We will call graph G = (V, E) square if

- V can be partitioned into q cliques C_1, \ldots, C_q
- V can be partitioned into q independent sets I_1, \ldots, I_q
- $|C_i \cap I_j| = 1$ for any $1 \le i, j \le q$.

Prove that it is NP-hard to decide whether G is square.

Exercise 2

Assume that $\mathbf{P} \neq \mathbf{RP}$. What conclusions can you make?

Exercise 3

In homework 2 exercise 2 you constructed the following reductions: $3SAT \preceq 4NEQ \preceq 3NEQ$.

- (1) Prove that this reduction can be resticted to $E3SAT \leq E4NAE \leq E3NAE$.
- (2) Track the gap under this restricted reduction.
- (3) For what $\alpha, \beta \in [0,1]$ the $gap E3NAE[\alpha, \beta]$ can be immediately concluded to be NP-hard?

Exercise 4

We define the following problems over compressed graphs:

- $CCSG_V$ is a version of CSG_V . Thus, a $CCSG_V$ instance is a tuple $U = (1^n, \Sigma, M)$, where M is a poly-time Turing Machine calculating the constraints. Thus, for nodes $u, v \in \{0, 1\}^n$ and colors $i, j \in \Sigma$ we say that coloring u with i and v with j satisfies the constraint on (u, v) if and only if M(u, v, i, j) = 1.
- $CCSG_{\Delta}$ is a version of CSG_{Δ} . Its instance is a tuple $U = (1^n, q, M)$, where M is a poly-time Turing Machine calculating the constraints. Thus, for nodes $u, v \in \{0, 1\}^n$ and $i \in \{0, 1, \dots, q-1\}$ we say that difference i is allowed on (u, v) if and only if M(u, v, i) = 1.
- $CCSG_E$ is a version of CSG_E . Thus, a $CCSG_E$ instance is a tuple $U = (1^n, M_E, \Sigma, M)$, where M and M_E are poly-time Turing Machines. For any nodes $u, v \in \{0, 1\}^2$ we say that (u, v) is an edge if and only if $M_E(u, v) = 1$. For any edge (u, v) we say that coloring (i, j) satisfies the constrain if and only if M(u, v, i, j) = 1.
- $C\chi$ is a version of chromatic number problem. Its instance is just compressed graph $U = (1^n, M_E)$, where M_E is a poly-time Turing Machine computing the edges. For any nodes $u, v \in \{0, 1\}^2$ we say that (u, v) is an edge if and only if $M_E(u, v) = 1$.

Prove or disprove the following statements:

- (1) $CCSG_{\Delta} \preceq C\chi$.
- (2) $CCSG_V \preceq CCSG_\Delta$.

GOOD LUCK