
In this presentation we take a closer look at complexity classes in which the 

bound is on the amount of memory it takes  to compute the problem. 
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In particular, we'll look at low complexity classes, such as LOGSPACE and non-

deterministic LOGSPACE.  Among others, we prove three fundamental theorems 

regarding those classes. 
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Let us recall our definition of space complexity classes: it is quite 

straightforward, however, we need to clarify what does it mean for an algorithm 

to use sub linear space. 

3 



For that purpose, we change a little our model of computation to consist of an 

input tape, which is read only, an output tape, which is write only, and a work 

tape, which is the only one counted for purposes of complexity bounds. 
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Let us now figure out how many configurations such a machine has.  The 

location of the heads on the input tape and on the work tape are counted.  Both 

the content of the output tape and the location of the head on it are not considered 

in counting the configurations.  The content of only the work tape is included. 
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Try to put the following computational problems in as small a class as you can. 

Try also to come up with a problem that is in non-deterministic LOGSPACE, 

however is not known to be in LOGSPACE. 
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We can now define LOGSPACE reductions: they're the same as Karp reductions, 

with the added restriction that the reduction-function must be computed using 

only logarithmic memory. 
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Let us now see that these reductions can indeed be applied appropriately. 

Think of the following scenario: you have a little chip that can play a DVD in a 

given format.  You have a DVD encoded with a different format.  You have 

another little chip that can convert the format the DVD is written in to the format 

the other chip can read.  Is it possible to combine the two and build a machine 

that can play the DVD? 

The wrong solution would be to store the output of the first chip and apply the 

second chip to that -there is simply not enough memory for that solution to work. 

The correct solution is to run the second chip and give it the appropriate bits of 

the output of the first chip; if necessary, restart the first chip, and let it read the 

DVD from start. 
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Let us  now formally define the connectivity problem: given a graph, a start 

vertex, and a target vertex, is there a path from start to target? 

Do you think the same problem on an undirected graph is easier? 
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Let us first see that connectivity is in non-deterministic LOGSPACE.  

A non-deterministic algorithm for connectivity maintains a pointer to a vertex of 

the graph.  Initially it points to the start vertex.  At every stage, the algorithm 

chooses an edge going out of the vertex it points to, and direct its pointer to the 

vertex the edge leads to.  If it reaches the target, it accepts.  If it went too many 

stages, it rejects. 
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An alternative formulation of non-deterministic space bounded machines is by 

introducing the witness tape.  The machine can only read that tape and moreover 

must read it bit by bit and never go back. It is enough that there exists one 

possible assignment to the content of the tape that causes the machine to accept, 

for the input to be accepted. 

What complexity class do we get if we allow the machine to go back on the 

witness tape? 
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It turns out that connectivity is in non-deterministic LOGSPACE complete.  We 

will show how to construct the connectivity instance given a machine M and 

input X, so that the machine accepts its input if and only if the instance is in 

connectivity. 
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For that purpose let us introduce the configurations' graph: vertexes correspond 

to configurations, edges to transitions, the start vertex correspond to the start 

configuration, and the target vertex corresponds to the accepting configuration.  

An accepting computation of the machine corresponds to a path from start to 

target, while such a path clearly corresponds to accepting computation. 
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Given a non-deterministic LOGSPACE machine, its configuration graph can be 

computed with logarithmic memory: the algorithm simply needs to compute, 

given two configurations, whether there is a transition from one to the other. 

As a corollary we get that non-deterministic LOGSPACE is contained in P. 
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The fact that connectivity is NL-complete is fundamental in analyzing space 

complexity classes: it is crucial in the proof of the following two fundamental 

theorems we prove. 
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The first is a theorem by Savitch concerning the overhead involved in converting 

a non-deterministic computation to a deterministic one.  It turns out that the 

overhead in terms of space is not that large, it is in fact quadratic.  To prove that 

theorem, we will start with  the special case of NL, and proceed to show a 

general technique of how to extend such statements for smaller classes to larger 

classes. 
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Savitch’s deterministic simulation algorithm for connectivity is recursive: to 

decide if there is a path of length d, it goes over all possible vertexes for the 

middle of the path, and call itself to decide whether the appropriate paths of half 

the lengths exist.  Namely, one from the start vertex to the middle vertex, and 

another from the middle of vertex to the target vertex.   

The recursion depth is logarithmic in the length of the path, and at each level the 

algorithm maintains a pointer to one vertex. 
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Here is a simulation of the algorithm on a simple example. 
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To solve connectivity, one can simply apply the algorithm with a number of 

vertexes and the length of the path.  

 

Now that we have proven the Theorem for NL, we need to extend it to general 

classes.  Namely, show that for every space bound, the cost of translating a non-

deterministic algorithm to a deterministic one is quadratic. 
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We show a more general principle, that any such relation between models and 

bounds can be scaled up with a super linear extension function.  The extension 

function scales up both bounds.  

This technique is simple yet tricky and is referred to as the padding argument. 
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The padding argument goes as follows: given a language L, accepted by a non-

deterministic TM, define the language Le that comprises all strings in L padded 

with the appropriate number of #.  That padding makes the language Le in the 

appropriate non-deterministic class.  Now, one can apply the containment of the 

premise and obtain a determined TM for Le.  This deterministic TM verifies that 

the number of #’s is appropriate with respect to the size of the “real" input.  One 

can in turn, given only the real input, simulate this machine maintaining a 

counter of the number of #’s, and letting the TM work as if the appropriate 

number of #’s is appended to the real input. 
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Here's an illustration of the construction: we start with a TM M” for L, which can 

be converted into a TM for Le (checking that the number of #’s is appropriate can 

be carried out in LOGSPACE), which by the assumption of the premise can be 

made deterministic --- that’s the TM M’. M is a TM for L of appropriate space 

that simulates M’, and if M’ wonders off to the # section, it maintains a pointer (it 

has enough space to do that)  to where it is and simulates it as if the #’s are there. 

 

This completes the proof of Savitch’s theorem. 
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We have just seen that enhancing space-bounded computation with non 

determinism does not make it so much stronger. 

Next, we look at another aspect by which non determinism for space bounded 

computations has a limited effect. 
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Let us first define the non-connectivity problem, which is simply the complement 

of the connectivity problem. 

Non-connectivity is clearly coNL-complete, therefore, it represents the entire 

coNL class. 

It follows, that if we show non-connectivity is in NL, we’ve proven NL=coNL. 
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To show that non-connectivity is in NL, we can use the witness formulation of 

NL, where the TM can read a witness of membership, from left to write, and 

verify it indeed prove the input is in a given language. 

We define the set of reachable vertexes, namely those that can be reached by a 

directed path from the start vertex. 

To show there is no path from start to target, we can show that the size of the 

reachable set is the same for the graph and for the same graph only where all 

edges going into the target are removed. 

Hence, it is enough to verify a proof showing what is the number of reachable 

vertexes of a given graph (first have a proof for the graph, store that number, then 

verify a proof for the altered graph, and compare the two numbers). 

To verify that indeed the number of reachable vertexes is as claimed, the witness 

can be constructed inductively, over the length of the path. 

There is obviously exactly one vertex reachable within 0 steps. 

We’ll next see how to extend a witness, proving the number of reachable vertexes 

after l steps is Rl, into a witness for l+1, and so that if the prefix can be verified 

by a LOGSPACE TM then so is the entire witness. 
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W is the witness, proving that the number of reachable vertexes after l steps is Rl. 

Let us append to it an array of sub-witnesses, one for each vertex of the graph: 

the ith segment would first specify whether the ith vertex is or is not reachable 

within  l+1 steps. Next, depending on that bit (and separated by $ signs) are the 

corresponding witnesses ---  Assuming all sub-witnesses true, the verifier can 

count to see how many vertexes are reachable within l+1 steps. 

In case vertex i is reachable within l+1 steps, the witness would simply be a path 

from start to vertex i of length at most l+1. 

In case vertex i is not reachable within l+1 steps, the sub-witness dedicated for 

that ith vertex would itself be an array with every segment corresponding to a 

vertex of the graph. The bit for each vertex j corresponds to whether vertex j is 

reachable within l steps. Clearly, no vertex j reachable within l steps can have an 

edge to vertex i; the witness for vertex j reachable within l steps, would be simply 

a path from start to j of length at most l. 

If vertex j is not reachable within l steps the jth sub-witness is left empty. 

All sub-witnesses are clearly proving what they claim, and exist --- except for the 

witness that vertex j is not reachable within l steps. 

How then can the verifier be sure that’s true? 

The answer is the crux of the entire argument and is as follows: the NL TM 

verifies that the number of vertexes listed as reachable within l steps is exactly  
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Rl, the number proven in W to be the number of reachable vertexes within l steps! 
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