Exercise 1

Prove or disprove: BPP = BPP(0.19, 0.20)

Exercise 2

Prove:

If
$$\Sigma_2 = \Pi_2$$
 then $PH = \Pi_2$.

Exercise 3

Given the string: $1^n < M >$ (where < M > is the encoding of a $DSPACE(n^2)$ TM) define the following graph:

$$\begin{array}{rcl} G_M^n & = & (V_M^n, E_M^n) \\ V_M^n & = & [n]^{\log n} \\ E_M^n & = & \{(u,v) \, | \, (u,v) \in L_M \} \end{array}$$

(i.e. the edges are all the strings of length $2 \log n$ over alphabet of size n accepted by M)

Prove:
$$st - CONN - G_M^n \in co - NSPACE(\log^2 n) - Complete$$

GOOD LUCK