Exercise No. 3: Coherent States and The Density Operator

- 1. Consider a harmonic oscillator, whose Hamiltonian is given by $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$, in thermal equilibrium with a reservoir at temperature T.
 - (a) Find the average energy of the oscillator.
 - (b) Compare what you obtained in 1a with the classical result (take the classical limit).
 - (c) What is the thermal expectation value of $N = a^{\dagger}a$?
- 2. (a) Prove that the density operator ρ satisfies the inequality $\text{Tr}\rho^2 \leq 1$ and that the equality holds only for pure states.
 - (b) Show that $Tr\rho^2$ is time-independent.
- 3. A spin $\frac{1}{2}$ in equilibrium with a reservoir at temperature T is placed in a magnetic field $\mathbf{B} = B\hat{\mathbf{z}}$.
 - (a) Compute the average magnetization $\langle M \rangle$.
 - (b) What is the uncertainty in the magnetization?
- 4. In a harmonic oscillator we define the dimensionless coordinates

$$Q = \frac{1}{\sqrt{2}} \left(a^{\dagger} + a \right) , \quad P = \frac{i}{\sqrt{2}} \left(a^{\dagger} - a \right) .$$

The squeezing operator $S(\xi)$ is given by

$$S(\xi) = \exp\left[\frac{1}{2}\xi^*(a^{\dagger})^2 - \frac{1}{2}\xi a^2\right]$$

- (a) Compute $\langle Q \rangle$, $\langle P \rangle$ and their uncertainties for the state $S(\xi) |\alpha\rangle$, where $|\alpha\rangle$ is a coherent state and ξ is real.
- (b) How do $\langle Q \rangle$ and ΔQ evolve with time? (Here also assume that α is real.)