In this presentation we take a closer look at complexity classes in which the
bound is on the amount of memory it takes to compute the problem.

- Explore space complexity

* Low space classes: L, NL

» Savitch's Theorem
» Immerman's Theorem
» TQB

In particular, we'll look at low complexity classes, such as LOGSPACE and non-
deterministic LOGSPACE. Among others, we prove three fundamental theorems
regarding those classes.

Space-Comp.

exity

* Let #:N-N be a complexity function

Let us recall our definition of space complexity classes: it is quite
straightforward, however, we need to clarify what does it mean for an algorithm

to use sub linear space.

s Input/Work/Output- TM
InpuT dlape .

* Only tape counted

LOuipliaape

» Write only! No going back

For that purpose, we change a little our model of computation to consist of an
input tape, which is read only, an output tape, which is write only, and a work
tape, which is the only one counted for purposes of complexity bounds.

Configurations

>

How many disti g
may a TM with input-size N and
work-tape of size S have?

. {Hegd
pgsition:
0
Y

Let us now figure out how many configurations such a machine has. The
location of the heads on the input tape and on the work tape are counted. Both
the content of the output tape and the location of the head on it are not considered
in counting the configurations. The content of only the work tape is included.

Brain Hurts

- A problem in NL

(L Not known 1o
be in L i 4

Try to put the following computational problems in as small a class as you can.

Try also to come up with a problem that is in non-deterministic LOGSPACE,
however is not known to be in LOGSPACE.

~3 e watt\ Y -

denoted A<,B)

*L, NL, P, NP, PSPACE and EXPTIME are closed

under log-space reductions.

We can now define LOGSPACE reductions: they're the same as Karp reductions,
with the added restriction that the reduction-function must be computed using
only logarithmic memory.

L Closed-under <,

Why not simply
apply ¥ then
solve A, on the
outcome? P

* f is a LOGSPACE reduction from A; to A, and
Ae L = A isinl

* on input x: Simulate M for A, whenever M
reads the " symbol of its input, run f on x and
wait for the [bit to be outputted

WRONGI!

Let us now see that these reductions can indeed be applied appropriately.

Think of the following scenario: you have a little chip that can play a DVD in a
given format. You have a DVD encoded with a different format. You have
another little chip that can convert the format the DVD is written in to the format
the other chip can read. Is it possible to combine the two and build a machine
that can play the DVD?

The wrong solution would be to store the output of the first chip and apply the
second chip to that -there is simply not enough memory for that solution to work.

The correct solution is to run the second chip and give it the appropriate bits of
the output of the first chip; if necessary, restart the first chip, and let it read the
DVD from start.

Graph Connecﬁvi‘i’y (CONN)-

* a directed graph * Is therea pa‘rh from s
Gﬂw,@ and two to ¢ in G‘)
vertices s, ?CV

Let us now formally define the connectivity problem: given a graph, a start
vertex, and a target vertex, is there a path from start to target?

Do you think the same problem on an undirected graph is easier?

CONNeNL

current position
requires |o¢
ﬂ'—et uss|] 29|V space

counting to (V|

EM Fori=1,., |V] requires ‘OQ‘V‘ space
l ' = 4

E Let u= a (non-deterministic) neighbor of u

gecept if ust .

End For

reject (did not reach t)

Let us first see that connectivity is in non-deterministic LOGSPACE.

A non-deterministic algorithm for connectivity maintains a pointer to a vertex of
the graph. Initially it points to the start vertex. At every stage, the algorithm
chooses an edge going out of the vertex it points to, and direct its pointer to the
vertex the edge leads to. If it reaches the target, it accepts. If it went too many
stages, it rejects.

10

NL TM

* Only tape counted

\

WWinness Tep2

» Read only! No going back!!

An alternative formulation of non-deterministic space bounded machines is by
introducing the witness tape. The machine can only read that tape and moreover
must read it bit by bit and never go back. It is enough that there exists one
possible assignment to the content of the tape that causes the machine to accept,
for the input to be accepted.

What complexity class do we get if we allow the machine to go back on the
witness tape?

CONN is NL.-Complete

ST T

+ CONN is NL-hard * Given [\, ¢, construct
in LOGSPACE a

Assume a TM | CONN instance

‘has 1 acceping |

configuration

12

It turns out that connectivity is in non-deterministic LOGSPACE complete. We

will show how to construct the connectivity instance given a machine M and
input X, so that the machine accepts its input if and only if the instance is in

connectivity.

12

Define Configurations Graph: Gy ,

N A\ N

*Fora(N)TM M - All * (u,v)cEEBEM,
and input i configurations transition u—v
O?O
Why depend o «?

/

Accepting
configuration

Start

mVM,x: M accepts x @ s=1 in &y ,
<13

For that purpose let us introduce the configurations' graph: vertexes correspond

to configurations, edges to transitions, the start vertex correspond to the start
configuration, and the target vertex corresponds to the accepting configuration.
An accepting computation of the machine corresponds to a path from start to
target, while such a path clearly corresponds to accepting computation.

13

CONN is NL-Complete

e

* Gy.x can be constructed in Log-Space

Corollary:

* NLcP

Given a non-deterministic LOGSPACE machine, its configuration graph can be
computed with logarithmic memory: the algorithm simply needs to compute,
given two configurations, whether there is a transition from one to the other.

As a corollary we get that non-deterministic LOGSPACE is contained in P.

14

» that we have a language
-CONN- representing
NL

* better analyze the
complexity of space-
bounded computations

15

The fact that connectivity is NL-complete is fundamental in analyzing space
complexity classes: it is crucial in the proof of the following two fundamental

theorems we prove.

15

Savitch's Theorem

ALy

» vS(n) 2 log(n): NSPACE[S(n)] < SPACE[S(n)?] \

Yoo

* First NL ¢ SPACE[log®n] then generalize

Ay

+ NL DSPACE[log?n]

- Suffice to show CONN e DSPACE[log?n]

16

The first is a theorem by Savitch concerning the overhead involved in converting
a non-deterministic computation to a deterministic one. It turns out that the
overhead in terms of space is not that large, it is in fact quadratic. To prove that
theorem, we will start with the special case of NL, and proceed to show a
general technique of how to extend such statements for smaller classes to larger
classes.

és}(V, : is ﬂ}ere a

[Boolean PATH(u, v, d)

CONNe SPACE[log®n]

[if (u, v) € E return TRUE |

[if d=1 return FALSE

[Begin Forw € V

A if PATH(u,w, [d/21) and PATH(w,v, Ld/2.) return TRUE,_

Is there a middle vertex
w,stu=>wandw = v,
both of length d/2?

return FALSE

End For ‘Recursion depth = log d L
logIVI space for each level |

x _—

J

4

Savitch’s deterministic simulation algorithm for connectivity is recursive: to
decide if there is a path of length d, it goes over all possible vertexes for the
middle of the path, and call itself to decide whether the appropriate paths of half
the lengths exist. Namely, one from the start vertex to the middle vertex, and
another from the middle of vertex to the target vertex.

The recursion depth is logarithmic in the length of the path, and at each level the
algorithm maintains a pointer to one vertex.

17

Example of Savitch's algorithm.

boolean PATH(a,b,d) {

e if there is an edge from a to b then
7T return TRUE
o else {
‘ if (d=1) return FALSE
0 for every vertex v (not a,b) ({

if PATH(a,v, |d/2]) and
PATH(v,b, ld/2]) then

)
return FALSE

(a,b,c)=Is there a path from a to b, that takes no more

than c steps.

(1,4,3) TRUE

-

_/

Complexity

Y
3Log,(d) 18

Here is a simulation of the algorithm on a simple example.

18

O(log®n)-Space D-TM for NL

Proof (Lemma, end):

- To solve CONN: call PATH(s, t, |V[)

* NL ¢ SPACE(log®n)

T

» VS(n) 2 log n
NSPACE(S(n)) < SPACE(S3(n))

19

To solve connectivity, one can simply apply the algorithm with a number of
vertexes and the length of the path.

Now that we have proven the Theorem for NL, we need to extend it to general
classes. Namely, show that for every space bound, the cost of translating a non-
deterministic algorithm to a deterministic one is quadratic.

P cen g e

* For any two space constructible
functions sy(n), sa(n) 2 logn, e(n) 2 n:

N

* NSPACE[s,(n)] < SPACE[s,(n)]

e

* NSPACE[s;(e(n))] = SPACE[s,(e(n))]

We show a more general principle, that any such relation between models and
bounds can be scaled up with a super linear extension function. The extension
function scales up both bounds.

This technique is simple yet tricky and is referred to as the padding argument.

Padding argument
- g argurert
* For L € NSPACE[s (e(n))], |_wroca=iom en
let Le = (¢ ##elxD-Ixl | XeL); S —

INSPFACELs (n)] < SPACE[s.(n)]

2

+ L* & NSPACE[s,(n)] & DSPACE[s,(n)]
M’ counts |X| and

form, then
+ I of 5,(n)-DSPACE forLe Dby e

M simulates M’ and
m “cheats” it to "see”
+ 3M of s(e(n))-DSPACE for L XIXD=IX| extra s
21

The padding argument goes as follows: given a language L, accepted by a non-
deterministic TM, define the language Le that comprises all strings in L padded
with the appropriate number of #. That padding makes the language Le in the
appropriate non-deterministic class. Now, one can apply the containment of the
premise and obtain a determined TM for Le. This deterministic TM verifies that
the number of #’s is appropriate with respect to the size of the “real" input. One
can in turn, given only the real input, simulate this machine maintaining a
counter of the number of #’s, and letting the TM work as if the appropriate
number of #’s is appended to the real input.

21

Padding-

DSPACE[sa(e(IX)] TM

DSPACE[s,(IX#..#])] M

NePACEs(elXN TM &

22

Here's an illustration of the construction: we start with a TM M” for L, which can
be converted into a TM for Le (checking that the number of #s is appropriate can
be carried out in LOGSPACE), which by the assumption of the premise can be
made deterministic --- that’s the TM M’. M is a TM for L of appropriate space
that simulates M’, and if M’ wonders off to the # section, it maintains a pointer (it
has enough space to do that) to where it is and simulates it as if the #’s are there.

This completes the proof of Savitch’s theorem.

22

+ Simulation of Nen-deterministic |
space-bounded computation
does not incur very large
overhead

* What about complementation?
NL vs. coNL

23

We have just seen that enhancing space-bounded computation with non
determinism does not make it so much stronger.

Next, we look at another aspect by which non determinism for space bounded
computations has a limited effect.

23

NON-CONN

NON—CONN | Decision Problem: _V
\ Instance: =SS

* A directed graph & * Is there no path
and two vertices from s to 1?
s, teV

* NON-CONN is coNL-Complete.

A

s
What if we prove non-CONN is In NL‘_/

24

Let us first define the non-connectivity problem, which is simply the complement
of the connectivity problem.

Non-connectivity is clearly coNL-complete, therefore, it represents the entire
coNL class.

It follows, that if we show non-connectivity is in NL, we’ve proven NL=CONL.

l b = '— ,
WA v ‘19.,‘- \ TJX ";? b1

LR

IRaise your hands!

ICoum‘ how many

25

* Non-CONN e NL

Descf‘ibe an

_verifidble |
E NL-vertfl

itness
E Def]raachahla(@) ={v|s~v} V:;‘:; s no s T
[Def

let6,m(V,E-Vft}) | 7
Witness: |#reachable(6) = #reachable(G.,) ’
Suffice: |#reachable(€) = r ’
E Def]rsachahla, = { v | s>v of length <l } }

[Induction: |r =#reachable, Base: ro=1 Wikt

To show that non-connectivity is in NL, we can use the witness formulation of
NL, where the TM can read a witness of membership, from left to write, and
verify it indeed prove the input is in a given language.

We define the set of reachable vertexes, namely those that can be reached by a
directed path from the start vertex.

To show there is no path from start to target, we can show that the size of the
reachable set is the same for the graph and for the same graph only where all
edges going into the target are removed.

Hence, it is enough to verify a proof showing what is the number of reachable
vertexes of a given graph (first have a proof for the graph, store that number, then
verify a proof for the altered graph, and compare the two numbers).

To verify that indeed the number of reachable vertexes is as claimed, the witness
can be constructed inductively, over the length of the path.

There is obviously exactly one vertex reachable within O steps.

We’ll next see how to extend a witness, proving the number of reachable vertexes
after | steps is RI, into a witness for I+1, and so that if the prefix can be verified
by a LOGSPACE TM then so is the entire witness.

26

, : coNL = NL

‘Induction step:

* Extend an NL-verifiable witness W to
“m=#reachable," to a witness to "r,,=#reschable,,,":

We#rg# N
1 &/ ¢reachable,,, $W =

{ J roschables $W1% W, for iersachabls,,: 3

{ J * si of length <l+1
IVl |e/ereschebls,; $W,,$
£ %;&wl for i raschable, :] /ZJ for jersachabls, }

{/ [1 J &/ ¢reachable, *Z,* \only if J->ieE: :
| - J * 8] of length =i

| IvI J e/ greachable, *Z,* Zz‘ for jeraachable: emPV?J

Verify #{| ersachabla} =

W is the witness, proving that the number of reachable vertexes after | steps is RI.

Let us append to it an array of sub-witnesses, one for each vertex of the graph:
the ith segment would first specify whether the ith vertex is or is not reachable
within I+1 steps. Next, depending on that bit (and separated by $ signs) are the
corresponding witnesses --- Assuming all sub-witnesses true, the verifier can
count to see how many vertexes are reachable within |+1 steps.

In case vertex i is reachable within 1+1 steps, the witness would simply be a path
from start to vertex i of length at most I+1.

In case vertex i is not reachable within I+1 steps, the sub-witness dedicated for
that ith vertex would itself be an array with every segment corresponding to a
vertex of the graph. The bit for each vertex j corresponds to whether vertex j is
reachable within | steps. Clearly, no vertex j reachable within | steps can have an
edge to vertex i; the witness for vertex j reachable within | steps, would be simply
a path from start to j of length at most .

If vertex j is not reachable within | steps the jth sub-witness is left empty.

All sub-witnesses are clearly proving what they claim, and exist --- except for the
witness that vertex j is not reachable within | steps.

How then can the verifier be sure that’s true?

The answer is the crux of the entire argument and is as follows: the NL TM
verifies that the number of vertexes listed as reachable within | steps is exactly

27

RI, the number proven in W to be the number of reachable vertexes within I steps!

27

N.D. Algorithm for reachy(v, |)
reach(v, I) =
1.length=l;u=s

2. while (length > 0) {
3.ifu=vreturn ‘YES’

4. else, forall (u’ € V) {
5. if (u, u’) €E nondeterministic switch:
5.1 u = u’; --length; break
5.2 continue

}

} Takes up logarithmic space
6. return ‘NO’

Complexity

This N.D. algorithm might never stop s

28

IN.D: Algorithm. for CR,

CR, (d)
1.count=0
2. forall ueV{
3.count,, =0
4. forall veV{
5. nondeterministic switch:
5.1if reach(v, d - 1) then ++count , else fail
if (v,u) € E then ++count; break
5.2 continue _
}

if t., < CR_(d-1)fail
} 6. if count s (d-1) a'<’t< Recursive calll

7.return count

Complexity

29

29

N.D. Algorithm far CR

CR,(d|, C) Main Algorithm:
1. count=10 CR,
2. forall ueV{ C=1
3.count,, =0 ford=1.|v|
4. forall veV{ C=CR(d, C)
5. nondeterministic switch: return C

5.1if reach(v, d - 1) then ++count , else fail

if (v,u) = E then ++count; break
5.2 continue

}
6. if count,, < c] fail
7.return count \ parameter
Complexity 0

30

Corollary,

» Space-bounded computation classes

closed under complementation:
vs(n)2log(n):
NSPACE(s(n))=coNSPACE(s(in))

| padding argumem‘
7

* A basic problem complete for PSPACE

31

31

TQBF
_— e

* Is ¢ true?
Boolean formula b @ vaayvalGv-yvan-ey)l

A

* TQBF ePSPACE

» A poly-space algorithm A that evaluates ¢:
if ¢ is quantifier-free return its value
if o=, y(x,..) return A(yw(0,..))rA(y(1,..))
if §=3.y(x,..) return A(y(0,..))vA(y(1,..))

32

32

Complexity

Algorithm. for TQBE

1 Vx3

y[(xv=y)r(=xvy)]

1*
| }

(0v—0)A(-0v0)

1 0

(Ov=1)A(=0v1)

*1
! l

(Iv-0)A(=1v0) (Iv=DA(=1v])

0 1

33

33

TQBE is PSPACE-Complete

"

cmﬁWmﬂm

transition
Y e o

*Fora TM M, start witha BF |
¥) & ony M moves fo'¥ =
Construct, inductively, the BF
du(e,v.€) & ony, M arrives at y in <29 steps:
oW, 1.0)= transitiony(y, ¥) v u=yv
b, L. d)= 3wvy'vy
[((=yry'=wv(y'=wAy'=v)) & duld.¥,d-1)]
+ (M, %) = dy(stariD], escept, [igitef config.])

24
[l

Theorem: “ VitV
+ TQBF is PSAPCE-hard o L YCTOrs describing

|

34

Synopsis
- A
Defined space-complexity, in particular,
the complexity classes: L, NL, coNL,

PSPACE.
) Proved:

.

/

Completeness:
-_. FONN for NL: TQBF for PSPACE

st Savitch's theorem (NLcSPACE(leg?))
|[The padding argument (scaling up)

= Immerman's theorem (NL=coNL) 5
g

35

Space Savitch's
Complexity Theorem
Log Space Immerman's
Reductions Theorem

TQBF
Complexity

Classes PSPACE

L NL

WWindex

SS9l Savitch, Walter

l Immerman, Neil

Robert Szelepcsényi

|

36

36

