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In search of multipolar order on the Penrose tiling
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We use Monte Carlo calculations to analyse multipolar ordering on the Penrose
tiling, relevant for two-dimensional molecular adsorbates on quasicrystalline
surfaces and for nanomagnetic arrays. Our initial investigations are restricted to
multipolar rotors of rank one through four – described by spherical harmonics Ylm

with l¼ 1, . . . , 4 and restricted to m¼ 0 – positioned on the vertices of the rhombic
Penrose tiling. At first sight, the ground states of odd-parity multipoles seem to
exhibit long-range order, in agreement with previous investigations of dipolar
systems. Yet, careful analysis performed here establishes that, despite earlier
claims, long-range order is absent for all types of rotors, and only short-range order
exists. Nevertheless, we show here that short-range order suffices to yield
a superstructure in the form of the decagonal Hexagon–Boat–Star tiling. Our
results should be taken as a warning for any future analysis of order in either real or
simulated arrangements of multipoles on quasiperiodic templates.
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1. Introduction and motivation

The concept of multipole moments is one of the most prominent and ageless mathematical
constructions in physics and chemistry. Several decades ago the determination of electric
and magnetic multipoles of neutral and polarized molecules became a vivid domain of
scientific research because of the central role of multipole tensors for studies of
intermolecular forces [1], nonlinear optical phenomena [2], electrostatic potentials [3],
various phenomena induced by intermolecular forces [4], collision effects in nuclear
magnetic resonance spectroscopy [5], hyperfine interactions [6], theoretical prediction of
the geometries of van der Waals molecules [7] and electron scattering [8]. These extensive
studies have demonstrated that many molecules possess sufficiently strong electric
multipole moments. Among them are polar molecules with asymmetric charge distribution
like HF, H2O, FCl, HCCl2, etc. having a permanent dipole moment; neutral Ne, Ar, Kr,
Xe, O2, F2, D2, CO2, etc. possessing quadrupole moments; polyatomic SiF4, B4Cl4, giant
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Keplerate molecule Fe30 and CF4 having strong octupolar and (HSi)8O12, (CH3Si)8O12

hexadecapolar contributions. Many organic substances possess multipolar moments

as well. These are quadrupoles like benzene, 3, 4, 9, 10-perylenetetracarboxylicdianhydride

(better known as PTCDA), cyanogen (N�C–C�N), 1,1-dichloroethene, cis� 1,2-

dichloroethene; octupoles like methane or cyanogen and more complicated complexes

having higher order contributions [9,10]. Many of these molecules and molecular

complexes can be adsorbed on solid surfaces. The arrays of adsorbates interact to a large

extent via classical electrostatic multipolar interactions [10] as confirmed by Raman

spectroscopy and nuclear magnetic resonance experiments. Often the multipolar

interactions lead to complex ordering of the moments.
Quite independently, many new problems, that are not characteristic for bulk

materials, arise at the nanoscale. One of the interesting aspects vividly discussed nowadays

is the interparticle interaction in magnetic arrays. Magnetic properties of artificially

structured and self-organized magnetic media belong to the central questions of

nanomagnetism as they give access to new phenomena that can be used in

technology [11–13]. Recently the importance of multipolar magnetostatic contributions

for magnetization reversal in densely packed arrays of particles has been pointed out

theoretically [14,15]. Here, the effect of the multipolar moments is two-fold. First, it

influences the collective magnetic ordering in an array, and second, it changes the

nucleation fields due to the stabilization of magnetization near the edges of neighbouring

particles.
Hence, the knowledge of multipolar phase transitions and ground states is extremely

important for a variety of applications as well as for fundamental understanding of the

physics and the chemistry of solid state systems. With the recent ability to use the surfaces

of real quasicrystals as templates upon which a variety of different particles can be

adsorbed [16,17], it has become timely to study the ground states of multipoles on

aperiodic substrates as well [18]. Yet, in contrast to the rather well-studied multipolar

ground states on periodic lattices, the data for aperiodic tilings is quite limited [19–22],

although there exists some group-theoretical analysis [23–28], describing the possible

allowed symmetries of quasiperiodic multipolar arrangements, that may be used as a guide

for our study.1 The aim of this work is to initiate an extensive theoretical study of such

order, beginning with a theoretical calculation of the ground states of multipolar rotors on

the rhombic Penrose tiling.

2. Methods

In this study we investigate ground states of systems of multipoles, arranged on the vertices

of the rhombic Penrose tiling, by means of Monte Carlo simulations. In order to calculate

any order of interaction within reasonable effort, we introduce the Hamiltonian in spherical

coordinates into the conventional MC scheme, and derive the stable low temperature

configurations [36,37]. The Hamiltonian of the multipolar interaction reads

H ¼
1

4��0

X
A 6¼B
lAlBmAmb

TlAlBmAmB
ð ~RABÞQ

A
lAmA

QB
lBmB ð1Þ

2198 E.Y. Vedmedenko et al.



where QA
lAmA

and QB
lBmB

are the moments of multipoles A and B expressed in spherical

harmonics, where l and m correspond to the standard two degrees of freedom on a sphere.

The coupling coefficient TlAlBmAmB
ð ~RABÞ is the geometric interaction tensor

TlAlBmAmB
ð ~RABÞ ¼ ð�1Þ

lB I�lAþlB mAþmB
ð ~RABÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlA þ lB �mA �mBÞ!

ðlA �mAÞ!ðlB �mBÞ!

ðlA þ lB þmA þmBÞ!

ðlA þmAÞ!ðlB þmBÞ!

s
,

ð2Þ

where the dependence on the interparticle distance vector ~RAB, between multipoles on sites

A and B, is given by the complex conjugate of the irregular normalized spherical harmonic

function Ilmð~rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�=ð2lþ 1ÞÞ

p
ðYlmð�, ’Þ=r

lþ1Þ.
For the sake of simplicity, the Monte Carlo simulations presented here are restricted to

cylindrically symmetric multipole moments Qlm, or rotors, with l¼ 1, . . . , 4 and m¼ 0,

whereas generally m can take any value between �l and l. These four multipolar rotors are

depicted schematically in Figure 1, represented using corresponding charge distributions.

The restriction to m¼ 0 is quite limiting and will be relaxed in future extensions of this

study, nevertheless it is a good starting point providing interesting results. The moments

are placed on the vertices of a finite patch of the two-dimensional rhombic Penrose tiling,

using open boundary conditions. The patches are square or rectangular in shape,

containing up to 1000 multipole moments. We also use circular patches to verify that our

results are not affected by the shape of the sample. The simulations are performed with an

algorithm especially designed for long-range systems: the local fields at each site are

computed at the beginning of the simulation and are only updated when a rotation

attempt is accepted [37]. To prevent artificial effects we do not use a cutoff in the

evaluation of the multipolar coupling.
In contrast to MC schemes for usual magnetic systems, where only restricted rotations

of the magnetic moment are often used [38], the rotational space is sampled continuously,

Figure 1. (Colour online) Cylindrically symmetric multipoles Ql0 with l¼ 1, . . . , 4, represented using
an equipotential surface, with colour reflecting the sign of the charge on the internal side of the
surface. Note that multipoles with even (odd) l are symmetric (antisymmetric) with respect to
reflection about the equatorial plane. Thus, odd-parity multipole can be thought of as arrows ",
while even-parity multipoles as double-headed arrows l.
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i.e. a moment can assume any new angle. This is especially important in complex

multipolar arrays as these interactions might favour large angles between neighbouring

spins. An extremely slow annealing procedure with up to 150 temperature steps is applied.

To avoid metastable states we perform two different simulations of the same
system simultaneously, starting at different seeds for the random number generator to

ensure that the samples take different paths towards equilibrium. Only when both samples

reach the same stable energy level is it taken for granted that the system has reached its

equilibrium.

3. Ground states of classical multipolar rotors on the Penrose tiling

The symmetry of a charge distribution around a particle determines its non-zero multipole

moments and whether moments of odd or even rank appear. The parity of the multipole

moments has a strong impact on the ground state. We therefore consider the two cases

separately below. As can be seen in Figure 1, once we restrict the value of m to be 0, the
resulting multipoles with even l are symmetric with respect to the reflection about the

equatorial plane, whereas those with odd parity are antisymmetric with respect to such

a reflection. Consequently, odd-parity rotors can be represented geometrically as arrows,

with light-coloured (yellowish-green online) ‘tails’ and dark-coloured (red online) ‘heads’,

that like magnetic moments tend to align head-to-tail. On the other hand, even-parity

rotors can be described as double-headed arrows with a repulsive interaction between the
heads of neighbouring rotors. In the case of the Q20 rotors, the two heads are attracted

exactly to the central oppositely-charged regions of nearby rotors. In the case of the Q40

rotors the attraction is not exactly to the centre, but rather to one of the two off-centre

oppositely-changed regions. We establish below that these simple geometric observations

suffice to explain all the calculated results that are presented here. Note that the charge
flipping operation – a colour symmetry operation [23] that switches between red and

yellow – is equivalent to the reflection about the equatorial plane, mentioned above, but

only for the case of odd-parity rotors. In the case of even-parity rotors, charge flipping

takes the rotors to oppositely charged counterparts that we do not consider in our

simulations here. In the future it would be interesting to see what happens if one

introduces charge flipping of individual moments as an additional MC step for the even-
parity multipoles.

Experimental equivalents of the charge distributions having odd rank

multipolar contributions include uniformly polarized magnetic and ferroelectric

nanoparticles [15,39–42]. Generally, such particles may possess a mix of dipolar Q1m,

octupolar Q3m, dotriacontapolar Q5m and possibly even higher-order contributions.

However, for certain geometries some of the multipole moments may become extinct.
For example, a tetragonal prism with equal height, width, and length – which is

therefore a cube – possesses strong dipolar but a zero octupole moment, while its

strongly elongated or very flat counterparts have strong octupolar contributions.

The dependence of the strength of multipole moments on the effective aspect ratio and

shape of a particle can be found in [40,43]. To the experimental systems possessing

multipoles of even order belong molecular adsorbates including H2, N2, CO on salts
(e.g. boron nitride) or metal surfaces, organic PTCDA molecules on Ag, and methane

on graphite.
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3.1. Odd-parity multipole moments: dipoles and octupoles

In previous theoretical studies of dipolar ordering (multipole moments of rank one Q1m)

on the Penrose tiling, performed in Cartesian coordinates [20,44,45], a decagonal pattern

with long-range order was proposed as the ground state. Here, after much further analysis,

we find clear evidence for short-range order, with very interesting geometric properties, yet

we see no evidence for the emergence of long-range multipolar order. The ground-state

configurations of odd-parity multipoles are shown in Figure 2. At first sight these

configurations seem to possess very nice long-range multipolar order, as one clearly sees an

arrangement of decagonal rings of multipoles. In fact, as we note here for the first time, if

one looks more carefully one can actually identify a perfect superstructure in the form of

the decagonal Hexagon–Boat–Star (HBS) tiling [46]. Each decagonal ring is subdivided

into a single boat and a pair of hexagonal tiles, and between the decagons one can see the

star-shaped tiles. This aesthetic arrangement of the multipoles may lead one to the

incorrect conclusion that there exists long-range multipolar order on the underlying

Penrose tiling. Yet further analysis, as described below, shows that this arrangement stems

from the short-range head-to-tail attraction of neighbouring multipoles and exhibits no

long-range order. We would like to use this example as a warning for any future analysis of

either real or simulated arrangements of multipoles on quasiperiodic templates. One has to

be very careful in the analysis of order in such quasiperiodic structures and explicitly

caculate their Fourier spectra, as it is harder to visually comprehend them in real space

than their periodic counterparts.
Looking closely at the edges of the HBS tiles, we see that the HBS tiling is simply

outlined by pairs and triplets of multipoles that are separated by the short diagonals of the

thin (36�) rhombic tiles of the Penrose tiling. This separation, which is the shortest

interparticle separation on the Penrose tiling, sets the largest energy scale in the system.

Figure 2. (Colour online) Ground-state configurations of odd-parity multipolar rotors. (a) dipole
moments; (b) octupole moments. These configurations possess short-range order, owing to the
strong head-to-tail attraction of neighbouring multipoles, which is sufficient to highlight the
decagonal Hexagon–Boat–Star tiling.
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As such, these pair and triplet chains are the first to order as the temperature is lowered.
Because their positions are strictly inherited from the Penrose tiling, and their orientations

dictated by the head-to-tail attraction described earlier, their ordering on the short scale
suffices to outline the HBS tiling that one clearly observes. The existence of short-range
order in the orientation of the multipoles can be verified quantitatively through

a statistical analysis. The absolute orientation � of the multipoles, projected onto the
plane, is clearly peaked along the twenty directions (n�/10 for n¼ 1, . . . , 20), dictated
by the Penrose tiling, as shown in Figure 3(a). This is a direct outcome of the simple

head-to-tail attraction of nearest neighbours. The dipolar histogram is more strongly
peaked relative to the octupolar one owing to the fact that the octupolar ground state

possesses, on average, a larger out-of-plane component. The frequency distribution of the
angle � between nearest neighbouring moments, shown in Figure 3(b), is also peaked at
the characteristic angles inherited from the relative orientation of thin rhombic tiles on the

Penrose tiling, and is significantly less-pronounced for the octupolar moments due to their
substantial out-of-plane protrusion. We note that other than the fact that the octupolar
arrangement contains a larger average out-of-plane component, and a less-perfect

short-range order within the plane, the two cases are quite similar. The difference stems
from the fact that there is some amount of attraction of the arrow heads to the central,
oppositely-charged, regions of neighbouring octupoles (see Figure 1).

We note that in magnetic systems the strength of the multipolar interactions can be
tuned by the shape of the particles, or their size relative to the interparticle separations.

The octupolar contribution may become very large for RAB5s, with s being the lateral size
of a particle. The dipolar contributions are sizable for RAB55s to 10s. For very small
interparticle separations the decagonal structure might become disordered due to the

octupolar contributions, while for very large separations disorder may appear because of
the weakness of the dipolar coupling. This implies that there exists a critical separation
Rc

AB for which the short-range ordering of odd-parity multipoles on the Penrose tiling is

maximal. For typical particle shapes used in experiments [37] this critical distance is of
order of 1s to 2s.

The multipoles that lie within the HBS tiles are disordered, as can be verified by simple
inspection. Nevertheless, one could still imagine a situation in which the multipoles that lie

on the edges of the HBS tiles are long-range ordered while the internal multipoles are not.
Yet upon further inspection one finds that multipoles that lie on the edges of the HBS tiles
are disordered as well, as their direction changes randomly from one pair or triplet chain

to the next. This disorder is a direct consequence of the frustration that arises whenever the

Figure 3. Angular distributions. (a) Absolute in-plane orientation angle � of dipoles (left) and
octupoles (right). (b) Relative angle � between neighbouring dipoles (left) and octupoles (right).
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ends of three such chains meet together. This can be seen, for example, at the 5 vertices of

the central star tile in both configurations, shown in Figure 2. Our observation of the lack

of long-range order is confirmed quantitatively by performing a Fourier analysis of the

ground state configurations. Examples of such calculations for the octupolar case are
shown in Figure 4. By examining the different components of the multipolar fields, as well

as various functions of the components, we can say with certainty – despite all previous

reports – that such order is lacking, as the calculated Fourier spectra show no additional

Bragg peaks when compared to the Fourier spectrum of the tiling itself, shown in

Figure 4(a). Thus, the only long-range order that is observed is in the positions of the

multipoles, inherited from the Penrose tiling, and not from their relative orientation. To be
sure, we have also calculated the Fourier spectra of randomly oriented configurations of

multipole moments on the vertices of the Penrose tiling, shown for the octupolar case in

Figure 4(b), created using a random number generator. The outcome strongly resembles

those of the ground-state configurations.
A natural question to ask at this point is whether the lack of long-range order of our

arrow-like objects on the Penrose tiling is a geometrical property of the tiling. If we
disregard the physics, or the energetics, would it be possible to find a geometrical

arrangement of ordered arrows on the Penrose tiling? The positive answer to this question

was given by one of us many years ago [47], where two such configurations – in which the

arrows are located at the tile centres, rather than their vertices – were demonstrated and

analysed using the tools of colour [23] and magnetic [24,28] symmetry. If this is the case,
then one should wonder whether our lack of order is a physical consequence of the

particular type of interaction Hamiltonian (1) that we use. Would it be possible to arrange

arrow-like objects on the Penrose tiling with sufficiently weak frustration, or possibly no

frustration at all, and obtain an ordered ground state of some other Hamiltonian? It turns

out that the answer to this question is also yes, if we just realize that we can map our

system to one that was studied almost a decade ago by Cockayne and Widom [46]. In their
system – a model of a decagonal Al–Cu–Co quasicrystal – there were no arrows per se, but

one can identify abstract arrows in their model that are positioned on the edges of the

Penrose tiles, representing the chemical ordering of pairs of Cu and Co atoms. Thus, if one

imagines the yellow- and red-coloured circles of our dipole in Figure 1 (left) as being

copper and cobalt atoms, one can obtain the desired ground state using the model of

Cockayne and Widom. It remains to be seen whether an appropriate modification of our
interaction Hamiltonian, can lead to an ordered ground state of multipoles.

3.2. Even-parity multipole moments: quadrupoles and hexadecapoles

Patches taken from the ground-state configurations of even-parity multipoles are shown in
Figure 5. These configurations do not possess any long-range order, as confirmed by

a similar Fourier analysis. Short-range order is clearly present, but it is not as easy to analyse

and quantify as the case of odd-order multipoles where it shows up in the form of the HBS

superstructure. Nevertheless, one can see that the quadrupole moments tend to align

predominantly at 90� angles, as well as 72�, owing to the strong attraction of the edges of one

quadrupole to the centre of its neighbouring quadrupole. In this manner the quadrupoles
can form nicely-ordered local decagonal structures, like the one seen at the centre of

Figure 5(a). The local arrangements of the hexadecapoles are even more complicated to
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describe, with the edges of one attracting the opposite charges located slightly off the centres

of its neighbours. Nevertheless, one can see nice triplet chains of hexadecapoles, and an

overall nicely-ordered local pentagonal configuration like the one shown in Figure 5(b).

As mentioned above, this order does not extend beyond the short range.

(a) (b)

(c) (d)

Figure 4. Representative Fourier spectra of octupolar arrangements on the vertices of the rhombic
Penrose tiling, calculated using a numerical fast Fourier transform. (a) Fourier spectrum of the tiling
itself, obtained by positioning point particles on the vertices of the tiling. The diffuse background is
a numerical artifact. (b) Fourier spectrum of the function S2

x þ S2
y for randomly oriented moments.

Note that the contrast between the Bragg peaks and the background is weaker in this case because of
the disorder in the octupolar orientations. (c) Fourier spectrum of the function S2

x þ S2
y for the

ground state shown in Figure 2(b). There is no appearance of additional Bragg peaks that are not
already inherited from the tiling itself, indicating no octupolar long-range order. The contrast is
slightly reduced, indicating a certain degree of disorder. (d) Fourier spectrum of the function S2

z for
the ground state shown in Figure 2(b). No additional Bragg peaks appear here as well and the
contrast is even weaker owing to the smaller and disordered out-of-plane components of the
octupoles.
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4. Summary

In conclusion, we have studied the low-temperature stable multipolar ground states on
the Penrose tiling by theoretical means. We have shown here that long-range order is
absent in all cases we examined despite earlier claims about dipolar order. Nevertheless,
short-range order exists owing to the strong interaction between particles of closest
separation – those that are separated by the short diagonals of the thin Penrose tiles.
In the case of odd-parity multipoles, we demonstrate here that this short-range order,
combined with the underlying structure of the rhombic Penrose tiling, suffices to
outline a superstructure in the form of the decagonal HBS tiling. The multipoles lack
long-range order despite the appearance of the HBS superstructure, because as we
show above the orientations of the moments on the edges of the HBS tiles are
disordered due to three-body frustration.

Further investigations are clearly necessary in order to seek out other possibilities of
long-range multipolar order on the Penrose tiling. These should relax the m¼ 0 restriction
imposed here, allow for charge flipping of even multipoles, consider alternative forms of
interparticle interaction, as well as explore other possibilities for the positions of particles
on the quasiperiodic surface, such as those corresponding to the so-called ‘dark-stars’ on
the 5-fold surfaces of real icosahedral quasicrystals [16–18,48].
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Figure 5. (Colour online) Ground-state configurations of even-parity multipolar rotors. (a)
quadrupole moments; (b) hexadecapole moments. These configurations possess some degree of
short-range order which is harder to establish than in the case of odd-parity multipoles of Figure 2.
One clearly sees that the red-coloured edges are attracted to the central, or slightly off-centred,
yellow regions of neighbouring multipoles. This causes the quadrupoles to align at exactly 90�,
taking advantage of out-of-plane orientations. In the case of hexadecapoles the local arrangements
are less trivial, although they clearly exhibit local symmetry.
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Note

1. Some related results exist for studies of quantum magnetic models on quasicrystals [29–34]. See
also the discussion of magnetism in quasicrystals in this issue [35].
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