
VOLUME 79, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 18 AUGUST 1997

5

ern-
sed
ies.
the
Theoretical Model for Faraday Waves with Multiple-Frequency Forcing
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A simple generalization of the Swift-Hohenberg equation is proposed as a model for the patt
forming dynamics of a two-dimensional field with two unstable length scales. The equation is u
to study the dynamics of surface waves in a fluid driven by a linear combination of two frequenc
The model exhibits steady-state solutions with 2-, 4-, 6-, and 12-fold symmetric patterns, similar to
periodic and quasiperiodic patterns observed in recent experiments. [S0031-9007(97)03894-5]

PACS numbers: 47.54.+r, 47.20.Ky, 47.35.+ i, 61.44.Br
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Parametric excitations of surface waves have been e
tensively studied since their first discovery by Faraday [
over a century and a half ago. In the basic experime
tal setup an open container of fluid is subjected to ve
tical sinusoidal oscillations, which periodically modulat
the effective gravity. When the driving amplitudea ex-
ceeds a critical thresholdac a standing-wave instability
occurs with temporal frequencyv one-half that of the
driving frequency. The characteristic spatial waveleng
of the standing-wave pattern is selected through the d
persion relationvskd of the fluid. One typically observes
patterns of stripes or squares in such experiments. It
only in recent years that a variety of additional patterns—
some with quasiperiodic rather than periodic long rang
order—have been observed [2–6]. We focus here on
particular set of experiments, performed by Edwards a
Fauve [3], in which a fluid was driven by a linear combi
nation of two frequencies, forming periodic patterns with
2-, 4-, and 6-fold symmetry, and quasiperiodic pattern
with 12-fold symmetry.

Previous theoretical work [6–11] has focused mainly o
a description through amplitude equations with an angl
dependent interactionbsuijd between pairs of modes.
Such an interaction, which is either postulated or derive
from the underlying microscopic dynamics, can be ch
sen to stabilizeN-fold symmetric patterns for arbitraryN .
Müller [10] has also used a set of two coupled partial di
ferential equations, where the pattern of a primary field
stabilized by coupling to a secondary field which provide
an effective space-dependent forcing. Newell and Pome
[11] have coupled multiple fields in a similar way. In both
cases the coupling between the different fields is achiev
through resonant triad interactions, similar to the intera
tions we shall introduce below.

We propose a simple rotationally invariant model equ
tion, governing the dynamics of a real fieldusx, y, td,
which describes the amplitude of the standing-wave pa
tern. Our approach is different in that it searches for th
minimal requirements for reproducing the steady state
which are observed in the experiments of Edwards a
Fauve [3]. We incorporate into our model only the tw
most essential aspects of the system. (i) The dynam
is damped at frequencies away from the two forcing fre
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quencies, and therefore the wavelengths involved in
selected pattern lie in narrow bands about two critic
wavelengths. (ii) The driving used in the experiments
such that the up-down symmetry, takingu to 2u, is bro-
ken allowing interactions among triplets of standing pla
waves to exist. These triad interactions are theonly sta-
bilizing mechanism for nontrivial patterns in our rotation
ally invariant model equation.

We capture the essential dynamics with a single fie
and without a priori specifying any angle-dependen
interactions among critical modes. This allows for
meaningful comparison of the stability of differentN-fold
symmetric states. We find patterns of 2-, 4-, 6-, and 1
fold symmetry that are globally stable, but none wit
8- or 10-fold symmetry, which is in agreement with th
experimental observations of Edwards and Fauve [3].

The supercritical instability of a homogeneous state
a striped state is often modeled by the Swift-Hohenbe
equation [12]

≠tu  ´u 2 s=2 1 1d2u 2 u3, (1)

which is variational,

≠tu  2dF ydu , (2)

driving the field usx, y, td towards a minimum of the
Lyapunov functional (effective “free energy”)—

F 
Z

dx dyh2 1
2 ´u2 1

1
2 fs=2 1 1dug2 1

1
4 u4j . (3)

The first term in the Lyapunov functional (3) favors th
growth of the instability whereas the quartic term is r
sponsible for its saturation by providing a lower bound f
F . The growth raté of the instability is proportional to
the reduced driving amplitudesa 2 acdyac. The positive-
definite gradient term is small only near the critical wav
numberkc  1, and thus inhibits the growth of any insta
bilities with wave numbers away from this value.

If the parametric forcing is such that theu ! 2u sym-
metry is broken, then the Swift-Hohenberg free energy
modified by the addition of a cubic term,2au3y3. Such
a term allows triad interactions of standing plane waves
lower the value ofF and form hexagonal patterns. Th
analysis of the Swift-Hohenberg equation in the presen
© 1997 The American Physical Society 1261
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of this term is summarized, for example, in the review b
Cross and Hohenberg [13]. With single-frequency forcin
one cannot break theu ! 2u symmetry, but with certain
combinations of two frequencies the up-down symmet
is broken and triad interactions become important.

We model the two-frequency parametric excitation o
a fluid by replacing the wavelength-selecting term in th
Swift-Hohenberg equation (1) by a similar term which
damps out all modes except those near one oftwo critical
wavelengths:

≠tu  ´u 2 cs=2 1 1d2s=2 1 q2d2u 1 au2 2 u3.

(4)

The parameterc can be scaled out, but we include it here
because it is used in the numerical simulations, show
later. Other model equations with similar wavelength
selection properties are possible. We choose this equat
because it is the simplest one that incorporates the phys
we are interested in—it allows two unstable length scal
and contains triad interactions among the different mode
Since (4) can be applied to any pattern-forming syste
satisfying these requirements, it is not our intention t
provide a detailed derivation of it from any specific
underlying microscopic dynamics.

Let us turn now to an analytic investigation of the
model equation (4). When both́ anda are sufficiently
small (or c sufficiently large) the wavelength selection
by the gradient term is nearly perfect and the Lyapuno
functional may be written in Fourier space as

F  2
1
2

´
X

jkj1,q

uku2k

2
1
3

a
X

jki j1,q

uk1 uk2 u2k12k2

1
1
4

X
jki j1,q

uk1uk2 uk3 u2k12k22k3 , (5)

where the summations are restricted to wave vecto
whose magnitude is either 1 orq, lying on two rings
in Fourier space. The set of Fourier coefficientsuk,
which give rise to the lowest value ofF for a given
choice of the parameterś and a, determines the most
favorable steady-state solution of the model equation (4
We are interested only in finding the global minimum o
F , thus establishing that our model indeed predicts th
existence of the patterns observed in the two-frequen
parametric forcing experiments. Of course, this approa
may overlook metastable states or local minima of the fre
energy. Note that with the omission of the gradient term
one may perform a rescaling of the fieldu ! au. The
rescaled free energya24F is then controlled by a single
control parameter

´p  ´ya2. (6)

To study the formation of dodecagonal patterns w
chooseq  2 cosspy12d, which is the magnitude of the
vector sum of two unit vectors separated by an angle
1262
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30±. We minimize the Lyapunov functional (5) with re-
spect to the Fourier coefficientsuk describing four dif-
ferent pattern candidates: (a) a striped pattern with spa
groupP2mm, whose Fourier spectrum contains two oppo
site wave vectors of equal length; (b) a pattern of perfec
hexagons with space groupP6mm, whose Fourier spec-
trum contains a single 6-fold star of wave vectors; (c)
pattern of compressed hexagons with space groupP2mm,
whose Fourier spectrum contains four vectors on one rin
and two vectors on the other ring; and (d) a dodecago
nal pattern with space groupP12mm, whose Fourier spec-
trum contains two 12-fold stars of wave vectors, one o
each ring.

We use standard methods [14] to calculateF for each
of the cases. Because all the candidate patterns have sy
morphic space groups [15] which are also centrosymme
ric we may always take all the Fourier coefficients on a
given ring to be equal and their phases may all be cho
sen such that they are either 0 orp. The minimization of
the Lyapunov functional is therefore always with respec
to no more than two real variables. We find the values o
the Lyapunov functional for the different patterns to be

F2  2
1
6

´p2, (7a)

F6  F422  2
4

153 s1 1
p

1 1 15´pd

2
2

152 s3 1 2
p

1 1 15´pd´p 2
1

10
´p2,

(7b)

F12  2

µ
10
67

∂3

s1 1

q
1 1 67´py75d

2
20
672

µ
1 1

2
3

q
1 1 67´py75

∂
´p 2

9
67

´p2.

(7c)

FIG. 1. Phase diagram of the lowest-energy steady-state s
lutions of the model equation (4) forq  2 cosspy12d. The
phase boundaries are lines of constant´p  ´ya2.



VOLUME 79, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 18 AUGUST 1997

a

r-

e

-

-

r
d

For ´p . 1.913 13 the striped pattern has the lowest fre
energy. For1.913 13 . ´p . 0.087 76 the 6-fold pattern
of perfect hexagons and the 2-fold pattern of compress
hexagons (denoted by 4-2), which are degenerate, are m
favorable. Foŕ p , 0.087 76 the dodecagonal pattern is
the most stable. These analytical results are depicted
the phase diagram of Fig. 1. Note that the phase diagr
depicts only the boundaries between global minima;
certain regions of the phase diagram additional states m
be locally stable.

The model equation (4), supplemented with period
boundary conditions, was solved numerically on a squa
domain using a pseudospectral method. The unit c
was typically chosen so that the simulation region he
fferent

s (a)–
s

FIG. 2. Numerical solutions of the model equation (4) showing real-space patterns along with their Fourier spectra for di
values of the control parameteŕp  ´ya2. The real-space images ofusx, y, t ! `d show one-quarter of the simulation cell
with darker shades corresponding to larger values of the field. All figures are drawn to the same scale. In case
(d) q  2 cosspy12d  s2 1

p
3 d1y2: (a) a 2-fold pattern of stripes foŕp  2, (b) a 2-fold pattern of compressed hexagon

for ´p  0.1, (c) a 6-fold pattern of perfect hexagons for´p  1.8, (d) a 12-fold pattern foŕ p  0.015. In (e) q  2, ´p  0.04,
yielding a 2-fold superstructure of stripes. In (f)q 

p
2, ´p  0.04, giving rise to a 4-fold pattern of squares.
e
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about 30 wavelengths. The simulation was performed on
256 3 256 grid, with Adams-Bashforth second-order time
stepping. The value ofc was taken to be between 10 and
100. Figures 2(a)–2(d) show the real-space and Fourie
space results of the simulations withq  2 cosspy12d for
varying values of the control parameter´p. The results are
consistent with the Lyapunov-functional analysis and th
phase diagram of Fig. 1.

Eight-fold and 10-fold symmetric patterns are not ob
served in our model for any choice ofq. An analytic
calculation of the Lyapunov functional (5) for these pat
terns shows that it is greater than the free energyF6 (7b)
of the 6-fold state, for any value of the control paramete
´p. This is in accord with the experiments of Edwards an
1263
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Fauve [3], where such patterns are not observed. T
does not rule out the possibility that octagonal an
decagonal patterns are locally stable but only that with
the limits of our model they are not globally stable. Tw
additional patterns that are observed in our model are
superposition of stripes of periodicities2p andp [shown
in Fig. 2(e)] and a square pattern forq 

p
2 [shown

in Fig. 2(f)]. The latter has been reported by Edward
and Fauve. If one examines the Lyapunov functional (
in its full generality by allowing the value ofq and all
the amplitudes and phases to vary independently, ot
patterns might be discovered. We have examined o
the symmetric patterns discussed here.

The simplicity of our model shows that for continuou
media very little is required to stabilize structures wit
quasiperiodic long range order: two length scales and tr
interactions. The reason that 12-fold patterns are sta
and 8- and 10-fold patterns are not is purely geometric
In view of the Lyapunov functional (5), the crucial issu
is the competition between the number of modes, whi
tends to increase the value ofF , and the number of
triad interactions, which tends to decrease the value ofF .
The dodecagonal pattern of Fig. 2(d) contains 24 nonze
Fourier modes and32 distinct triangles. The octagona
and decagonal patterns do not contain a sufficient num
of triangles to compete with the 6-fold pattern of Fig. 2(c
Our model confirms the conclusion of Edwards and Fau
that “12-fold patterns are more common than previous
supposed.”

Our simplistic model is clearly not adequate for study
ing the structural stability quasicrystals in the solid stat
yet it may offer a very simple system in which to stud
general questions regarding quasiperiodic order. The
may include such questions as the formation and prop
gation of defects and phase boundaries as well as the
namics of phason modes [16]. Moreover, we note that (
may apply to situations other than Faraday waves. A
physical system that can be tuned such that two wav
lengths undergo a simultaneous supercritical bifurcati
can be described by an equation similar to (4).

An equation similar to (4) could be used to stud
multiple-frequency forcing of Faraday waves with mor
than just two frequencies, as suggested by the title of t
Letter. We may speculate that with three or four forc
1264
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ing frequencies it might be possible to stabilize quasipe
odic patterns with even higher orders of symmetry, su
as 18 or 24. We leave the stability of higher-orde
symmetric patterns as an open theoretical and experim
tal question.
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