Exercise No. 9: Identical Particles and Second Quantization

- 1. Let h_0 be the Hamiltonian of a particle. Assume that the operator h_0 acts only on the orbital variables and has three equidistant levels of energy 0, $\hbar\omega_0$ and $2\hbar\omega_0$ (where ω_0 is a real positive constant) which are non-degenerate in the orbital state space.
 - (a) Consider a system of three independent electrons whose Hamiltonian is

$$H = h_0(1) + h_0(2) + h_0(3)$$
.

Find the energy levels of H and their degree of degeneracy.

- (b) Do the same for a system of three identical bosons of spin 0.
- 2. Let $|\phi\rangle$ and $|\chi\rangle$ be two normalized orthogonal states belonging to the orbital state space of an electron and let $|+\rangle$ and $|-\rangle$ be the two spin eigenstates with respect to the z-axis.
 - (a) Consider a system of two electrons, one in the state |φ, +⟩ and the other in the state |χ, −⟩. Let ρ₂(**r**, **r**')d³rd³r' be the probability of finding one of them in the volume d³r centered at the point **r** and the other in a volume d³r' centered at **r**' (two-particle density function). Similarly, let ρ₁(**r**)d³r be the probability of finding on of the electrons in a volume d³r centered at **r** (one-particle density function). Find ρ₂(**r**, **r**') and ρ₁(**r**). Show that the expressions you have obtained remain valid even if |φ⟩ and |χ⟩ are not orthogonal. Compare these results with those which would be obtained for a system of distinguishable particles (both spin ½), one in the state |φ, +⟩ and the other in the state |χ, −⟩ when the device which measures the positions is assumed to be unable to distinguish between the two particles.
 - (b) Now assume one electron is in a state $|\phi, +\rangle$ and the other one in the state $|\chi, +\rangle$. Compute $\rho_2(\mathbf{r}, \mathbf{r}')$ and $\rho_1(\mathbf{r})$ in this case. What happens to ρ_1 and ρ_2 if $|\phi\rangle$ and $|\chi\rangle$ are no longer orthogonal?
- 3. Consider the Hamiltonian

$$H = \epsilon a^{\dagger} a + \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} a^{\dagger}_{\mathbf{k}} a_{\mathbf{k}} + a^{\dagger} a \sum_{\mathbf{k}} M_{\mathbf{k}} (a_{\mathbf{k}} + a^{\dagger}_{\mathbf{k}}) ,$$

where ϵ is the energy of a particular *fermionic* state, $\epsilon_{\mathbf{k}}$ is the energy of a phonon (which is a boson) with a wave-vector \mathbf{k} and $M_{\mathbf{k}}$ are \mathbf{k} -

dependent coupling constants. Define the following transformation for any operator A:

$$\bar{A} = e^S A e^{-S}$$

where S is an operator. In particular we take $S = a^{\dagger} a \sum_{\mathbf{k}} \frac{M_{\mathbf{k}}}{\epsilon_{\mathbf{k}}} (a_{\mathbf{k}}^{\dagger} - a_{\mathbf{k}}).$

- (a) Explain the possible physical meaning of each term in the Hamiltonian.
- (b) Show that $\bar{a} = aX$, $\bar{a}^{\dagger} = a^{\dagger}X^{\dagger}$, $\bar{a}_{\mathbf{k}} = a_{\mathbf{k}} \frac{M_{\mathbf{k}}}{\epsilon_{\mathbf{k}}}a^{\dagger}a$, $\bar{a}_{\mathbf{k}}^{\dagger} = a_{\mathbf{k}}^{\dagger} \frac{M_{\mathbf{k}}}{\epsilon_{\mathbf{k}}}a^{\dagger}a$, where $X = \exp\left[-\sum_{\mathbf{k}}\frac{M_{\mathbf{k}}}{\epsilon_{\mathbf{k}}}(a_{\mathbf{k}}^{\dagger} - a_{\mathbf{k}})\right]$ (note that $X^{\dagger} = X^{-1}$).
- (c) Show that $\bar{H} = a^{\dagger}a(\epsilon \Delta) + \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$, where $\Delta \equiv \sum_{\mathbf{k}} \frac{M_{\mathbf{k}}^2}{\epsilon_{\mathbf{k}}}$. Verify that this form agrees with your initial interpretation of H.