

* Complexity Theory classifies computational

problems according to the amount of resources
(say time) required

* Revisit the computational model "Turing
Machine", this time discuss beunds on its
resources and how robust they are

-

* Deterministic Turing machines
* Multi-tape Turing machines

* Non-deterministic Turing machines
* The Church-Turing hypothesis

* Complexity classes as bounded TMs.

The purpose here is to classify computational problems according to their
complexity. For that purpose we need first to agree on a computational model.
We'll remind you what a Turing machine is --- you did study about it in
previous courses. This time we will introduce some bounds by which to
introduce some complexity classes. We'll go over different types of Turing
machines.

Here is how a Turing machine works: it has an infinite tape with letters from a
given alphabet written on every cell. It has a reading head and a finite state
machine. The read/write head, depending on the state the machine is in, can
manipulate the cell it is looking at and then go either left or right.

TM: Formally

the following objects:

L e S s
finite set of states %%—@‘Z’ ?;fﬁ %m
input alphabet: a finite set Excluding “’J
tape aﬂph@bcf jz.;r and s_éf“‘

ﬁ S:er“»Qxe{L,‘R?- the transition function

(3
ﬁsmf state ¥ ’
>
GEQ accept state %Q; |
eQ reject state %% . q occept

Formally, a Turing machine description consists of the following items: a set
of possible states the machine can be in, the alphabet of the input, its
extension to the alphabet of the tape, the transition function which determines
which action to take in the next step, the state the machine starts in, the
starting state, and the rejecting state (there could be more than one such state).

Transition

LG Ry

The transition function determines, for a given state and the content of the cell
the read/write head is looking at, which state to be at next, which letter to write
on that cell, and whether to go right or left.

Computations

—{ el G eureion |
* For input “abaabaab”

| I=leadhf
* On leftmost cell

Sihaitie)
* starting

The computation starts with the input written on the left most part of tape.
The head is on the left most cell. The state is starting state.

Computation Step

N 6@@@0@)2@@60{@0 @) |

In computation steps, the transition function is applied to arrive at the new
configuration. We assume that the tape is infinite but only to the right
direction.

Configurations

Fowsmanysdisfinets .\l To L L Emayka

WW&%@WM@@@N@@M@D@@?

the
content [|position
of the [§| of the
tape head

machine
's state

Let us now count the number of possible configurations a machine can have:
assuming the machine uses only N cells of its infinite tape, we'd only consider
the content of the tape, the position of the read/write head, and the machine's

state.

L={a"b"c"" | "'n=0} &

My first TM.

= {90.91.92.93. 94 Gaccept reject)

{a,b,c}

= {a,b,c,_X,Y,Z}

‘ specufled next...

8

[

- the start state.

&

r - eQ the accept state.

ks

s

r rej

eQ - the reject state.

Y Y R’ ' ' T .7

D

Let us now consider a simple Turing machine for a language you're familiar
with. You have already seen that this language cannot be accepted by a finite

automata, or by context free grammar.

The Transitions Function

A ~

e a »

e / s 9
v i\\\ o

Jo

/\ \ qs3
<)
— :

Complex

transitions
not specified
here yield

Here is a description of the transition function for this machine.

10

Demonstration

1"

And here is a demo.

11

Equivalence between Types of TM

+ Deterministic TMs are extremely powerful
« Ignoring polynomial blow-up in time/space,
they are equivalent to many other models

* Let us consider one such model in
particular: Multi-Tape TM.

12

That deterministic TM model captures our notion of algorithm. Next, we
introduce a more general computational model of a multi tape deterministic
TM, and show it is equivalent to the deterministic TM model.

12

(At start: (npuf

on first tape

In a multi tape TM we have more than one tape, each with its own read/write
head. There is, however, only one state the machine is in at any given
configuration! In the starting configuration the input is written on the first
tape.

13

@TN\S
i finite set of sfo?cs \\ &%;f { W

lmpuf ¢iphaberi: a finite set ‘ Excluding "

,__‘—-'""r'd

I tape alphabet |z and ¥

~

o) QX@->QX(FX{L R}@ the k"‘";h < mimber of tapes-

is some constant —

| stort state &‘,

q(JCC eQ accept state %

¢

L Gre; eQ reject stcte%l}? | W

”

v W, W, Ny
-Q

”~

Syntactically, the only difference between a regular TM and one with K tapes
is in the transition function: it takes as input K letters, and outputs K
replacement letters, and K left or right instructions (plus a change in the
machine's state) .

14

9 The Church-Turing Hypothesis

* Multi-tape machines are polynomially
equivalent to single-tape machines.+

. Hypothesis: b

» We can state a much stronger claim
concerning the rebustness of the Turing
machine model:

-

Intuitive notion(l’ | Turing machine
of algorithm [| J |

15

One can easily prove that these two models are equivalent. The more general,
obviously unproven hypothesis, suggested by Church and implicit in Turing's
work, is that these models capture our intuitive notion of algorithm. Some
later models of computation may disagree with that hypothesis, in particular
randomized or quantum algorithms; we may discuss this late in the course.

15

* Let us now consider a nen
realistic computational model:
NONDETERMIONIS TIC

* can be simulated by DTMs
* However, with an expenential
blowup in fime.

We now consider another variation of the TM model, however, one which does
not at all correspond to any realistic notion of algorithm. It is that of a non
deterministic algorithm. It can be translated into a deterministic one, however,
with a huge blow up in time. No better translation is known.

16

9 Non-deterministic Turing Machines

ot N
R o TR
ﬁ input dlphabet: a finite set w-;_, ’

T
MR tope aphabet | 3T and S

ﬁ 8: Qx][“a\W(Qxe{L%}) transitic; %‘Zx:@ ! i)
 start state '&Aj

1 -
accept state %E;

o

17

-

(4

Syntactically, the difference between deterministic and non deterministic TM
is only the transition function which now becomes a transition relation: for
every state and letter it returns a set of possible pairs of letter plus move, each
of which is a possible computation step to take next.

17

9 Deterministic vs. Nondeterministic

Non-deterministic
_ computation free

Deterministic
computation

A deterministic computation is a sequence of configurations each being the
result of applying the transition function to the previous configuration. In a
non deterministic computation that may be more than one transition possible
from each configuration, which we can describe as a computation tree. Time
corresponds to the depths of the tree, hence the size of the tree may be
exponential in the non deterministic running time. It suffices that one of the
non deterministic computations (one of the paths in the non deterministic
computation tree) accepts for the input to be accepted.

18

Witness Verification Program

Nendet. A
TM verifier
magically V-
FHASS Verifies a
witness,
certificate
to the fact
et e
accept if el
. possible & W,

19

An alternative perspective of non deterministic computation is to think of it as
a game between two players: one is magically powerful but untrustworthy; it
tries to convince the other player, who has limited resources, that the input is
in a given language L. The first player sends the second player a witness that
the input W is in the language L, which the second player has to verify
efficiently.

19

Nodeterministic

Is it a path from
s to 1?

| Traverse from s
fot

A prime
factorization

Are primes whose
product =N

Does n transform |

Isomorphism G into 62

20

Here are a couple of examples of the two perspective on non deterministic
algorithms.

" Non-deterministic=sDeterministic
— J=

vei @n NDT M,
@ 3=
DTM, W
ACCep;iS

Our simulation of non deterministic algorithms by deterministic ones uses
three tapes: one for the input, one to guide us which computation path to take,
and the third to simulate that computation.

21

g Simulation

= Let number of fransition <h
Nondeterministic time < t(n)

1 l Write 0 on the guide tape

P l Copy the input to the simulation tape

Simulate_M: choose each transition by the corresponding digit
on the guide tape (if valid) =

LW if M accepts

Add 1 to the number on the guide tape (in base h)

> l If reached h#"+1 ~ rejeet ~

6 LGO to step 2 % | How much space is required l

This simulation goes over all possible computations. If one accepts, it accepts.
If all rejects, it rejects.

Note that the time this simulation requires is exponential in the
nondeterministic-time the machine runs in, t(n), and the space the simulation
requires is O(t(n)).

22

With a
model of
computation
established: |

define Complexity classes

With an agreed model of computation, by introducing bounds on resources

required to compute the given problem, we are ready to define complexity
classes.

Time-Complexity

Le‘r T N—»N be a complexity function

 NTIME [t(n)] =REE demded by ((n))- time nondeterministic TM}i

EXP=]J, TIME[e” J

24

We can define time and non deterministic time complexity classes.

24

Space-Complexity

* Let t:N—N be a complexity function

irmlfogRspaces
NL = NSPACE[log(n)]

25

As well as space and non deterministic space complexity classes.

How can we define sub linear space classes where their input itself takes linear
space?

25

% Space-vs. Time
« PcPSPACE

* a TM that runs ¥(n) steps
uses at most t(n) spacem

* PSPACECEXPTIME

‘a se‘rer‘minisﬁc run that halts

must avoid repeating a configuration =
*its running time is bounded from above by the
number of configurations the machine has
‘which, for a PSPACE machine, is exponential®

26

Let us now prove very simple containments between time and space
complexity.

Note that a deterministic machine that repeats a configuration twice must in
fact be in an infinite loop.

The number of configurations is essentially exponential in the number of cells
the machine uses.

26

Name the Class

The picture presents a sequence of containments between complexity classes.
Are you sure they are all true? Which ones can you prove at this point? Are
any of these containments strict?

Can you name the smallest class containing each of the problems?
Alternatively, can you name the Gumby?

27

: duplicate input and call = on copies;
, infinite loop --- on “ne”, halt

|

lRun on (the representation of) contradiction ,

We would like to find out if some of these classes differ — so far it is quite
possible all of the classes just defined are in fact the same.

Separating between classes of problems is not at all trivial -- there is, however,

one prime example you most probably have studied before.

Let us now consider a simple proof that the halting problem is undecidable:

Assume by a way of contradiction a procedure A, that on inputs B and X,
decides whether the procedure B halts on input X. Construct procedure C that
on input W, calls on procedure A with W being both B and X; if A returns yes,
C goes into an infinite loop, otherwise it stops and returns some answer. Now
run C with its input W being C itself: both options end up in a contradiction.

28

- We construct a language L € EXPTIME,
which, however, is not accepted by any
TM running in polynomial time:

I = {x | x = (M)#1°#1°#, M doesn't accept x within ¢|x|* time}

29

We now apply a similar technique (known as Diagolizing or self references
and introduced by Cantor and Gddel) to show the class P is strictly smaller
than the class EXPTIME. We construct a language in EXPTIME which,
however, is not in P. Inputs in that language must consist of a description of a
TM and then two numbers written in unary. The input is accepted if the

machine described does not accept the input itself within the time specified by
the two numbers.

29

* L € EXPTIME

* in particular, L can be decided in time x| - ""

‘LeP

- Assume a TM M that accepts xel in time ¢|x|® =
run it on the string "<M>#1<#1¢#" = contradiction

30

Their languages are in EXPTIME since a universal TM can simulate the
computation of the machine on the input, and the running time is exponential
(the two numbers written in unary). Assume by way of contradiction a TM
with polynomial bounds on its running time that accepts L. Run it on its own
description with the numbers corresponding to the bound of its running time.
Both possible outcomes result in a contraction.

30

P.-NP-and.-co-NP

Let us now introduce a new class, coNP, which comprises all languages whose
complement language is in the class NP. The class P is clearly contained in
both classes NP and coNP.

Can you prove any other relationships between these three classes?

31

summary

presented two computational models:
1. deterministic Turing machines
2. non-deterministic Turing machines.

A

| simulated NTM by BTM

} | with an exponential From now on: use
S\ | blowup in time. Pseudo-code
: instead of TMs
| 4

The Church-Turing hypothesis:
Deterministic TMs equivalent to our
intuitive notion of algorithms

32

| g | Complement of NP
@ Exponential time |

33

Turin Church-
——9. Turing
Machine A _
Hypothesis Complexity
Theory
‘ Non
Halting Deterministic
Problem ™
Complexity
Classes
NP co-NP
P
L. NL
EXPTIME
PSPACE

WWindex

E’ l Cantor, Georg

\1;‘’ ' Hilbert, David
Godel, Kurt
Turing, Alan

Church, Alonzo

/

Byrne, David

34

