Exercise 1

Let L_{ϵ} to be the language of all 2CNF formulas φ , such that at least $(\frac{1}{2} + \epsilon)$ of φ 's clauses can be satisfied. Prove that L_{ϵ} is **NP**-hard for any $\epsilon > 0$.

Exercise 2

You proved in class that each undirected graph G = (V, E) possess a cut with at least $\frac{|E|}{2}$ edges. Give a deterministic poly-time algorithm, which constructs such cut for a given G. Prove that your algorithm satisfies all the conditions. (hint: one of the possible approaches is to use algorithm, greedy on conditional expectations).

Exercise 3

Assume that there exists a universal TM \mathcal{U} , such that $\mathcal{U}(\langle M \rangle, x) = M(x)$ for any TM M and any $x \in \{0,1\}^*$. Moreover, if computation M on x requires f(n) space then computation $\mathcal{U}(\langle M \rangle, x)$ requires O(f(n)) space.

- (1) Prove that $Space(logn) \subsetneq Space(log^2n)$. (hint: use diagonalization method).
- (2) Conclude that $\mathbf{L} \subsetneq \mathbf{PSPACE}$.

GOOD LUCK