

Drama At the Oscars

Problem:

seat all guests around a table, so people who sit next to each other <u>get along</u>.

How Can a Catastrophe be Avoided?

<u>Getting It Right</u>

Naive Algorithm

Observation:

 Given a seating one can efficiently check if all guests get along with their neighbors

For each *seating arrangement:* Check if all guests are OK with neighbors Stop if a good arrangement is found

How much time would it take? (worse case)

Naive Algorithm

For each *seating arrangement:* Check if all guests are OK with neighbors Stop if a good arrangement is found

How much time would it take? (worse case)

Tour Problem

• Plan a trip that visits every location exactly once.

How Much Time?

Basic split in time-complexity

Reduce Tour to Seating

Find someone who can seat next to everyone

 If there's a tour, there's a way to seat all the guests around the table.

Interestingly, we can also reduce the seating problem to the tour problem.

Furthermore, there is a whole class of problems, which can be pair-wise efficiently reduced to each other.

How can Complexity make you a Millionaire?

The "P vs. NP" question is the most fundamental of CS

Resolving it would bring you great honor...

... as well as significant fortune... www.claymath.org/

Philosophically: if P=NP

- Human ingenuity is redundant!
- So would mathematicians be!!

Is nature nondeterministic?

we'll review basic questions explored through the course.

Generalized Tour Problem

Each segment of the tour problem now has a cost
find a least-costly tour

We have introduced two problems: 1. Seating = <u>HAMILTONIAN-CYCLE</u> 2. Tour = <u>HAMILTONIAN-PATH</u>

Unable to settle their complexity we, nevertheless, showed strong correlations between them

These problems are representatives of a large class of problems: NPC

- <u>Approximation</u>
- Space-bounded computations

