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Soft quasicrystals — Why are they stable?
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In the last two years we have witnessed the exciting experimental discovery of soft
matter with nontrivial quasiperiodic long-range order — a new form of matter
termed a soft quasicrystal. Two groups have independently discovered such order
in soft matter: Zeng et al. in a system of dendrimer liquid crystals; and Takano
et al. in a system of ABC star-shaped polymers. These newly discovered soft
quasicrystals not only provide exciting platforms for the fundamental study of
both quasicrystals and of soft matter, but also hold the promise for new
applications based on self-assembled nanomaterials with unique physical
properties that take advantage of the quasiperiodicity, such as complete and
isotropic photonic band-gap materials. Here we provide a concise review of the
emerging field of soft quasicrystals, suggesting that the existence of two natural
length-scales, along with three-body interactions, may constitute the underlying
source of their stability.

1. Background

The discovery of quasicrystals by Shechtman more than two decades ago [1] signalled
the beginning of a remarkable scientific revolution [2], in which some of the
most basic notions of condensed matter physics have undergone a thorough
reexamination. Today, the science of quasicrystals, with its growing number of text-
booksg, is in its adolescence. Old paradigms are being carefully transformed into new
ones [11]; definitions are being changed [12]; space-group theory has been generalized
to quasicrystals using two alternative approaches [13—16], and even extended to treat
novel long-range order possessing colour [17] or magnetic symmetry [18, 19]; and
many fundamental problems — including Bak’s famous question: “Where are the
atoms?’ [20] — are gradually finding their solutions. Nevertheless, other questions
that are equally important have remained unanswered to this day. Some of these —
such as the stabilization of quasicrystals, the role of clusters, and the importance
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of the phason degree of freedom — were hotly debated at a recent International
Conference on Quasicrystals [21].

We know today that quasicrystals are more common than one had originally
expected. Scores of binary and ternary metallic alloys are known to form quasicrys-
talline phases [22] — mostly with icosahedral or decagonal point-group symmetry —
and more are being discovered all the time. Nevertheless, it is only in the last couple
of years that quasicrystals have been discovered (independently) in two different
soft-matter systems: dendrimers [23-25] and possibly star block copolymers [26-28].
These newly discovered soft quasicrystals not only provide exciting alternative
experimental platforms for the basic study of quasiperiodic long-range order, but
also hold the promise for new applications based on self-assembled nanomater-
ials [29-31], with unique electronic or photonic properties that take advantage
of the quasiperiodicity. One example is the isotropic photonic band gaps that have
been demonstrated in artificially-constructed octagonal [32] and dodecagonal [33]
quasicrystals.

The first step in a theoretical study of soft quasicrystals would be to provide
an explanation for their thermodynamic stability. To this date, soft quasicrystals
have been observed only with dodecagonal point-group symmetry. Their source of
stability is therefore likely to be different from their solid-state siblings, yet a good
understanding of the stability of one quasiperiodic system may help to understand
the stability of the other. The purpose of this article is to propose initial suggestions
as to the source of stability of soft quasicrystals, while providing a concise
background on the subject.

2. Quasicrystals — terminology and general framework

Let us consider a scalar function p(r) that describes the electronic density or the
ionic potential of a material. The Fourier transform of a quasiperiodic density o(r)
(we shall assume here that the transform always exists) has the form

pr) = o)™, O

kel

where the (reciprocal) lattice L is a finitely generated Z-module, i.e. it can be
expressed as the set of all integral linear combinations of a finite number D of
d-dimensional wave vectors, b“),...,b(D ). In the special case where D, called the
rank of the crystal, is equal to the physical dimension d, the crystal is periodic.
We refer to all quasiperiodic crystals that are not periodic as ‘quasicrystals’t.

It is useful to introduce a physical setting based on the notion of symmetry
breaking [35-37]. Let us assume that the quasiperiodically-ordered state, described
by p(r), is a symmetry-broken stable ground state of some generic free energy F,
invariant under all translations and rotations in R?. This is the same as saying that

tSome older texts require crystals to possess so-called ‘forbidden symmetries’ in order to be
regarded as quasicrystals. It is now understood that such a requirement is inappropriate.
See Ref. [12] for details and Ref. [34] for examples of square and cubic quasicrystals.
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the physical interactions giving rise to the quasicrystal are themselves translationally
and rotationally invariant, and that the ground state breaks this symmetry. The free
energy F is a functional of p(r), which in Fourier space takes the general form

Floh =) > Ak.... ko) - p(k,). @)

n=2ky..k,

Based on the idea of such a generic free energy, Rokhsar, Wright, and Mermin [13]
introduced the notion of indistinguishability, namely that two functions p(r) and o'(r)
are indistinguishable if a generic free energy cannot distinguish between them
and assigns them both the same value. It then follows that p(r) and p'(r) are
indistinguishable if and only if

VkeL: p(k) =e™¥pk), 3)

where x(k), called a gauge function, has the property that x(k; + k,) = x(k;) + x(kz)
whenever k; and k» are in L, where ‘=" denotes equality to within an additive integer.

Gauge functions are useful in describing the relations between the different
symmetry-broken ground states of F. Dréiger and Mermin [38] showed that gauge
functions form a vector space V* of all real-valued linear functions on the lattice L,
and because L has rank D, V* is a D-dimensional vector space over the real numbers.
The space V* contains, as a subspace, all the integral-valued linear functions on L.
This subset, which has the algebraic structure of a rank-D Z-module (just like
L itself) is denoted by L*. Gauge functions in L* leave the ground-state density
invariant. Gauge functions that belong to the quotient space V*/L* take the ground
state described by p into a different, yet indistinguishable, ground state described
by some other density function p’. Thus, one can parameterize all the related
symmetry-broken ground states of F on a simple D-torus — the order parameter
space V*/L".

Different, yet indistinguishable, ground states may also be related by rotations
g € O(d). In this case p' in (3) is simply a rotated version of p, and for each such
rotation g there is a special gauge function ¢,, called a phase function, satisfying

VkeL: p(gk) = ™M pk). 4)

The set of all rotations satisfying (4) forms the point group of the crystal, and
along with the corresponding phase functions completely characterizes its space
group [13-15, 17-19].

3. Ordered soft matter

A wide variety of materials in physical-chemical and biological systems lie in the
intermediate region between simple liquids and crystalline solids. Examples include
liquid crystals, suspensions, emulsions, polymer solutions or melts, surfactant
solutions, and biomaterials [39]. These materials, termed complex fluids, structured
fluids, or soft condensed matter, are mostly viscoelastic liquids, which contain
a certain degree of inner structure. Unlike simple fluids or solids, where either
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entropy (in the former) or interactions (in the latter) dominate, the behaviour of soft
matter is determined by an intricate interplay between interactions and thermal
fluctuations. Consequently, soft-matter systems exhibit remarkably rich structures
and dynamics, which have been the subject of extensive experimental and theoretical
research during the past several decades [39-43].

Soft materials may possess long-range or quasi-long-range order [44, 45]. As was
first demonstrated by Onsager [46], such liquid-crystalline phases can be obtained
in systems as simple as molecular liquids whose molecules have anisotropic shapes.
In more complex, self-assembling systems, liquid-crystalline phases are usually made
of intermediate structures, which form as a result of incompatible molecular groups
linked together by chemical bonds. For example, amphiphilic molecules (surfactants)
are composed of hydrophilic and hydrophobic groups, leading, in aqueous solution,
to the formation of mesoscopic structures such as micelles or fluid membranes
[40—42]. These structures, at sufficiently high concentration, organize into various
ordered phases [42, 43]. Another important example is block copolymers — macro-
molecules composed of two or more chemically bonded, chain-like blocks [47-51].
The incompatibility of the different blocks gives rise to a variety of ordered structures
in melts and in solutions. The main advantage of block copolymers as self-
assembling systems is the relative ease at which the sizes and properties of the
different blocks (and, thus, the resulting mesoscopic structures) can be controlled.
Block copolymers, like homopolymers, can be linear or branched. Two branched
architectures which can be well controlled, and thus have been drawing considerable
attention recently, are star polymers [52—63], where the chains are joined in one
point, and dendrimers [60, 64—67], having a tree-like structure.

Phenomenological models based on generic free energies similar to (2) have been
very successful in describing phase diagrams and transitions in soft matter [43—45,
50, 51, 68, 69]. In such models one identifies an order parameter, which may be
a scalar function — as in equation (2) — or a vector function, and formulates, based
on symmetry, a free-energy functional as an expansion in the order parameter and its
gradients. Such an expansion is generally expected to become a good approximation
close to a continuous phase transition, where variations in the order parameter
occur over large length scales. The reason for the success of this approach for soft
systems, in particular, lies in their intermediate, mesoscopic building blocks, which
are significantly larger than the atomic scale. For example, spatial variations of the
order-parameter in block copolymer phases must occur over lengths larger than
a polymer block, which may be many nanometers. As a result, composition
variations and interfaces are smoother in soft materials than in crystalline solids,
rendering a long-wavelength gradient expansion a much better approximation.
The situation becomes even better in the case of flexible star polymers and
dendrimers — which are of particular relevance here — as the effective pair potentials
in these systems have an ‘ultra-soft’ short-range repulsion [54-57, 60, 62, 63, 67].

4. Recent discovery of soft-matter quasicrystals

Our current discussion is motivated by the recent experimental discovery
that soft matter can self-assemble into structures with quasiperiodic
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long-range ordert. In one case, dendrimers that assume a conical shape assemble
into micelles, which then pack to form a perfect dodecagonal (12-fold) quasicrys-
tal [23-25]. In another case, ABC star-shaped block terpolymers — in which the
length ratios of the three arms, B/4 and C/A4, can be chemically-controlled —
assemble into a host of two-dimensional columnar structures. One of these,
composed of square and triangle motifs (tiles), is suspected as being a dodecagonal
quasicrystal, or at least a periodic approximant of such a quasicrystal, which under
minor parameter tweaking may indeed form a perfect quasicrystal [26-28]. This
phase has also been reproduced numerically using lattice Monte Carlo simulations
by Dotera and Gemma [76]. A similar square-triangle tiling has also been observed in
a liquid crystal composed of T-shaped molecules [77], which forms yet a third soft
system which may potentially self-assemble into a dodecagonal quasicrystal.
The characteristic length of the basic building blocks ranges in these systems from
~10 to ~100 nanometers — 2 to 3 orders of magnitude greater than the atomic length
scales found in hard quasicrystals. This property of soft quasicrystals is what will
potentially make them useful as functional self-assembled nanomaterials, and at the
same time as a new experimental platform for detailed — real-space and real-time —
study of quasiperiodic long-range order.

Very little is known at this point about these soft quasicrystals. For example,
even the space groups of the observed phases have not been determined, although
from the diffraction patterns of the dendrimer liquid crystals given by Zeng
et al. [23, 24] it seems that they have a 12-fold screw axis, and therefore, most likely,
the nonsymmorphic space group P12¢/mcm [14]. More generally, the same ques-
tions [21] concerning the mechanism of stabilization, the role of clusters in formation
and dynamics, and the importance of phasons, apply to soft quasicrystals as they do
to hard quasicrystals. Yet the answers may be more tractable (albeit possibly differ-
ent as the systems are quite different). Thus, the study of soft quasicrystals will
clearly have implications well beyond the limits of the specific soft systems that
have been discovered so far, and is likely to promote the fundamental understanding
of quasicrystals in general.

5. Why are soft quasicrystals stable? — insight from the Lifshitz—Petrich equation

Motivated by experiments with parametrically-excited surface waves (Faraday
waves), exhibiting dodecagonal quasiperiodic order [78], Lifshitz and Petrich [79]
developed a model for describing the pattern-forming dynamics of a two-
dimensional field in which two length scales undergo a simultaneous instability.
This model is an extension of the Swift-Hohenberg equation [80], which is used
for describing a variety of different pattern-forming systems [81]. Its dynamics

tFor the sake of historical accuracy, it should be noted that at some point the blue phase I1I of
liquid crystals, also known as the ‘blue fog’, was thought to have icosahedral quasicrystalline
order [70, 71], but this eventually turned out not to be the case [72, 73]. Also, incommensurate
helical twist-grain-boundary phases are known to exist in smectic liquid crystals [74, 75], but
the quasiperiodic order in this case is essentially only along the one-dimensional screw axis.
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are relaxational, d,p = —8F /8p, driving a two-dimensional field p(x, y, ) towards the
minimum of an ‘effective free energy’ (2),

1 1 1 1
Fueto) = [axdy | Jer + JT 4 0T 4 Ao o' 43} 9
yielding a dynamical equation of the form
dp=ep—(V+ DV +¢)Vp+ap —p. (6)

It essentially mimics the dynamics of a generic two-dimensional material in search
of its ground state, and therefore offers us important insight and a good starting
point for our current investigation of soft quasicrystals.

The Lifshitz—Petrich free energy Fip is indeed generic, imposing only two
requirements on a material, described by a two-dimensional density p(x,y,?):
(a) The existence of two characteristic length scales, whose ratio is given by the
parameter ¢; and (b) The existence of effective three-body interactions, whose impor-
tance is given by the relative strength of the parameter «. In [79] we were able to show
analytically (using standard methods [44, section 4.7] and [82]), and demonstrate
numerically, that if ¢ is chosen around 2 cos(n/12) = v2 4 +/3 2~ 1.932 one can obtain
a ground state with quasiperiodic long-range order and dodecagonal symmetry, yet
no choice of ¢ yields globally-stable ground states with octagonal or decagonal
symmetry. The latter two have insufficient triplets of wave vectors in the Fourier
Lattice L (equation (1)) that add up to zero to overcome the cost of additional
density modes, as compared with the hexagonal state. Thus, in two dimensions,
the requirements of two length scales and three-body interactions are sufficient to
stabilize dodecagonal quasicrystals, but insufficient to stabilize octagonal or
decagonal quasicrystals. This raises the possibility that the fact that the soft quasi-
crystals discovered to date are all dodecagonal, may be accounted for using a free
energy similar to Fp. Note that for hard quasicrystals the situation is different —
decagonal quasicrystals are thermodynamically stable whereas octagonal and
dodecagonal quasicrystals are believed to be metastable — indicating that the stabil-
ization mechanism for soft quasicrystals might be quite different from that of hard
quasicrystals.

6. Future directions

6.1. Free-energy functionals and stability analysis

At the outset, the experimental soft systems in which quasicrystalline order has been
observed seem to satisfy the basic assumptions of the Lifshitz—Petrich theory
described in section 5. The asymmetric and heterogeneous structure of the star
polymers and dendrimers will most likely require more than one length scale for
an appropriate coarse-grained descriptiont. Their ultra-soft repulsion and resulting

tIndeed, coarse-grained free energies previously used for amphiphilic self-assembly [43]
involve more than one characteristic length scale due to the asymmetry of the molecules
and the resulting tendency to form curved interfaces.
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strong inter-penetration [54-57, 60, 62, 63, 67] imply that three-body interactions
should be significant [59]. Thus, we expect that studies that we are currently under-
taking will yield functionals similar in nature to Fyp of equation (5). Significant
differences may emerge, nonetheless, as the systems considered here are three-
dimensional and differ in their microscopic structure. For instance, two order
parameters rather than one might be required [28], which could potentially allow
point-group symmetries other than dodecagonal to be observed.

A three-dimensional version of an LP-like free energy may remind the reader of
the early attempts by Kalugin, Kitaev, and Levitov [85, KKL], who extended the
model of Alexander and McTague [86], to establish that the icosahedral quasicrystal
has lower free energy than the competing bcc phase. Narasimhan and Ho [87, NH]
managed to show in their model that there are regions in parameter space in which
a dodecagonal quasicrystal is favoured and other regions in which a decagonal
quasicrystal is favoured. These attempts were eventually discontinued after it was
shown by Gronlund and Mermin [82] that the addition of a quartic term to the cubic
free energy of KKL reverses the outcome of the calculation, establishing the
bcc phase as the favoured one. For hard crystals it is unclear where to truncate
the expansion of the free energy and whether such a truncation is fully justified.
As has been mentioned in section 3, for the soft systems considered here the trunca-
tion of the expansion should be more valid. We therefore intend to reexamine some
of the old conclusions when considering the stability of soft quasicrystals based on
generic free energy considerations. Roan and Shakhnovich [88] performed such a
study for the case of icosahedral order in diblock copolymers and concluded that
such order is only metastable. Nevertheless, we are encouraged by the old results of
NH who established the stability of dodecagonal, as well as decagonal, quasicrystals
within the same model.

Another key insight can be drawn from a recent theoretical observation, accord-
ing to which dispersions of soft, fuzzy, particles are essentially different in their
thermodynamics from those of hard particles [89, 90]. The overlap of the soft
‘coronas’ surrounding the particles leads to a driving force acting to minimize
their interfacial area, in analogy with foams. Consequently, unusual liquid-
crystalline structures can be stabilized in systems of soft spheres [89-92]. Both star
polymers and flexible dendrimers fall into this fuzzy category [93, 94], yet they may
be highly aspherical. Likos et al. [67] have also shown that stars and flexible
dendrimers have the same kind of soft pair potentials. We thus expect such consid-
erations of interfacial-area minimization to become highly relevant in the upcoming
study of soft quasicrystals.

6.2. Dislocation and phason dynamics

Valuable knowledge about the nature of quasiperiodic order can be obtained by
studying its topological defects [35, 37, 95], and its low-energy collective excitations —
in particular those associated with the phason degrees of freedom. Much like

TModels with two order parameters were suggested also for hard quasicrystals [83] and
pattern-forming systems [84], yielding additional ground-state symmetries.
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phonons, phasons are low-energy excitations of the quasicrystal, only that instead of
slightly shifting the atoms away from their equilibrium positions, the relative
positions of atoms are changed. Their existence stems directly from the fact that
the dimension D of the order parameter space V*/L* is greater than the physical
dimension d. Thus, in addition to d independent (acoustic) phonon modes there are
D — d independent phason modes. The exact role of phasons in the stabilization and
the dynamics of quasicrystals is not fully-understood [21], yet their presence is
unequivocally-detected in numerous types of experiments. Edagawa et al. [96, 97]
have recently managed to observe the real-time thermal fluctuations of single
phason-flips in a solid-state quasicrystal — a remarkable achievement that requires
a very sophisticated experiment. Soft quasicrystals, with their larger length scales,
may be much better suited for real-time investigation of phason dynamics.

We have recently begun investigating the motion of dislocations and the
dynamics of phasons in the dodecagonal ground state of the LP equation [98, 99].
We are studying, both analytically and numerically, such questions as the climb
velocity of dislocations under strain, the pinning of dislocations by the underlying
quasiperiodic structure under conditions of weak diffusion, and the relaxation of
phason strain as two dislocations of opposite topological sign merge and annihilate
each other. We have also used similar theoretical procedures in the analysis of
defect dynamics in a real experimental nonlinear photonic quasicrystal [100].
Similar investigations of more realistic models of soft quasicrystals, or on the soft
systems themselves, should provide valuable insight into their physical nature.
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