT99Y, Meg01,
CWO04], and known to be NP-hard to approximate within
any factor better thari3/11 — e for all e > 0 [CWO04].
We show that it is quasi-NP-hard to approximate to a
factor better tharO(log” n) for somey > 0.

The integrality gap of the natural semidefinite relax-
ation for this problem is known as th@rothendieck
constantof the complete graph, and known to be
O(logn) (Alon, K. Makarychev, Y. Makarychev and
Naor, 2005 [AMMN]). The proof of this fact wason-
constructive and did not yield an explicit problem in-
stance where this integrality gap is achieved. Our tech-
nigues yield an explicit instance for which the integrality
gap isQ(—22"_), essentially answering one of the open

log logn

problems of [AMMN].

1 Introduction

This paper deals with the following class of quadratic
programs, henceforth denotedAMQP. For a square
matrix M over the reals where all diagonal entries are
zero, the quadratic program is given by

Maximize z” Mz

Subjecttox; € {—1,1} Vi € [n]

connections. To begin with, it is an attractive subcase,
being a generalization of problems such as MAX-CUT,
in which the constraints involvgairs of vertices. In ad-
dition, the obvious generalization of the seminal MAX-
CUT algorithm of Goemans and Williamson fails for
this problem — the negative entries &f cause prob-
lems for the GW rounding algorithm. One would hope
that investigating this problem would lead to new tech-
niques for analyzing SDP relaxations for other prob-
lems.

Also, this variant seems to capture the essential dif-
ficulty of a natural optimization problem callecbr-
relation clusteringintroduced by Bansal, Blum, and
Chawla [BBC], which was the motivation for its study
in Charikar and Wirth[[CWO04]. (It is also studied in
physics in context o$pin glass mode]see [[Tal0B]).

Finally, the integrality gap of the obvious SDP relax-
ation of this problem seems related to questions stud-
ied in analysis. In particular, the famoGsothendieck’s
inequalityimplies anO(1)-approximation to thdipar-
tite case of this problem where the objectiveriSMy
and x,y are vectors in{—1,1}". This was pointed
out by Alon and Naor[[ANO4], who gave an algo-
rithmic version of Grothendieck’s inequality (in other
words, arounding algorithmfor the obvious SDP re-
laxation). They used this algorithm to derive @xl)-
approximation to theut normof a matrix, which plays
an important role in approximation algorithms for dense
graph problems [FK29].

Motivated by the Goemans-Williamson work, Nes-
terov [Nes98], and following him Nemirovskii et
al. [NRT99], obtainedO(logn)-approximations to
MaXxQP. This algorithm was later rediscovered in the

This subcase of quadratic programming has attractedclustering context by Charikar and Wirth, who also

a lot of attention recently thanks to a surprising web of
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pointed that the known hardness results for MAX-CUT
implied that13/11 — ¢ approximation is NP-hard. They
raised the obvious question, whether the approximation
ratio can be improved froftog n to O(1).



1.1 Our results

In this paper we show that unlegs= N P, the ap-
proximation factor of M\x QP cannot be made constant,
and prove the following:

Theorem 1. There exists a constant > 0 such that
unlessNP C DTIME(nlOgS ™), MAXQP cannot be
approximated in polynomial time up to a factor smaller
thenO(log” n).

In fact, we show that the existence of suffi-
ciently strong PCPs implies that achievidylogn)-
approximation is also hard.

Independently, Khot and O’Donnell [ [KO] have
proved that M\X QP cannot be approximated in poly-
nomial time up to a factor smaller théhlog log n), as-
suming Khot'sunique games conjectufi€ho02]. How-
ever, the matrices they obtain come from a more re-
stricted set, and are useful for proving lower bounds for
different variants of the problem.

The second part of our work gives a better under-
standing of the standard SDP relaxation for theX\Q P
problem, which is used both in the above-mentioned
O(log n)-approximation, as well as in a formal study by
Alon et al [AMMN] of the Grothendieck constaruf
a graph. The Grothendieck constant ofranode graph
G = (V, E) is the maximum integrality gap of the above
SDP among all matrice® whose entries are zero for all
{3, j} that are not edges ifi. Alon etal. proved that this
integrality gap, the Grothendieck constant{ifogn)

by M(f). The maximal objective value of an instance
M is denotedval(M) = maxy M(f).

The natural semi-definite relaxation foraM QP is
defined as

Definition 2 (MAX QP relaxed version)Given a matrix
M e R™*™ with diagonal entries equal to zero, assign
unit vectors (i.e. vectors @¢§ norm 1)v; € R™ such as
to maximize the expression, ; M;; - (vi, vj).

A common starting point for our hardness results is
the Label Cover problem defined below.

Definiton 3. The Label Cover problem
L(V,W,E,[R],{0vw}@wwer) is defined as fol-
lows. We are given a regular bipartite graph with left
side vertices V , right side vertices W, and a set of edges
E. In addition, for every edgév, w) € E we are given
amapo, ., : [R] — [R]. Alabellingof the instance is

a function/ assigning one label to each vertex of the
graph, namely: V. UW — [R]. A labelling? satisfies

an edggv, w) if

Ov,w (£(v))

Thevalue of a Label Cover instance, denoted!(L),
is defined to be the maximum, over all labellings, of the
fraction of edges satisfied.

The PCP Theoren [AS98, ALMO8] combined with
Raz's parallel repetition theorein [Raz98] yields the fol-
lowing theorem, which is used in the proof of Theorem

L(w) .

for the complete graph. This improved upon Kashin and I

Szarek [[KS0B], who obtained a bound Qf+/logn).

However, both proofs are non-constructive, in the sense

that they do not generate an explicit matrix for which

the integrality gap is achieved. We essentially settle a

guestion by Alon et al. and provide an explicit quadratic
form for which the integrality gap iQ(mEfg&Zn)-

The rest of the paper is organized as follows. First
we present a few definitions and previous results & con-
jectures in Section|2. In Sectiph 3 we prove Thegrém 1.
Finally Sectior # contains the explicit construction of an

instance that achieves integrality gam(flolgoi 7g” ).

2 Preliminaries

The Max QP problem we consider is defined as fol-
lows

Definition 1 (MAXQP). An instance of theM AXQP
problem is a matrix(/ € R™*™ with diagonal entries
equal to zero and a set of variablds,...,z,}. The
objective is to find an assignmefit: {z;} — {-1,1}
that maximizes the quadratic fored M z. The objective
value of an instancé/ under assignmenf is denoted

Theorem 2 (Quasi-NP-hardness)There exists a con-
stanty > 0 so that for any languagé in NP, any in-

put w and anyR > 0, one can construct a labeling
instance., with [w|©(°8 ) vertices, and label set of
sizeR, so that: Ifw € L, val(£) = 1 and otherwise
val(L) < R™7. Furthermore,L can be constructed in

time polynomial in its size.

A better lower bound can be achieved if we assume a
strengthened version of the above theorem. Specifically,
the parametey in Theorenj  translates directly to the
of Theorenj IL, and therefore a PCP with parameter
1 would imply the optimal hardness of approximation
ratio for MAX QP , namelyo (log n).

2.1 Notions from analysis

In this paper we consider properties of real-valued
and Boolean-valued functions over Boolean variables.
We consider functions’: {—1,1}" — R and say a
function isBoolean-valuedf its range is{—1,1}. The
domain{—1,1}" is implicitly equipped with the uni-
form probability measure, unless specified otherwise.



This implies a natural inner product over the space of is easy to see that the Fourier coefficientg afe vectors
real-valued functionsf: {—1,1}" — R, defined by = whose coordinates are the corresponding coefficients of
(f,g) = E[fg]. The associated norm in this space is the functionsf;. The coefficients off are vectors of
given by || fll= = E[f?]. We also define the-norm norm at most 1, that is, lie inside the udidimensional
for everyl < p < oo, by |[f]l, = (E[IfP])"/?. In  ball f(S) e B~
addition, let|| f||coc = max {|f(x)]|}.

3 Hardness of QP

Fourier expansion. The character functions over

{~1,1}" are defined as follows. Fd¥ C [n], define In this section we prove Theorefi 1, showing
Xs by xs(x) = [lies =i Itis well known that the set  \ax QP to be hard to approximate. The proof is by
of all such functions (characters) forms an orthonormal \gqyction from Label Cover to wx QP, obtained by us-
basis for our inner product space and thus every functioning the long code to encode assignments to a given label

f:{=1,1}" — R can be uniquely expressed as cover instance. An assignment over the long code vari-
. ables is regarded as a Boolean function, and the objec-
f= Z F(S)xs, @) tive value can easily be expressed in terms of the Fourier
Sclnl coefficients of these functions.
and the coefficients above satisiancherel's identity Our construction is somewhat similar to other in-
namely(f,g) = 3¢ £($)4(S). In particular,)|f|3 = approximability results, such as that for MAX-CUT

[KKMO] and for SPARSEST-CUT [[CKK 05, [KV].
The techniques in these results, however, are lim-
ited to proving gaps of)(loglogn) (technically, this
arises from the tightness of Bourgain's theorem from
Fourier analysis) [Bou02]. The key for achieving poly-

S¢ f(S)%. The right-hand side of J1) is called the
Fourier expansionof f, and the coeﬁicient§(5) =
(f,xs) are called theFourier coefficientof f. Note
that if f is Boolean-valued thel" ; f(S)? = 1, and if

fo{=1,1}" — [-1, 1] then} g £(5)* < 1. logarithmic in-approximability factors for Mx QP is
We refer to the Fourier coefficientsf (S) s.t.|S| = the option of using negative coefficients in instances of

1} corresponding to the linear functiofg;|i € [n]} as MAXQP. This allows for long-code tests that incur se-

thelinear coefficients vere penalty on certain illegal codewords. Specifically,

We speak of f’s squared Fourier coefficients as looking at long-code words as Boolean functions, we
weights and we speak of the sefsbeing stratified into  use negative entries in the A QP matrix to signifi-
levelsaccording tg.S|. So for example, by theeight of  cantly reduce the value obtained by our long-code test
f atlevel 1we meanzls‘:1 f(S)Z. when applied to words that have any non-linear Fourier
For a functionf as above we denote its linear part by coefficients.

=) fS)xs 3.1 The reduction
scln,|8|=1
and similarly its non-linear part by Given an instance of label coverl =
L(V,W,E,[R],{0yw}@wwer), We describe a re-
7 = Z F(S)xs - duction which constructs an instance of AMIQP
SCnL,S|#1 denotedM . The diagonal entries of our initial con-

struction will not be zero, however in Subsection 3.4 we

Vector functions.  In the analysis of the integrality gap  €liminate all non-zero diagonal entriesif..
we consider functiong: {—1,1}" — S?-1, i.e. func-

tions that map into vectors & norm 1 (vectors thatlie  Parameters. Let L =
on the unitd-dimensional sphere). Such functions also £(V, W, E, [R],{04,u}(v,w)cr) be an instance of label
have a Fourier representation cover, where the size of the instancenis= |V | + ||,
X andR < log'”n. The reduction uses three parameters,
F=Y f(9)xs- v, b, andd, which are set by
5C[n]

der 1 e 10R 6
however the Fourier coefficien§.S) are now vectors. YT o and b,d= e+ 470
Consider the: "coordinate mappings};: {—1,1}" —
def

[—1, 1], defined byf;(z) = (f(x)); (i.e., the value off; The variables. For every vertexs € V U W of the
atz is equal to the&'th coordinate of the vectof(x)). It original instancel, the reduction generates sets of



new variables, denotef”? }ie[d] . (The reader may pre-

fer to think of d as 1 in first reading. We later need
to make many “copies” of each variable by settifg

needed to obtain zero diagonal entries. In the next two
subsections we proceed in proving completeness and
soundness properties for the reduction (Lenjrha 1 and

to a larger value, in order to set the diagonal elementsLemmdZ2 respectively). We then show in Subsedtioh 3.4

of the generated instance to zero). Each Ggtwill

correspond to an encoding of the assignmenti,tand

will contain on variableC’ () € C¢ for every element

z € {—1,1}" of the R-dimensional discrete hypercube.

The Max QP instancé/ will therefore be defined over
def

N = d(|V] + |W|)2% variables.

The quadratic form. When restricted to a subséf,,

an assignmenf to the variables of the MxQP in-
stance can be viewed as a Boolean functfpndefined

by fi(2) = f(Ci(x)). Let f,= Eigiqlfi]. We write
our quadratic form as a convex combination of bilinear
forms, defined over the functiorf§. We have two kinds

of forms: theinternal andexternalforms.

e Internal Forms. For everyu € V U W and every
i,j € [d] we write

T, (N% —b S FUS)AS).
SCIR], |S|#1
In addition, let
Tu(f) = EijeaTuis (Al = =0 S Fu (S).

SC[R], |S]#1

Note that because of the large valuebpéven tiny
non-zero non-linear coefficients @f makeT,,(f)
become very negative.

e External Forms. For every edgév,w) € E and
everyi, j € [d] we write

Towis() = 3 FilN fb{ovu(®)}) |

ke[R]

and let

va(f) = Ei,je[d] [Tv,w,i7j(f)]

= Yveim Fo(lED Fu{oww(®)}).

Our MAXQP instance is given by the following
guadratic form.

def

Mc(f)= VEUEVUW[Tu(f)]

+(1— V)]E(v,w)GE[va(f)] 2

that removing diagonal entries does not change the prop-
erties of M significantly, and finally in Subsecti¢n 3.5
we conclude the proof of Theorgm 1.

3.2 Completeness

Let £ and M, be as above. Recall that the value of
L is the maximal fraction of edges that can be satisfied
by a labelling, and that the value 8f;, val(M,), is
the maximal value that the quadratic form can obtain by
a Boolean assignment. The following lemma states that
the value of. is a lower bound for the value @ff .

Lemma 1. If val(£) > 1 — ¢, thenval(M,) > (1 —
g)(1—v).

PROOF. According to the assumptior; has some la-
bellingl : V. UW — [R] satisfying at least — ¢ of its
constraints. We define an assignmgrior the MAX QP
instance byfi (z) = 2;(,).

The Fourier coefficients ofi are fi ({l(u)}) = 1,
andﬁﬁ(S) = 0 wheneverS # {i(u)}. Hence for every
u € VUW andi,j € [d] we haveT, ; ;(f) = 0, and
thereforeT,, = 0. Next, let(v,w) € E andi,j € [d].
If the edge(v, w) is satisfied by the labelling, nhamely
ouw(l(v)) = I(w) (this is true for at least &l — ¢)-
fraction of the edges), then

Tv,w,i,j(f) = Z 6k,l(v)6avu(k),l(w) =1
ke[R]

If the edge(v, w) is not satisfied by the labelling then

the expression above yields Hence the overall value
of the MAX QP instance is

]\/fﬁ(f) = V]EuGVUW[Tu(f)] + (1 - I/)E(v,w)eE[va(f)]

>(1-v)(1-e).

O
3.3 Soundness

The following lemma states the soundness property
of the reduction.

Lemma 2. If My(f) > e > # for an assignmenf,

This concludes the description of our reduction except then there exists a labelling fat which satisfies at least

for a small modification, discussed in Subsecfior 3.4,

anQ(e)-fraction of the edges.



Proof. Consider any assignment witi.(f) > . As
a first step, we show that the functioris induced by

such an assignment are extremely close to being linearPROOF. We are assuming that/. (f) = vE,[

functions.

Claim 1. For all verticesu € V U W it holds that
1T ()3 < %

PrROOF. Note that, being averages of Boolean functions,

the functionsf,, take values if—1,1]. Their Ly, norm

is thus bounded by 1. In partlcular their Fourier coeffi-

cients are each bounded by 1 in absolute value.
According to the construction, the absolute value of

every external fornT;,,, is bounded by:

Tow(f)] = |E; je(a)[Tow(i, 5)]

= S )| | Fo(tovwih)| < R
For an internal forn¥, we have
T,(f) = —b > fu(8)?=—blf73,
|S|#1

By equatior] P and the assumptidd.(f) > ¢ we
have:
e < Mc(f)
= VEuevow [Tu(f)] + (1 — V)E(v,w)eE[va(f)}
< —VbEuequ[Hf;ﬂHQ] +R

Which impliesE,cvow ||| f712 < &= S £ No
suppose that there existsuasuch thatH Yz > %
This implies:

Eyevow [Hfzél”g] > % [1 . % +(n—1) .0}

=5 > W

In contradiction to the previous conclusion.
(Il

Clellqim 2. For all verticesu € V U W it holds that
Yoper [fo({ED] < 2,

PROOF. By the previous Lemmal| f7']|2 < 7
—5R

Now suppose thaE,cR:1 |fv({k})\ > 2. Sincef;!
is a linear function with coeﬁicientﬁﬁ({k}ﬂk € [R]},
there exists a valug € {+1, —1}* for which ;! (y)
SSE L 1F.({K})| > 2. For thisy we havef7!(y) =
fo(y) — f51(y) < —1. Therefore,

1

e

175 > 277,
and this is a contradictior]

The following simple argument shows that the expected
value ofT,,,, is large for the assignmetft

Claim 3. E(v,w)GE[T’Uw(f)] >

NJ\H

Tu(f)]
(1 = V)E@wyer[Tow(f)] = . Note thatT,(f) <

HenceE(, w)er [Ty £ 1e.0

w25 2

+
0

Using the previous claims, we now define a random
label assignment as follows. The assignment to every
veVUWis randomly and independently chosen to be
k with probability 5 |fv({k:})| (the sum of these proba-
b|||t|es is at most one by Clailr] 2), and with probability
1—33 |fv({k})| we leavev un-assigned.

Let ¢,,, be an indicator random variable that is set to
1 if and only if the label assignment above satisfies the
label-cover constraint on the edge w).

The expected number of constraints satisfied by our
assignment is:

E(v,w)eB(2)[Co,w] =
Evw |[Sern 31 {ED] - 31 Fu (@ )]

> 1By o[ Seeiny Fo (61 (00 (R)]

_1va[ ] €

=

Where the last inequality is by Claif} 3. This com-
pletes the proof of Lemnig 2.

3.4 Removing the diagonal

The instancél/ constructed in the previous section
has non-zero diagonal entries. However since we took
care to havel “copies” of every set of variables, the in-
teraction of any variable sét’, with itself (which occurs
only in the termsT;,) is negligible. More formally, con-
sider the MaX QP instanceB,, that is obtained from
M by removing all terms of the forrif, ; ;(f).

Recall thatl, ; ;(f) = —b le#l}z(S)fi(S), and
therefore

\<b2fl

Hence, for any specific assignmefitthe difference
in value of M and B, is bounded by

UZ’L

|Mc(f) — Be(f)l

Z T(LZ [

(IV]+ IW\ 2 S

vb _ v —10R
2y =¢

IN



3.5 Concluding the hardness proofs independently to be-1 with probabilityn and 1 other-

wise.
Theorem[]l now follows as simple corollary of .
Lemmdl and Lemnda 2. 4.1 The construction
Proof of Theorerp]1Given an instance of label cover The construction makes use of three parameters that
as in theorem]2, construdt; as described above. The e fix as follows. Lety = R2 ,b=NY0  qd=10p=
MAX QP instance has the following properties: N20

1. The size of the instance ¢ = O(n'°& £ . 2%, _ _
Variables. We generate an instance of QP, denoted

2. By lemmd1, if there exists an assignment satisfy- M,,, over a set of variable¥” such thatV| = n. It
ing more than d — ¢ fraction of the equations of  will be more convenient for us to have more than one la-
L, then the value of the QP is at ledst ¢ — o(¢). bel for each variable. That is, we first define a quadratic
form over a larger number of variables, and then identify
3. By lemmg 2, if the value of/. is at leasb > 7, some of them, thereby obtaining a form over a smaller
then there exists an assignment that satistieh number of variables each having more than one label.
of the constraints of. The initial set of variables i/ = {(f,¢,9)|f,g €

SetR = logn. Suppose that we could approx- 7 i € [d]}. We define an equivalence relation over the

imate val(M.) in polynomial time to a factor better ~Variables by settingf, g o T'i) = (fxr, g, 1) for every
then O(log” N). Then if the best assignment fat subsefl” C [n], and identify all the variables that belong

satisfies fractiorl of the equations, we can find a so- [0 the same equivalence class. _
lution to the Max QP instance of valug/log” (N) = We partition the labels into disjoint sets by setting

log ™7 (n'°e R2R) = Q(log ™ (218" 1)) = Q(R™7). Vii={{f,9,i)lg € F}.

On the other hand, if every assignment satisfies at
mostR~" of the constraints, then any QP solution will
have value at mosR~7. Thus in timepoly(N) =
nOUoe’ ") we can distinguish between the two cases of
the label cover instance. By theorgm 2, this implies
NP C DTIME(n'os’ ™). O

Given an assignmenf to the variables (whether a
Boolean or a vector assignment), its restrictioniig;
can be viewed as a function ové. We denote this
function by A%.

The quadratic form. The final quadratic form is a

o ) convex combination of bilinear forms over the functions

4 Explicit Integrality Gap A, which are defined in terms of their Fourier represen-

tation. As in the case of the hardness reduction, we have

In this section we prove Theorgm 3, showing an ex- internal formsandexternal forms

plici_t family of MAX QP in;tances yvith_increasing inte- « Intemnal Forms. For everyf € F we let M; be

grality gap. Our construction was inspired by the recent defined by

embedding lower bound of Khot and Vishni [KV].

Theorem 3. Thgre exists a family dﬂA.xQPinstgnces My(A)E Eijepa | b Z ;17];(@ ;ﬁf
of unbounded size, where the integrality gap of instances a1
overn variables isQ)(-280). 9y _

Note that if we definel; = E;c (4 [A%], then
Notation. Fix any n € N. Let FE{f|f : My(A)=—b Y A (). 3)
{1,-1}" — {1, —1}} be the set of aII Boolean func- a1
tions onn bits. LetR= 2" and N & 22", For /
anyf € FandT C [n], letfoT € }- denote the . Ext_ernal forms. For everyf, f' € F, let My 4 be
function defined byf o T'(z) = f(x ® T), wherez & T defined by

denotes the vector obtained framby flipping the value
of z;, for everyk € T.

Let f ~, f’ the distribution on pairs of functions My /(A) def E:jcla Z Az
f, /' € F wheref is chosen uniformly at random and ’ =1
/' is obtained by flipping each value ¢gfindependently
with probability . Denote byp ~, {£1}" the distri- = > Ap(o)Ap (o (4)
bution onn-bit strings such that each entry is chosen laf=1



The final quadratic form is given by the following con- If the vaIuesﬁf(x) are fixed, this system of lin-

vex combination of the internal and external forms: ear equations has a possible solutian ﬁf(;c) =
E,»XT (x o T). This is the only solution as the linear
e system of equations has full rank.
Mo (A)Z v - Brer Mg+ (1—v) - Ep, pr [My 5] yD d

We now state the main lemma of this section, Another property of any assignment willi, (A) >

Lemma 3. For every0 < n < %, for every large 0 is that eachA; is very close to being a linear func-
enoughn, the MAXQP instancel,, satisfies the fol-  tion. The following two claims prove this fact for two

lowing properties: different measures of distance - theandl, norms.
1. For every Boolean assignmenf, we have Claim 5. For any assignment such thaf,,(A) > 0 it
My (4) < holds thatvf € F [[A7']3 < =&

2. There exists a vector assignme#t for which PrROOF. By equation$ 3 ard 4 we have
M, (A) > 1—2n.

Before we prove Lemmig) 3, let us show how it implies M, (A) = vE; {—bHA}ﬂH%}
Theoreni B.
PrRoOF:[Proof of Theorenfi3.] The number of variables +(1 = V) Efu, prer |:Z|a\:1 gf(a)gf,(a)} (5)
in the instancel/,, is %74 = O(N??). According to
Lemma[:]; the integrality gap iR™7 - (1 —2n). Fix Assumingh,, (A) > 0 this translates to
n= 10 7 then the integrality gap becomes:
. ] 0<Mu(A) <1-—v—bE, [||Ajfl||§]
R (1= 2n) = QR - loglR) 1
R log N <2-vbEy [”A? ||§}
= Q(logR) = Q(loglgogN)

0 According to the choice of parameters we obtain
4.2 Integral solution E; [HA}“H%} < % < %

In this subsection we prove the first part of Lenjma 3. Now suppose that there exists fsuch thalHAjf1 |3 >

Lemma 4. For any Boolean assignmedt, the value of - This implies:
the MAX QP instanceM,, satisfiesM,, (A) < Rll" ) » . )
e )

To prove this lemma, we start by examining a few By [HAf HQ} = N [1 N6 TN =) 0} ”
properties of the Boolean functiodsi;|f € F}. The
fact that every variable of the instandé,, has several
labels implies a certain relationship between the Fourier
coefficients of the functionsl;. This is formalized in  CJaim 6.

N8

In contradiction to the previous conclusion.

the following claim. VfeF Z |Af(z)] <2
Claim 4. For anyT C [n] and anyf € F it holds =C[n]
Vo C [n] Af(z) = Apy,(xoT). PROOF, By Claim [§, for everyf € F we have
1 _

PROOF, 147713 < s < 'R

Consider a certain functiofi € F and subsel’ C The rest of the argument is the same as in c[gim 2.
[n]. Since for every functioy € F the verticesf, g o 0
T,i) = (fxr,g,1) were identified, the assignment We can now proceed with the proof of Lemfja 4.
must satisfy: ProoF[Lemma[4] Consider any Boolean assignment

A to the variables of\f,,. Suppose thai/,,(4) > 0

Y9 Ap(goT) = Apxr(9) (the assignment that achieves the maximum avg( A)

Writing these equations in Fourier basis we have: definitely satisfies this). From equatioh 5 we have
g D Ar@algoT) = D Apa @)xals) Ma(A) S Eje,perl Y As(@)Ap (@)
zC[n] zC[n] zC[n]



Using the assignment, we proceed to define a func-
tion® = &4 : F — [R] as follows. For every set of the
form {fxs|S C [n]} we pick an arbitrary representative

f, and se( f) to bex with probability 1| A, (x)| , and
with probability1 — 2>~ \flf (x)| we set it arbitrarily

to zero (note that by Claifr] 6 the above probabilities are

indeed non-negative and sum upljo

Onced(f) has been set, we 16t(fy7) = &(f) & T
for everyT C [n]. Note that the resulting functiof
must be balanced, that is, it must satisfy

Vo Cln). Prle(f) =a) = ¢ (6)

This implies the following bound on the stability @f,,

attributed to O’'Donnell [[O’D04] and communicated to

us by Khot [Kho] (see proof in the Appendix)

Lemma 5 (O’Donnell). For any function®¥ : {1} —
[R] such thatvi € [R] . Proeqs1y:[¥(z) = i] = 5 it
holds that:

Pr [U(a) = U(@)] < —

xr~pr' e{£1}?t RT—

In the following claim we show howp 4 can be used
to boundM,,(A).

Claim 7.

My (A) <4 [@(f) = 2(f)]+v

Pr
frnf'€F

PrOOF Let N(f) = {fxr|T C [z]}, andPr[f, /'] =
Pr,. (+13r[f" = fp] be the probability of obtaining
f! from f undern noise. LetlI(f, f') be the indicator
random variable that is 1 if and only #(f) = ®(f’).
By definition of ® we have:

Pr () = 2(f)]
:ﬁ S° Pelf £ I 1)
fLfer
22( > PSS
FEF \f'¢N(f)

+ 3 Pulf. P, f’)>

TCz]

‘FPZ > Prlf, U f)

feF f'¢N(f)

Now since forf ¢ N(f) the values ofb(f) and®(f’)

are independent

FEY X P Y (@A)

FEF PEN(S) «Cln
1
:4|F|2< ST Pilf, 1) A()|| A ()]
feF 2Cn

-y Z Pr(f, fxr] Y |As(x IAfxT($)|>

fEFTC[n zCJ[n]

1 9R 1 1
> M, (A) — 25 > ZML(A) — -
Z PMn(A) = 57 2 7Mn(4) = v

O

This lemma together with the bound of Lempja 5 yields

4
Mn A S 7 +I/:O — ) 7
()< —r () U

Proving Lemma[(4).
O

4.3 \Vector solution

Consider the vector assignment, given by the Fourier
coefficients:

~ N { zfxr lal=1a=TC|n]
Va Ap(a) = Af(a) =
0 o/w

Notice that the vectorﬁf(a) are orthogonal, and their
norms satisfy

% lal=1

Yo [[Ap(a)]2 = { ®)
0 o/w

In the standard basis, these vectors can be written as:

% Z g(LoT)- fxr

TC[n]

Af(g) = Ay(g) =

Khot and Vishnoi observed that the above vector as-
signment assigns the same vector to all vertices in the
equivalence classds xr|T C [n]}.

Lemma 6. For the vector solution above we have
M, (A) > 1— 2.



PrROOF. Recall by equatiop|5

My (A)

O

vE; |-bA7'I3]

+ (L=v)Efe, per
by equatiof B

= (1-v)Esn,per

1 1,
Z EfXT'EfXT

TCn]

= ]Efw,,f’ef {

= Eje, prer [;ﬁﬁf’ﬁ
= (I-v)-(1-2n)=21-29

Lemmd3 now follows from Lemmas 4 ahH 6.

4.4 Removing the diagonal

As the parameted is much largeb, we can apply a
modification very similar to the corresponding modifica-
tion in the hardness of approximation result (Subsection [Kho02]

[3.4), to obtain a matrix with zero diagonal entries. The

details are omitted for brevity.
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A Stability of balanced multi-valued func-
tions

For completeness, we provide the proof O’Donnell’s

Lemma [O'D04]:
ProOFR[Lemma[3] GivenV, definevj € [R] ®;(x) :
{#+1}* — {0, 1} as follows:

def L W) =j
P;(x)=
0 o/w

Then:

anw'er{il}t
= P [2() = (@) = 1)
= Eonpweqz1)[®;(2)P;(2")]
@)D @

= Eopl(Y ®5(@)xa@)( D 5(8)xs(z & p))]

aclt] BClt)
—2

= > O (B, (3¢ [Xalp))]

aClt]

= 3 &, (a)(1—2p)!
aClt]

= T r=(®ll3

WhereTs|f] is the Beckner operator:

T[] = 817 (S)xs

S

10

Now using the Beckner inequality (which states

151410, < 1l forr < p, 5 < /=)

Proo, wex13:[¥(z) = ¥(2') = j
=T i=1®;lll3
< [12515-2,
2—27]]2/2—27]

using Beckner

= Epeqsr1ye[®)(z)

= (%)ﬁ by properties ofp;
Therefore:
= \I/ !
ol € (A1} ) (=]
= Pr U(z)=U(a') =
e ety ) ( )
1 1
S ==
O
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