Feb. 1, 2006

Exercise No. 14: The Dirac Equation

- 1. Show the following relations where $\gamma^0 = \beta$ and $\gamma^i = \beta \alpha_i$:
 - (a) $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$,
 - (b) $\gamma^{\mu}\gamma^{\nu}\gamma_{\mu} = -2\gamma^{\nu}$,
 - (c) $\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma_{\mu} = 4g^{\nu\lambda}$,
 - (d) $\operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu},$
 - (e) $(a_{\mu}\gamma^{\mu})(b_{\nu}\gamma^{\nu}) = a_{\mu}b^{\mu} i\sigma^{\mu\nu}a_{\mu}b_{\nu}$, where a_{μ} and b_{μ} are four-vectors.
- 2. Find the transformation properties of the objects bellow under Lorentz transformations:
 - (a) $\bar{\psi}\psi$,
 - (b) $\bar{\psi}\gamma_5\psi$,
 - (c) $\bar{\psi}\gamma^{\mu}\gamma_5\psi$,
 - (d) $\bar{\psi}\sigma^{\mu\nu}\psi$.
- 3. An electron is subjected to a uniform magnetic field in the z-axis direction. The Dirac equation in this case takes the form

$$(c\vec{\alpha}\cdot\vec{\pi}+\beta mc^2)\psi=E\psi ,$$

where $\vec{\pi} = \vec{p} - \frac{e}{c}\vec{A}$ and $\psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix}$.

- (a) Use a gauge in which $\vec{A} = \frac{1}{2}B(x\hat{y}-y\hat{x})$. What is the exact equation satisfied by the upper two components φ ? A useful identity is $(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) = \vec{A} \cdot \vec{B} + i\vec{\sigma} \cdot (\vec{A} \times \vec{B})$.
- (b) Show that $P = \pi_y$ and $Q = \frac{c\pi_x}{eB}$ are canonical variables and use this to compute the energy spectrum of the electron.
- (c) What is the energy spectrum in the non-relativistic limit?