This course is about Complexity Theory,
in which we categorize computational problems to various classes
according to resources required for their solution.

* Introduce basic concepts in

Complexity Theory.

* Meet Celebrities and Computations
* Growth Rate and Tractability
* Reducibility

s 8t ..

This is the introductory lecture in which we will consider the basic
motivations and methodology of the field.

Drama At-the Oscars

- seat all guests around a table, so people

who sit next to each other get along.

Say you're given a list of guests

who are to attend an event,

and the goal is to organize them

so they get along with each other.

You may use a computer for that purpose.

Some History...

Here's an example:
Every two guests may or may not get along with each other.

How Can a Catastrophe be Avoided?

One can represent their relationship in a table,
which is essentially a 0,1 matrix.

Ll IR
LYEEZEZE2RN
|9 IR
P o @@
Bloye |@
I\ Yeole
1‘?«47 AT S
gl \’

Here is one way to organize guests so that they get along.

The question is what could be an organized, algorithmic method is to
find such a seating if it exists.

Naive Algorithm

A Observation:

* Given a seafing one can efficiently
check if all guests get along with their
neighbors

For each seating arrangement:
Check if all guests are OK with neighbors
Stop if a good arrangement is found

— | ==

How much time would it take? (worse case)

-

Here is an algorithm for this problem:
It is easy to check whether a seating arrangement is a good onel
One can go over them one by one and check for each if it is good.

Naive Algorithm

Check if all guests are OK with neighbors

For each seating arrangement:
Stop if a good arrangement is found

How much time would it take? (worse caje)

d say our compute
'S capable of 101:

Second, this il

Still take ~ 3.9g13s

Years!

' ? Can you do
“, better?

How long would this process take?
It is a function of the number of guests.
For a tiny number it may still be OK.

For anything but tiny number of guests,
the number of possible seating arrangements is huge.

Tour Problem

* Plan a trip that visits every location exactly once.

Z=L

mpire-State Building

2351 O K

Here is another problem:

Say you are given a list of locations you need to visit and a map
indicating between which locations there is a direct connection.

Naive

Algorithm
(Backtracking)

Try out all
reachable sites
not yet visited

Backtrack

and retry Repeat the

process until
stuck

10

An algorithm for this problem would,
in every step,
go to the next connected location not yet visited.

If none exists, backtrack your steps and go to a yet not visited
location.

10

"Onaco
check 10
per second thi

Mputer thqt o

Options
S still
€S 4 years|

1307674368000
:9 T

The time it will take this algorithm to figure out whether a traversal
exists is even longer than the previous one.

11

Is a Problem. Tractable?

* and here's an efficient aﬂgor&hm
that solves it

«and 7 can prove &

12

This brings us to the most fundamental question
one would like to know regarding a given computation problem:
Can it be efficiently solved?

The problem is that there are
almost no known techniques for
proving that a given problem
cannot be efficiently solved.

12

D Growth Rate: rough classification

time nl =20(n Ign)

input length

13

It's quite clear that the time it takes to solve a given problem is
expected to grow as the input size grows.

Some functions grow slowly as the input grows,
while other blowup very quickly.

13

Basic split-in time-complexity

Maybe 23, Totally
reasonable %/ unreasonable
53w

s
>

14

The most fundamental classification

we would like to apply to any

given computational problem

is the distinction between

problems whose growth rate in terms of time is polynomial
Vs. problems whose growth rate is exponential.

14

Which.is Harder?

SEATING

15

Once we have established

that the problem's complexity

can be measured by

a function of the time it takes to compute it for a given input size,
we can compare between problems' complexity.

15

Relations Between Problems

* assuming an efficient procedure for £
there is an efficient procedure for 4

an efficient procedure for
using

- an efficient procedure for

* A cannot be radically harder than £

Assume that

we can come up with a procedure for problem A
that calls on a procedure for a problem B,

so that if B has an efficient procedure

then so does A;

it must then be the case that

A is not much harder than B,

or alternatively that

B cannot be much easier than A.

16

9D Reductions

an efficient procedure for
using N

an efficient procedure for cannot be radically
B harder than |

* In other words:

? is at least as hard
as

17

Here is how we denote such a notion:

we refer to it as "reduction'

the symbol we use to denote it is the "less than",
while the letter P implies the reduction is efficient.

17

(]

Reduce Tour to-Seating

NG SOMECN EAWHOICANISEAi NEXI 0 eVeryone é@b

Here is a simple efficient reduction

from the tour problem to the seating problem:
think of every location as a guest

and now add an additional guest

that can be seated next to everyone.

Reduce Tour to-Seating

* If there's a four, there's a way to seaf
all the guests around the table.

* If there's a seating, we can easily find

a four path (no tour, no seating).

/ * seating is at least as hard as tour P
} 1

If there exists a tour,
seat guests accordingly
and seat the extra guest between the two ends of the four.

The other side of the proof,

is proved in the counter positive form:

To prove that no tour implies no seating,

we prove that a seating implies a tour.

Given a seating, simply ignore the extra guest.

19

So.Far

« find an efficient algorithm for
problems

ee@

* prove they are
intractable

* to show a very sirong correlation
between their complexity 7y

MANAGE:

We have encountered some problems

whose complexity is quite unclear,

nevertheless,

we have managed to show

a relationship between their (unknown) complexities.

20

Wnteresiinglys
wercanialserredicesthe
ssating 21902 102

four ooz, 7 Can

' you?

Furthermore,
there is a whole class
of problems, which can

t0 each other.

21

If we also show the reduction

in the other direction,

it would bound the complexity of the two
to be roughly the same.

It turns out that there is the
class of problems

whose complexity is bound

to the complexity of these two.

21

NP-and.P

- Efficiently
computable

]

+ Solution
efficiently
verifiable

Pa\P

22

We can now informally introduce

two important classes of computational problems:

the class P,

which consist of all problems that can be efficiently computed,
and the class NP,

for which finding a solution can be very difficult

however checking the solution

can be carried out efficiently.

The $1,000,000 question is
whether the two classes are in fact the same.

22

Contains
thousands || reducible
of distinct to all

problems)

algorithms

lefficient algorithms

Within the class NP,

we may consider the class of

what seemingly are the hardest problems,
whose complexities are all bound together:
this class is referred to as NP-complete

23

How can Complexity make you a Millionaire?

[The P" question is the

Philosophically: if
» Human ingenuity is redundant!
- So would mathematicians bell

| 25 nature nondeterministic?

24

The P vs. NP problem

is the most fundamental question of computer science,
but it is also

one of the most important open questions in mathematics.

It is also a very deep philosophical question,
as if P is equal o NP

most human activities considered creative
may become mechanical.

It is also possible that some natural phenomena
utilized so far in computers suffer this distinction,
however, other natural phenomena may avoid this distinction.

24

What's Ahead?

\
- we'll review basic

questions explored

through the course./

25

Let us now briefly mention some other issues we will study in the

course.

25

Generalized Tour Problem

» find a least-costly tour

* Each segment of the tour problem now has a cost

{

imate the
optimal tour?

ﬁi.& - find a

tour that
costs, say, no

We can generalize the tour problem
assuming every direct connection
has a price attached to it.

One would like to find the least expensive tour.

If that's impossible,

one would be content with a tour
that is not much more expensive
than the least expensive one.

These types of problems are called
approximation problems.

26

Is Running’

Time the
only
Resource?

canama

-

-~

A

27

So far we've measured
the complexity of problems
only according to the time it takes for their computation.

We will consider other resources,
in particular,
the size of memory it takes to solve them.

27

Games

Players take turns

choose a word whose

first letter matches -
other player's last

Here's an interesting example:
we're given the rules of

a game between two players
and are asked to decide

which of the players wins.

28

[Can one compute a winning strategy?

[How much time would it take?
[How much space?

One can solve such a problem
by computing the game tree.
The size of that tree however
is potentially exponential

in the number of steps it takes
to get to the end of the game.

This is prohibitivel

Is there another way to solve this problem?

29

Summary

We have introduced two problems:

A

Unable to settle their complexity
we, nevertheless, showed strong
correlations between them

4
<
These problems are representatives of
a large class of problems:

NPC

30

Topics to be

studied later:

Prognosis

* Approximation
- Space-bounded

computations P

31

31

WWindex

Complexit .

_ThPeTX Computations || Completeness

Hamiltonian

= Path Growth Rate || Completeness
— D

Reducibility Soundness

Complexity p NP
Classes = -
NPC

Exponenti

—WMI www.claymath.org Approximation

32

32

