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Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators
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We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the
kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and
nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these
systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of
the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable
part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by
G. Kovačič and S. Wiggins [Physica D 57, 185 (1992)], we are able to obtain explicit parameter values for which
these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form
so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations
of Šilnikov orbits are confirmed numerically.
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I. INTRODUCTION

Microelectromechanical systems (MEMS) and nanoelec-
tromechanical systems (NEMS) have been attracting much
attention in recent years [1–3]. MEMS and NEMS resonators
are typically characterized by very high frequencies, extremely
small masses, and weak damping. As such, they are naturally
being developed for a variety of applications such as sensing
with unprecedented accuracy [4–6], and also for studying
fundamental physics at small scales—exploring mesoscopic
phenomena [7,8] and even approaching quantum behavior
[9–11]. MEMS and NEMS resonators often exhibit nonlinear
behavior in their dynamics [12,13]. This includes nonlinear
resonant response showing frequency pulling, multistability,
and hysteresis [3,14–17], as well as the formation of ex-
tended [18] and localized [19] collective states in arrays of
coupled nonlinear resonators, and the appearance of chaotic
dynamics [20–22]. Nonlinearities are often a nuisance in
actual applications, and schemes are being developed to avoid
them [23], but one can also benefit from the existence of
nonlinearity, for example in mass-sensing applications [24,25],
in suppressing noise-induced phase diffusion [26], in achieving
self-synchronization of large arrays [27], and even in the
observation of quantum behavior [28].

MEMS and NEMS offer a wonderful experimental testing
ground for theories of chaotic dynamics. Numerical inves-
tigations of a number of models of MEMS and NEMS
resonators have demonstrated period-doubling transitions to
chaos [22,29–32], yet there are very few analytical results.
One of the simplest models of chaotic motion is that of the
Duffing resonator with a double-well potential, described by
the Hamiltonian,

H (x,p) = 1

2m
p2 + 1

2
kx2 + 1

4
αx4, (1)

*Corresponding author: ronlif@tau.ac.il

with k < 0 and α > 0. This simple mechanical system has
a homoclinic orbit for H = 0, connecting a saddle at the
origin of phase space to itself. Upon the addition of damping
and an external drive this system develops a particular kind
of chaotic motion called horseshoe chaos [33], which can
be studied analytically using the Melnikov approach [34].
The stable manifold leading into the saddle and the unstable
manifold leading away from the saddle, which coincide
in the unperturbed Hamiltonian (1), are deformed when
damping and a drive are added. Yet, conditions can be found
analytically using the Melnikov function, which measures the
distance between the two manifolds, under which they intersect
transversely leading to the possibility of observing chaotic
dynamics. What one observes in practice is a random-like
switching of the resonator between the two wells. Thus, having
an analytical criterion for asserting the existence of chaotic
motion allows one to distinguish it from random stochastic
motion that might arise from noise. Such a Hamiltonian as in
Eq. (1) was implemented in a MEMS device using an external
electrostatic potential by DeMartini et al. [21], and studied
using the Melnikov approach.

Here we wish to study the possibility of having horseshoe
chaos in typical NEMS resonators, which are described by
a potential as in Eq. (1), but of an elastic origin with k and
α both positive. Individual resonators of this type do not
exhibit homoclinic orbits for any value of H , and therefore
are not expected to display horseshoe chaos under a simple
periodic drive. Nevertheless, a pair of coupled resonators of
this kind—like the ones studied experimentally by Karabalin
et al. [22]—are shown below to possess homoclinic orbits
in their collective dynamics, and are therefore amenable to
analysis based on a high-dimensional version of the Melnikov
approach [35]. We employ here a particular method, developed
by Kovačič and Wiggins [36], which is a combination of the
high-dimensional Melnikov approach and geometric singular
perturbation theory. This method enables us to find conditions,
in terms of the actual physical parameters of the resonators,
for the existence of an orbit in four-dimensional phase space,
which is homoclinic to a fixed point of a saddle-focus type.
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Such an orbit, called a Šilnikov orbit [33,37], provides a
mechanism for producing chaotic dynamics. 1

We study here the case of parametric driving, a technique
that has been realized in MEMS and NEMS resonators
[14,38–40], but parametric excitation is not an essential
requirement of our analysis. On the other hand, having weak
damping, or a large quality factor, characteristic of typical
MEMS and NEMS resonators, is essential for the analysis
that follows. First of all, as was demonstrated in a number of
earlier examples [41,42], it leads to a clear separation of time
scales—a fast scale defined by the high oscillation frequencies
of the resonators, and a slow scale defined by the damping
rate. This allows us to perform a multiple-scales analysis in
Sec. II and obtain amplitude equations to describe the slow
dynamics of the system of coupled resonators. It is in the slow
dynamics that the homoclinic orbits are found. Secondly, the
weak damping, which requires only a weak drive to obtain a
response, allows us to treat both the damping and the drive
as perturbations, even with respect to the slow dynamics.
Therefore, in Sec. III we set the parametric drive amplitude
and the damping to zero in the amplitude equations, which
makes them integrable. This allows us, in Sec. IV, to find
conditions for the existence of homoclinic orbits and to obtain
analytical expressions for these orbits. We emphasize that these
orbits reside in a four-dimensional phase space, and as such
are homoclinic not to a point, but rather to a whole invariant
two-dimensional manifold in the shape of a semi-infinite
cylinder. Of these, we identify a subset of orbits, satisfying a
particular resonance condition, that are precisely heteroclinic,
connecting pairs of points in four-dimensional phase space.
In Sec. V we reintroduce the drive and the damping into the
equations as small perturbations, and use the high-dimensional
Melnikov method to determine which of the heteroclinic
orbits, determined through the resonance condition in the
unperturbed system, survives under the perturbation. In Sec. VI
we study the effects of the perturbation on the dynamics
within the invariant semi-infinite cylinder near the resonance
condition. Finally, in Sec. VII we put everything together by
calculating the parameter values for which the end points of the
unperturbed heteroclinic orbits are deformed in the perturbed
system in such a way that they become connected through the
dynamics on the semi-infinite cylinder, producing Šilnikov
orbits, homoclinic to a fixed point of a saddle-focus type. We
conclude by verifying our analytical calculation using numer-
ical simulations. Our analysis implies that conditions exist in
the coupled resonator system that could lead to chaotic motion.

II. NORMAL MODE AMPLITUDE EQUATIONS

We consider a pair of resonators modeled by the equations
of motion,

ün + un + u3
n − 1

2Q−1(u̇n−1 − 2u̇n + u̇n+1)

+ 1
2 [D + H cos ωpt](un−1 − 2un + un+1) = 0, (2)

1We should emphasize that the existence of horseshoes does not
guarantee the observation of chaos since the orbits created by the
horseshoe mechanism are unstable. Nevertheless, merely exposing
their presence provides one of the few analytical predictions of chaos.

for n = 1,2, where un describes the deviation of the nth

resonator from its equilibrium, and we label two fictitious
fixed resonators as u0 = u3 = 0 for convenience. Detailed
arguments for the choice of terms introduced into these
equations of motion are discussed by Lifshitz and Cross [41],
who modeled the particular experimental realization of Buks
and Roukes [18], although other variations are possible [12].
The terms include an elastic restoring force as in Eq. (1) with
positive linear and cubic contributions (whose coefficients are
both scaled to 1), a dc electrostatic nearest-neighbor coupling
term with a small ac component responsible for the parametric
excitation (with coefficients D and H , respectively), and a
linear dissipation term, which is taken to be of a nearest
neighbor form, motivated by the experimental indication [18]
that most of the dissipation comes from the electrostatic inter-
action between neighboring beams. Note that the electrostatic
attractive force acting between neighboring beams decays with
the distance between them, and thus acts to slightly soften the
otherwise positive elastic restoring force. Lifshitz and Cross
also considered an additional nonlinear damping term, which
we neglect here for the sake of simplicity. The resonators’
quality factor Q is typically high in MEMS and NEMS devices,
which can be used to define a small expansion parameter
ε � 1, by taking Q−1 = εγ̂ , with γ̂ of order unity. The drive
amplitude is then expressed as H = εĥ, in anticipation of the
fact that parametric oscillations at half the driving frequency
require a driving amplitude which is of the same order as the
linear damping rate [12].

Following Appendix B of Lifshitz and Cross [41], we
use multiple time scales to express the displacements of the
resonators as

x1,2(t) =
√

3ε

2

(
A1(T )eiω1t ± A2(T )eiω2t + c.c.

)
+ ε3/2x

(1)
1,2(t) + · · · , (3)

where x1 is taken with the positive sign and x2 with the negative
sign; with a slow time T = εt , and where the normal mode
frequencies are given by ω2

1 = 1 − D/2, and ω2
2 = 1 − 3D/2.

Substituting Eq. (3) into the equations of motion (2) generates
secular terms that yield two coupled equations for the complex
amplitudes A1,2. If we measure the drive frequency relative to
twice ω2 by setting ωp = 2ω2 + ε�, express ω1 relative to
ω2 as ω1 = ω2 + 2ε�1, and express the complex amplitudes
using real amplitudes and phases as

A1(T ) = a1(T )ei[χ1(T )+(�/2−2�1)T ],

A2(T ) = a2(T )ei[χ2(T )+�T/2], (4)

the real and imaginary parts of the two secular amplitude
equations become

da1

dT
= −1

4
γ̂ a1 − ĥ

8ω1
a1 sin 2χ1 − 9

8ω1
a2

2a1 sin 2(χ2 − χ1),

(5a)

dχ1

dT
= 2�1 − 1

2
� − ĥ

8ω1
cos 2χ1

+ 9

8ω1

[
a2

1 + 2a2
2 + a2

2 cos 2(χ2 − χ1)
]
, (5b)
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da2

dT
= −3

4
γ̂ a2 − 3ĥ

8ω2
a2 sin 2χ2 − 9

8ω2
a2

1a2 sin 2(χ1 − χ2),

(5c)

dχ2

dT
= −1

2
� − 3ĥ

8ω2
cos 2χ2

+ 9

8ω2

[
a2

2 + 2a2
1 + a2

1 cos 2(χ1 − χ2)
]
. (5d)

Steady-state solutions, oscillating at half the parametric
drive frequency, are obtained by setting dai/dT = dχi/dT =
0 in Eqs. (5a)–(5d) and solving the resulting algebraic
equations. We are interested in extending the investigation of
these amplitude equations. In particular, we want to identify the
conditions under which they may display chaotic dynamics.
We should note that equations similar to (5) were also used
for modeling a variety of parametrically driven two-degree-
of-freedom systems such as surface waves in nearly square
tanks or vibrations of nearly square thin plates or of beams
with nearly square cross sections [44–47].

III. UNPERTURBED EQUATIONS—SETTING DAMPING
AND DRIVE TO ZERO

We first consider the integrable parts of Eqs. (5a)–(5d),
obtained by setting γ̂ = ĥ = 0. In Sec. V we will reintroduce
the driving and damping terms as a perturbation. We transform
the integral part of Eqs. (5a)–(5d) into a more familiar form,
which has been studied in the context of higher dimen-
sional Melnikov methods [33,36], by rescaling the amplitudes
a1 → a1

√
ω28/9, and a2 → a2

√
ω18/9, and changing to two

pairs of action-angle variables: (i) J = a2
1/2, θ = χ1 − χ2;

and (ii) I = (a2
1 + a2

2)/2, φ = χ2. After defining r = ω1/ω2,
and rescaling time as T → T/2, we obtain the unperturbed
Hamilton equations,

dJ

dT
= −∂H̃0(J,θ,I )

∂θ
= 2J (I − J ) sin 2θ, (6a)

dθ

dT
= ∂H̃0(J,θ,I )

∂J
= �1 + I (2 − r + cos 2θ )

− J

(
4 − r2 + 1

r
+ 2 cos 2θ

)
, (6b)

dI

dT
= −∂H̃0(J,θ,I )

∂φ
= 0, (6c)

dφ

dT
= ∂H̃0(J,θ,I )

∂I
= rI − �

4
+ J (2 − r + cos 2θ ), (6d)

where the Hamiltonian H̃0, which generates these equations,
is expressed as

H̃0(J,θ,I ) = rI 2

2
− �

4
I − J 2

(
2 − r2 + 1

2r

)
+ J [I (2 − r) + �1] + J (I − J ) cos 2θ. (7)

Thus, both I and H̃0 are constants of the motion in the
unperturbed system. Note that (J,θ,I,φ) ∈ R+ × S × R+ ×
S, where S is the unit circle, and R+ are the non-negative
reals.

It is convenient to describe the dynamics also in terms of
the Cartesian variables x = a1 cos(χ1 − χ2) = √

2J cos θ and

y = a1 sin(χ1 − χ2) = √
2J sin θ , in place of J and θ , thereby

obtaining the Hamilton equations,

dx

dT
= −∂H0(x,y,I )

∂y
= y3

(
1 − r2 + 1

2r

)

+ x2y

(
2 − r2 + 1

2r

)
− y [I (1 − r) + �1] , (8a)

dy

dT
= ∂H0(x,y,I )

∂x
= −x3

(
3 − r2 + 1

2r

)

− y2x

(
2 − r2 + 1

2r

)
+ x [I (3 − r) + �1] , (8b)

dI

dT
= −∂H0(x,y,I )

∂φ
= 0, (8c)

dφ

dT
= ∂H0(x,y,I )

∂I
= rI − �

4
+ x2

2
(3 − r) + y2

2
(1 − r),

(8d)

where y plays the role of a coordinate and x is its conjugate
momentum, and where the Hamiltonian H0 is now given by

H0(x,y,I ) = rI 2

2
− �

4
I − x4

4

(
3 − r2 + 1

2r

)

− y4

4

(
1 − r2 + 1

2r

)
− x2y2

(
1 − r2 + 1

4r

)

+ x2

2
[I (3 − r) +�1] +y2

2
[I (1 − r) +�1].

(9)

IV. ANALYTICAL EXPRESSIONS FOR
HOMOCLINIC ORBITS

We wish to identify the conditions under which there exist
homoclinic orbits in the unperturbed system. These orbits will
potentially lead to chaotic dynamics once we reintroduce the
damping and the drive in the form of small perturbations. We
therefore consider the fixed point x = y = 0 in the unperturbed
(x,y) plane, as given by Eqs. (8a) and (8b). A linear analysis
of this fixed point reveals that it is a saddle for values of
the positive constant of motion I , that satisfy the inequality
[I (1 − r) + �1][I (3 − r) + �1] < 0. This implies that the
fixed point at x = y = 0 is never a saddle if the fixed parameter
r < 1; it is a saddle for 1 < r < 3, if I > �1/(r − 1); and it
is a saddle for r > 3, if �1/(r − 1) < I < �1/(r − 3). We
shall restrict ourselves here to values 1 < r < 3, therefore to
obtain a saddle one must only ensure that I > �1/(r − 1).
In the full four-dimensional system given by Eqs. (8a)–(8d)
this saddle point describes a two-dimensional invariant semi-
infinite cylinder, or annulus,

M =
{

(x,y,I,φ)

∣∣∣∣ x = 0, y = 0,
�1

r − 1
< I

}
, 1 < r < 3,

(10)

where φ is unrestricted within the unit circle. The trajectories
on M are periodic orbits given by I = constant and φ =
(rI − �/4)T + φ0. For the resonant value of I ≡ I r = �/4r
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the rotation frequency vanishes, and the periodic orbit becomes
a circle of fixed points. Of course, this trivial unperturbed
dynamics on M undergoes a dramatic change under the
addition of perturbations.

The two-dimensional invariant annulus M has three-
dimensional stable and unstable manifolds, denoted as Ws (M )
and Wu(M ), respectively, which coincide to form a three-
dimensional homoclinic manifold � ≡ Ws(M ) ∩ Wu(M ).
Trajectories on the homoclinic manifold � are homoclinic
orbits that connect the origin of the (x,y) plane to itself.
Thus, the constant value of the Hamiltonian along such an
orbit is equal to its value at the origin, namely H0(0,0,I ) =
H0(x,y,I ) = H̃0(J,θ,I ), which immediately yields an equa-
tion for the homoclinic orbits in terms of the action-angle
variables,

J h(θ,I ) = 2r [I (r − 2 − cos 2θ ) − �1]

r2 − 2r (2 + cos 2θ ) + 1
. (11)

To obtain the temporal dependence of the dynamical variables
along the homoclinic orbit, we substitute the homoclinic orbit
equation (11) into Eq. (6b), to get

dθ

dT
= I (r − 2 − cos 2θ ) − �1. (12)

Next, we note that χ1 = φ + θ , and use the Hamiltonian (7) to
get

dχ1

dT
= Ir − �

4
+ J

1 − r2

2r
. (13)

We then integrate Eq. (12), substitute the result into Eq. (11),
and the latter into Eq. (13), and finally integrate Eq. (13) to

obtain analytical expressions for the temporal dependence of
the dynamical variables along orbits that are homoclinic to M .

For I > 2r�1/(r2 − 1) we define q ≡ I (r2 − 1) −
2r�1 > 0, and find that θ0 ≡ θ (T = 0) = 0,π , and that the
homoclinic orbits are given by

J h(T ,I ) = 2ra2

q cosh(2aT ) + p
, (14a)

tan(θh(T ,I )) = −
√

I (r − 3) − �1

I (1 − r) + �1
tanh(aT ), (14b)

χh
1 (T ,I ) = − a(r2 − 1)√

p2 − q2
arctanh

(√
p − q

p + q
tanh aT

)

+
(

rI − �

4

)
T + χ1(0), (14c)

φh(T ,I ) = χh
1 (T ,I ) − θh(T ,I ), (14d)

where

p = �1(r2 − 4r + 1) − I (r3 − 6r2 + 7r − 2),
(15)

a2 = −�2
1 + 2I�1(r − 2) − I 2(r − 3)(r − 1).

For I < 2r�1/(r2 − 1) we redefine q ≡ 2r�1

− I (r2 − 1) > 0, and find that θ0 = ±π/2, and that the
homoclinic orbits are given by Eqs. (14a)–(14d), with

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

√
2J cosθ

√ 2J
si

n
θ

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

√
2J cosθ

√ 2J
si

n
θ

−10 −5 0 5 10

−5

0

5

√
2J cosθ

√ 2J
si

n
θ

−10 −5 0 5 10

−5

0

5

√
2J cosθ

√ 2J
si

n
θ

−5 0 5

−6

−4

−2

0

2

4

6

√
2J cosθ

√ 2J
si

n
θ

−5 0 5

−4

−2

0

2

4

√
2J cosθ

√ 2J
si

n
θ

(a) I = 6 (b) I = 10 (c) I = 25

(d) I = 28.4267 (e) I = 38.5 (f) I = 43

FIG. 1. (Color online) Numerical phase portraits of the unperturbed (x,y) plane for r = 2, �1 = 21.32, and different values of I as noted
in the individual captions. All figures show the trajectories for which J has a fixed value equal to I . As explained in the text and for r = 2,
four hyperbolic fixed points appear on the J = I circle for 2�1/5 = 8.528 < I < 2�1 = 42.64; the J = 0 fixed point changes from a center
to a saddle at I = �1 = 21.32; and a global bifurcation rotating the homoclinic orbit through an angle of π/2, shown in panel (d), occurs at
I = 4�1/3 � 28.42.
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−1

0

1

49

50

51
0

2

4

6

8

φI

√ J

Δφ

FIG. 2. (Color online) Orbits homoclinic to M . For I = I r (the
orbit in the middle), dφ/dT = 0 on M , and the orbit is heteroclinic,

connecting fixed points on M that are 
φ apart. For I <> Ir ,

dφ/dT >< 0 on M . The parameters are r = 2,� = 400,�1 = 21.32.

Eq. (14b) replaced by

cot(θh(T ,I )) = −
√

I (1 − r) + �1

I (r − 3) − �1
tanh(aT ). (16)

Thus, exactly at I = 2r�1/(r2 − 1), or q = 0, there is a global
bifurcation in which the homoclinic orbit rotates through an
angle of π/2.

Some of the phase-space portraits of the unperturbed (x,y)
plane are calculated numerically from Eqs. (6a) and (6b), for
different values of I , and shown in Fig. 1. From Eq. (6a)
it follows that the value of J is fixed if (a) J = 0; or
(b) J = I ; or (c) θ is an integer multiple of π/2 and θ is fixed.
Figures 1(a)–1(f) all show the trajectories for which J has a
fixed value equal to I . Four hyperbolic fixed points appear on
the J = I circle for �1/(3 − 1/r) � I � �1(1 − 1/r), where
solutions exist to the equation ∂θ/∂T = 0 with J replaced by
I [Figs. 1(b)–1(e)]. As expected, the origin J = 0 is always
a fixed point—a center for small values of I [Figs. 1(a) and

−10

0

10

−5

0

5
2

4

6

8

10

a
1
cos(χ

1
−χ

2
)a

1
sin(χ

1
−χ

2
)

a 2(0
)

FIG. 3. (Color online) Results of a numerical integration
of Eqs. (5a)–(5d) for different values of the initial am-
plitude of the second mode a2(0), with ĥ = γ̂ = 0, ω1 =
0.8528, ω2 = ω1/2, �1 = 21.32, and � = 400. As expected,
for a2(0) >

√
16�1ω1ω2/9(ω1 − ω2) � 5.68 the origin becomes

a saddle, which rotates through an angle of π/2 at a2(0) =√
32�1ω

2
1ω2/9(ω2

1 − ω2
2) � 6.46.

1(b)], which undergoes a pitchfork bifurcation into a saddle
when ∂θ/∂T = 0 with J = 0, occurring at I = �1/(r − 1)
[Figs. 1(c)–1(f)]. Additional centers appear whenever θ is an
integer multiple of π/2 and solutions exist to the equation
∂θ/∂T = 0 with cos 2θ = ±1 [Figs. 1(b)–1(f)]. The global
bifurcation at I = 2�1r/(r2 − 1) where the homoclinic orbit
rotates by π/2 is shown in Fig. 1(d).

Note that we refer to the orbits given by Eqs. (14a)–(14d)
as homoclinic since they are homoclinic to M . A few of these
orbits are shown in Fig. 2. At resonance, for I = I r , the orbits
are truly heteroclinic, connecting fixed points that are 
φ

apart, where 
φ = 
χ1 − 
θ , and


θ = −2arctan

√
I r (r − 3) − �1

I r (1 − r) + �1
, (17a)


χ1 = −2a(r2 − 1)√
p2 − q2

arctanh

√
p − q

p + q
, (17b)

and where for any variable f , 
f ≡ f (∞) − f (−∞). Such
an unperturbed heteroclinic orbit is shown in the middle of
Fig. 2.

We wish to demonstrate the results obtained so far also
in terms of the original amplitude equations [Eqs. (5a)–(5d)]
with ĥ = γ̂ = 0. The point x = y = 0 corresponds to a1 = 0
in Eqs. (5a)–(5d). To start the simulation near this point,
we initiate the numerical solution with a1(0) � 1, which
through the definition of I implies that a2(0) � √

16Iω1/9.
The condition for having a saddle at the origin of Eqs. (8a) and
(8b), I > �1/(r − 1), translates into the condition a2(0) >√

16�1ω1/9(r − 1) = √
16�1ω1ω2/9(ω1 − ω2). The condi-

tion for the global bifurcation, rotating the homoclinic orbit
through π/2, given by I = 2r�1/(r2 − 1), translates into
a2(0) =

√
32�1ω

2
1ω2/9(ω2

1 − ω2
2). These conditions are ver-

ified by a numerical integration of Eqs. (5a)–(5d) by varying
the initial amplitude of the out-of-phase mode, a2(0), as shown
in Fig. 3.

V. HOMOCLINIC INTERSECTIONS IN THE
PERTURBED SYSTEM

After having calculated the homoclinic orbits in the
unperturbed system, we now reintroduce the drive and
the damping as perturbations and study how they affect the
dynamics. In particular, we want to study the nature of the
invariant annulus M , and its stable and unstable manifolds,
Ws(M ) and Wu(M ), under the perturbation, and use the
Melnikov criterion to find the conditions under which they
can still intersect. It is instructive to write the perturbed
system in terms of the action-angle variables in the general
form,

dJ

dT
= −∂H̃0(J,θ,I )

∂θ
+ ξgJ = −∂H̃0(J,θ,I )

∂θ

+ ξ

(
−∂H̃1(J,θ,I,φ)

∂θ
+ dJ

)
, (18a)

dθ

dT
= ∂H̃0(J,θ,I )

∂J
+ ξgθ = ∂H̃0(J,θ,I )

∂J
+ ξ

∂H̃1(J,θ,I,φ)

∂J
,

(18b)
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dI

dT
= ξgI = ξ

(
−∂H̃1(J,θ,I,φ)

∂φ
+ dI

)
, (18c)

dφ

dT
= ∂H̃0(J,θ,I )

∂I
+ ξgφ = ∂H̃0(J,θ,I )

∂I
+ ξ

∂H̃1(J,θ,I,φ)

∂I
,

(18d)

where we have quantified the perturbations by expressing
the drive amplitude and the damping as ĥ = 8ξω1h and
γ̂ = 4ξγ , respectively, where ξ � 1 is a small parameter. The
perturbations due to the parametric drive are generated from
the Hamiltonian,

H̃1(J,θ,I,φ)

= −h

2
[J cos 2(φ + θ ) + 3r(I − J ) cos 2φ] , (19)

and the dissipative perturbations are given by dJ = −γ J and
dI = −γ (3I − 2J ). Similarly, in terms of the Cartesian vari-
ables, the perturbed system is written in this general form as

dx

dT
= −∂H0(x,y,I )

∂y
+ ξgx = −∂H0(x,y,I )

∂y

+ ξ

(
−∂H1(x,y,I,φ)

∂y
+ dx

)
, (20a)

dy

dT
= ∂H0(x,y,I )

∂x
+ ξgy = ∂H0(x,y,I )

∂x

+ ξ

(
∂H1(x,y,I,φ)

∂x
+ dy

)
, (20b)

dI

dT
= ξgI = ξ

(
−∂H1(x,y,I,φ)

∂φ
+ dI

)
, (20c)

dφ

dT
= ∂H0(x,y,I )

∂I
+ ξgφ = ∂H0(x,y,I )

∂I

+ ξ
∂H1(x,y,I,φ)

∂I
, (20d)

with

H1(x,y,I,φ)

= h

4
{[(3r − 1)x2 + (3r + 1)y2 − 6rI ] cos 2φ + 2xy sin 2φ},

(21)

and where dx = −γ x/2, dy = −γy/2, and dI =
−γ (3I − x2 − y2).

For 0 < ξ � 1 the unperturbed invariant annulus M , and
its stable and unstable manifolds, Ws(M ) and Wu(M ),
persist as a locally invariant annulus Mξ with stable and
unstable manifolds, Ws(Mξ ) and Wu(Mξ ) [33,36,44,47].
Due to the fact that we use parametric rather than direct
excitation, the point x = y = 0 remains a fixed point of the
perturbed Eqs. (20a) and (20b), so Mξ is defined just like
M in Eq. (10). However, the term locally invariant means
that trajectories with initial conditions on Mξ may leave it
through its lower boundary at I = �1/(r − 1). We want to
find intersections of the manifolds Ws(Mξ ) and Wu(Mξ ),
because such intersections may contain orbits that are
homoclinic to Mξ . This is done by calculating the Melnikov
integral, M(I,φ0), which is a measure of the distance between
these manifolds. If the Melnikov integral has simple zeros
[M(I,φ0) = 0 and ∂M(I,φ0)/∂φ0 
= 0], the three-dimensional

manifolds Ws(Mξ ) and Wu(Mξ ) intersect transversely along
two-dimensional surfaces.

The Melnikov integral is given by [33,36]

M(I,φ0) =
∫ ∞

−∞
〈n(xh,yh,I ),g(xh,yh,I,φh + φ0)〉dT , (22)

where

n(x,y,I ) =
(

∂H0(x,y,I )

∂x
,
∂H0(x,y,I )

∂y
,
∂H0(x,y,I )

∂I

− ∂H0(0,0,I )

∂I

)
, (23)

g(x,y,I,φ) = (gx,gy,gI ), (24)

xh(T ,I ), yh(T ,I ), and φh(T ,I ) are the homoclinic orbits given
by Eqs. (14a)–(14d), and angular brackets denote the standard
inner product. At resonance, the Melnikov integral M(I r ,φ0)
can be calculated explicitly, because then ∂H0(0,0,I r )/∂I = 0
and the integrand of the Melnikov integral is given by

〈n,g〉 = ∂H0

∂x
gx + ∂H0

∂y
gy + ∂H0

∂I
gI

= −∂H0

∂x

∂H1

∂y
+ ∂H0

∂y

∂H1

∂x
− ∂H0

∂I

∂H1

∂φ

+ ∂H0

∂x
dx + ∂H0

∂y
dy + ∂H0

∂I
dI . (25)

For the unperturbed orbits we can use the chain rule and
the fact that dI/dT = 0 to obtain the relation,

dH1

dT
= ∂H0

∂x

∂H1

∂y
− ∂H0

∂y

∂H1

∂x
+ ∂H0

∂I

∂H1

∂φ
, (26)

so the Melnikov integrand reduces to

〈n,g〉 = −dH1

dT
+ ∂H0

∂x
dx + ∂H0

∂y
dy + ∂H0

∂I
dI . (27)

Upon transforming to the action-angle variables one has

∂H0

∂x
dx + ∂H0

∂y
dy = ∂H̃0

∂J
dJ , (28)

and so the integrand (27) becomes

〈n,g〉 = −dH̃1

dT
+ ∂H̃0

∂J
dJ + ∂H̃0

∂I
dI

= −dH̃1

dT
− γ J

dθ

dT
− γ (3I r − 2J )

dφ

dT

= −dH̃1

dT
− 3γ I r dφ

dT
+ 2γ J

dχ1

dT
− 3γ J

dθ

dT
, (29)

where we recall that χ1 = θ + φ. We explicitly integrate each
of the terms in the integrand (29) in Appendix A, and find that

M(I r ,φ0) = −3rI rh sin 2φ0 sin 
φ

− γ (3I r
χ1 + 3
μ − 2
σ ), (30)

where 
σ and 
μ are defined in Eqs. (A2) and (A4),
respectively. Except for the special case in which the phase
difference 
φ is a multiple of π , the function M(I r ,φ0) has
simple zeros as long as the relation,∣∣∣∣γ (3I r
χ1 + 3
μ − 2
σ )

3rI rh sin 
φ

∣∣∣∣ < 1, (31)
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is satisfied. If the system parameters satisfy this condition,
every simple zero of the Melnikov function corresponds to
two symmetric (due to the invariance x,y → −x, − y) two-
dimensional intersection surfaces. The ξ → 0 limit of these
surfaces contains orbits whose explicit form is given by Eqs.
(14a)–(14d) with their I and φ0 values satisfying the relation
M(I,φ0) = 0, for I close to I r [36]. Thus, an unperturbed
heteroclinic orbit given by Eqs. (14a)–(14d), with I = I r and
a phase φ0 at time zero, can be made to persist under the
perturbation by setting the drive amplitude to the value,

h = γ (2
σ − 3I r
χ1 − 3
μ)

3rI r sin 2φ0 sin 
φ
. (32)

We give numerical evidence of this in Sec. VII. Such orbits
surviving in the intersection of Wu(Mξ ) and Ws(Mξ ) may
leave the stable manifold Ws(Mξ ) in forward time, and the
unstable manifold Wu(Mξ ) in backward time, through the
low boundary at I = �1/(r − 1), since these manifolds are
only locally invariant [36]. However, the analysis we perform
below allows us to find surviving homoclinic orbits that are
contained in the intersection of Wu(Mξ ) and Ws(Mξ ).

VI. DYNAMICS NEAR RESONANCE

After having calculated the Melnikov integral at I = I r , we
proceed to examine the dynamics on Mξ near this resonance.
The equations that describe the dynamics on Mξ are obtained
by setting J = 0 in Eqs. (18c) and (18d),

dI

dT
= −ξ3I (hr sin 2φ + γ ), (33a)

dφ

dT
= −�

4
+ rI − ξ

3hr

2
cos 2φ. (33b)

To investigate the slow dynamics, which is induced by the
perturbation on Mξ near resonance, we follow Kovačič and
Wiggins [36] and introduce a slow variable I = I r + √

ξρ into

Eqs. (33a) and (33b), along with a slow time scale τ = √
ξT ,

and obtain

dρ

dτ
= −3(I r +

√
ξρ)(hr sin 2φ + γ ), (34a)

dφ

dτ
= rρ −

√
ξ

3hr

2
cos 2φ. (34b)

The leading terms in Eqs. (34a) and (34b), independent of
ξ , yield

dρ

dτ
= −3I r (hr sin(2φ) + γ ) = −∂H (ρ,φ)

∂φ
, (35a)

dφ

dτ
= rρ = ∂H (ρ,φ)

∂ρ
, (35b)

where

H (ρ,φ) = 1
2 rρ2 − 3

2hrI r cos(2φ) + 3γ I rφ (36)

is a rescaled effective Hamiltonian that governs the slow
dynamics on Mξ close to resonance.

Figure 4(a) shows the phase portrait of Eqs. (35a) and (35b),
which contains a saddle q0 at (ρ = 0,φ = φs = [arcsin b −
π ]/2), and a center p0 at (ρ = 0,φ = φc = −[arcsin b]/2),
where b ≡ γ /hr . The fixed points of Eqs. (34a) and (34b)
that contain the additional O(

√
ξ ) terms are qξ = (−ρξ ,φs)

and pξ = (ρξ ,φc), where ρξ = √
ξ3h

√
1 − b2/2. For small

positive ξ , a linear analysis of these fixed points reveals that
qξ is still a saddle but that pξ is a sink, as shown in Fig. 4(b).
The fixed points of the full equations (33) near I = I r are
the same saddle and sink, located at (I = I−,φ = φs) and
(I = I+,φ = φc), respectively, where I± = I r ± √

ξρξ .2

2In the full four-dimensional system given by Eqs. (20a)–(20d),
the saddle-focus fixed point (x = 0,y = 0,I = I+,φ = φc) and
saddle fixed point (x = 0,y = 0,I = I−,φ = φs) correspond to
unstable single-mode oscillations of the antisymmetric mode (that has
the smaller linear frequency ω2). This is also true in the integrable
limit (ξ = 0), however in this case the eigenvalues describing the
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FIG. 4. (Color online) (a) Numerical phase portraits of Eqs. (34a) and (34b) with ξ = 0 [or equivalently, Eqs. (35a) and (35b)], showing
a saddle and a center. (b) Numerical phase portraits of Eqs. (34a) and (34b) with ξ = 1, showing that the saddle remains a saddle but that
the center becomes a sink, with their ρ coordinates shifted slightly down and up, respectively. The parameters are r = 2,� = 400,h = 1,b =
0.2649,γ = hbr .
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The scaled equations (35) provide an estimate for the basin
of attraction of the sink, which is the area confined within the
homoclinic orbit connecting the saddle q0 to itself, shown
in Fig. 4(a). Recall that the dynamics on the unperturbed
annulus M is composed of simple one-dimensional flows,
which on resonance turn into a circle of fixed points. Upon
adding the small perturbation, two of these fixed points persist
in an interval of length π , and the phase space contains
two-dimensional flows. Of particular interest is the basin of
attraction of the sink, because a homoclinic orbit to a fixed
point of this type offers a mechanism for producing chaotic
motion. This mechanism, which results from the existence
of a homoclinic trajectory to a saddle-focus fixed point, was
described by Šilnikov [37]. Obtaining an estimate for the basin
of attraction of the sink, allows us to pick out the trajectories
satisfying Šilnikov’s theorem, which we do in the following
section.

VII. A HOMOCLINIC CONNECTION TO THE SINK pξ

We are finally in a position to show the existence of an
orbit homoclinic to the sink pξ .3 To achieve this, we first
show that there exists a homoclinic orbit that approaches
pξ asymptotically backward in time, and approaches the
perturbed annulus Mξ asymptotically forward in time. We then
estimate the conditions under which the perturbed counterpart
of the point, which is reached on M forward in time in the
unperturbed system, lies within the basin of attraction of the
sink pξ on Mξ . This gives us an estimate for the possibility of
obtaining a Šilnikov orbit that connects the sink back to itself.

The first step is done by finding the conditions for which the
Melnikov function M(I r ,φ0 = φc + 
φ/2) has simple zeros.
We substitute φ0 = φc + 
φ/2 into the first term in Eq. (30),
and recall that sin 2φc = −b, to get

sin 2φ0 sin 
φ = 1
2

[√
1 − b2(1 − cos 2
φ) − b sin 2
φ

]
.

(37)

By substituting (37) into the Melnikov function (30) and
equating it to zero we obtain the equation,

3I r
[√

1 − b2(1 − cos 2
φ) − b sin 2
φ
]

+ 2b(3I r
χ1 + 3
μ − 2
σ ) = 0, (38)

from which we extract an explicit expression for the condition
on b, ensuring the existence of an orbit that asymptotes to pξ

backward in time, and to Mξ forward in time,

|b|= 1 − cos 2
φ√(
4

3I r 
σ + sin 2
φ −2
χ1 − 2
μ

Ir

)2 + (1− cos 2
φ)2
.

(39)

flow in directions tangent to Mξ vanish, so the corresponding fixed
points (x = 0,y = 0,I = I r ,φ = φc,φs) are saddles, with the nearby
linearized vector field described by a pair of real eigenvalues (one
positive and one negative) and a pair of zero eigenvalues.

3Note that for a particular set of parameters the existence of such
an orbit implies the existence of another symmetric orbit due to the
invariance (x,y) → (−x, − y).
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FIG. 5. (Color online) The heteroclinic orbit given by
Eqs. (14a)–(14d) with I = I r , superimposed with the phase portrait
of the unperturbed scaled system on Mξ near resonance, given by Eqs.
(35a) and (35b). The parameters are the same as in Fig. 4(a), with
�1 = 21.32. For these parameters b = 0.2949 according to Eq. (39),
so we fix h = 1 and γ = rbh in Eqs. (35a) and (35b). This value of
b sets φ(−∞) = φc = −0.1341, and as can be seen from the figure
φs < φ(∞) = φc + 
φ < φm.

Next, we wish to find an approximate condition, ensuring
that this orbit approaches pξ as T → ∞. To do so we find the
condition for which the unperturbed heteroclinic orbit, which
asymptotes to p0 as T → −∞, returns back to a point on the
circle of fixed points that is inside the homoclinic separatrix
loop connecting the saddle q0 to itself [36]. Such an orbit is
shown in Fig. 5. This condition is formulated in terms of the
difference 
φ between the asymptotic values of the angular
variable φ as

φs < φc + 
φ < φm, (40)

where φm is the maximal value of φ on the homoclinic orbit,
connecting the saddle q0 to itself. Since the Hamiltonian (36)
is conserved along an orbit, φm satisfies the equation,

0 = H (0,φm) − H (0,φs) = 3I rhr

[
1

2

√
1 − b2 + 1

2
cos 2φm

− b

(
φm + π

2
− 1

2
arcsin b

) ]
, (41)

whose roots are found numerically to obtain φm.
Equations (39) and (40) define conditions for the existence

of orbits homoclinic to the sink pξ . We wish to relate these
results to the actual physical parameters of the coupled
resonators. Recall that r sets the value of the electrostatic
coupling coefficient D = 2(r2 − 1)/(3r2 − 1). The scaled
frequency �1 is then given by �1 = (ω1 − ω2)/2ε =
(
√

1 − D/2 − √
1 − 3D/2)/2ε, so after fixing ε it is also

determined by r . The ratio b = γ /hr , between the damping
coefficient and the drive amplitude, has to be positive in order
for the damping coefficient γ to be positive and have the
standard physical meaning of energy dissipation. The ratio b

is positive if the inequality,

4

3I r

σ + sin 2
φ − 2
χ1 − 2
μ

Ir
> 0, (42)

is satisfied. We plot the left-hand side of this inequality as a
function of � and r in Fig. 6(a), and find that for the chosen
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FIG. 6. (Color online) (a) Contour plot of the left-hand side of the inequality (42). In the displayed range of �, for r � 1.5, this function
is positive and the coefficient γ represents energy dissipation. For fixed ε = 0.01 and 1 < r < 3, the scaled frequency �1 reaches values of
0 < �1 < 28. (b) The ratio b = γ /hr , given by Eq. (39), as a function of � and r (ε = 0.01). Here 1.5 < r < 3 and b is positive.

parameters it is positive if r � 1.5. Consequently we plot
the ratio b in Fig. 6(b) for 1.5 < r < 3. This value of b then
determines the φ values of the fixed points of Eq. (35), which
are shown in Fig. 7(a), along with φc + 
φ and φm for a
particular value of �. The parameter values for which these
φ values satisfy the condition (40) are displayed in Fig. 7(b),
which outlines the values of the electrostatic coupling and
parametric driving frequency, for which orbits homoclinic to
the sink pξ exist. We note that Šilnikov orbits were also found
in other two-mode parametrically driven systems [44,45,48],
however, slightly different equations were studied, resulting
in different phase space dynamics for the unperturbed system
as well as different perturbations.

Finally, we wish to verify our calculations by a numerical
solution of the ordinary differential equations (ODEs) (18).
The difficulty in producing a Šilnikov orbit in these equations
is that the linearized growth rates of the saddle-focus fixed
point—a saddle on the (J,θ ) plane and a focus on the perturbed
annulus Mξ —are O(ξ ) in directions tangent to Mξ , so the
orbit has to spend a lot of time near Mξ in order to spiral

around the saddle focus. However, the linearized growth rates
of this fixed point in directions transverse to Mξ , are O(1),
so a small and inevitable numerical error would deflect the
orbit away from Mξ . To avoid this problem we solve the
ODEs (18) using a cutoff criterion. We initiate the numerical
solution with J � 1, and the exact coordinates of the sink on
Mξ , (I = I+,φ = φc). The orbit initially flows away from Mξ

and later turns around and approaches it. If on its way back
toward Mξ , the orbit approaches it close enough to satisfy
J < ξ/1000, we set dJ/dT = dθ/dT = 0 in Eq. (18), thus
restricting the motion to be tangent to Mξ . This numerical
scheme allows us to verify our predictions, because as shown
in Fig. 8, only when the damping coefficient is equal to
γ = hbr (± ∼ 0.1%), with b given by Eq. (39), is our cutoff
criterion for eliminating the motion transverse to Mξ satisfied.
Furthermore, Figs. 8(a) and 8(d), demonstrate that in order to
obtain a Šilnikov orbit, the condition (40) needs to be satisfied
as well.

Owing to a theorem of Šilnikov [36], the existence of orbits
homoclinic to a saddle-focus fixed point in Eq. (18) implies
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FIG. 7. (Color online) (a) The values of φs , φc, φc + 
φ, and φm as functions of r , for � = 1135.64. For r > 2.12 the condition
(40) is satisfied and orbits homoclinic to the sink pξ exists, except when 
φ = 0. (b) Parameter values for which the condition (40)
is satisfied are indicated in gray. The white line inside the gray area corresponds to 
φ = 0, where the theory does not apply. In both
figures ε = 0.01.
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FIG. 8. (Color online) Results of our numerical scheme for ξ = 0.001 and the rest of the parameters as in Fig. 5. (a) An illustration
of the Šilnikov orbit that is obtained for γ = hbr (The ξ → 0 limit of this orbit is shown in Fig. 5.) For (b) γ = h(b − 0.0003)r , and (c)
γ = h(b + 0.0002)r , and we see that the orbit does not get close enough to Mξ in order to meet our cutoff criterion for being homoclinic to
it. (d) For � = 800, we obtain an orbit that approaches Mξ by setting the appropriate value of γ (b = 0.6178), however, this orbit does not
asymptote to the saddle focus, in agreement with Fig. 7(b). In this simulation, the orbit leaves Mξ through its boundary at I = �1/(r − 1) and
eventually I → 0 and the motion dies out.

that these equations contain chaotic motion in the sense of
horseshoes in their dynamics.4

VIII. SUMMARY

We have studied the origin of chaotic dynamics, and
provided conditions for its existence, in a case of two

4The existence of horseshoe chaos actually requires the fulfillment
of additional conditions on the eigenvalues of the Jacobian matrix
of the saddle-focus fixed point (see theorem 5.1 in [36]). The first
condition is that the positive real eigenvalue be larger in magnitude
than the negative real part of the complex conjugate eigenvalues. This
requirement is satisfied here because the real eigenvalues describing
the flow in the directions transverse to Mξ are O(1), and the complex
conjugate eigenvalues describing the flow in the directions parallel
to Mξ are O(ξ ) � 1. The second condition—that the two real
eigenvalues differ in magnitude—can be easily verified as well.

parametrically driven nonlinear resonators. This was achieved
by applying a method of Kovačič and Wiggins on transformed
amplitude equations that were derived from the equations
of motion, which model an actual experimental realiza-
tion of coupled nanomechanical resonators. We considered
the amplitude of the drive and the damping to be small
perturbations and obtained explicit expressions for orbits
homoclinic to a two-dimensional invariant annulus in the
unperturbed equations. At resonance, we were able to calculate
the Melnikov integral analytically, and to provide a primary
condition for having homoclinic orbits in the full, perturbed
equations. By further studying the effects of perturbations on
the invariant annulus near resonance, we found a secondary
condition for the existence of orbits homoclinic to a fixed
point of a saddle-focus type. We used a numerical scheme to
verify our theoretical predictions. Such Šilnikov homoclinic
orbits give rise to a particular type of horseshoe chaos,
which can be expected in the dynamics of the full system
for parameter values in the vicinity of those presented
here.
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APPENDIX : EXPLICIT CALCULATION OF THE
MELNIKOV INTEGRAL

We integrate here each of the terms in the Melnikov
integrand (29). From Eq. (19), owing to the fact that
on the homoclinic orbits J (±∞) = 0, the first of these
yields,

∫ ∞

−∞

dH̃1

dT
dT = −3rI rh

2
[cos 2φ(∞) − cos 2φ(−∞)]

= −3rI rh

2
[cos 2(φ0 + 
φ/2) − cos 2(φ0 − 
φ/2)] = 3rI rh sin 2φ0 sin 
φ, (A1)

where we recall that 
φ = φ(∞) − φ(−∞). The second term in (29) immediately yields −3γ I r
φ. For the third term in (29)
we use Eq. (13), which on resonance yields∫ ∞

−∞
J

dχ1

dT
dT = 1 − r2

2r

∫ ∞

−∞
J 2dT = (1 − r2)2ra3

(
2p

(p2 − q2)3/2
arctanh

√
p − q

p + q
+ 1

q2 − p2

)
≡ 
σ. (A2)

For the fourth and last term in (29) we use Eq. (11) and get∫
Jdθ = I rθ + I r (r2 − 1) − 2r�1

(r − 1)
√

r2 − 6r + 1
arctan

(
r − 1√

r2 − 6r + 1
tan θ

)
, (A3)

and after substituting the limits, using Eq. (14b), we get∫
Jdθ = I r
θ − 2

I r (r2 − 1) − 2r�1

(r − 1)
√

r2 − 6r + 1
arctan

(
r − 1√

r2 − 6r + 1

√
I r (r − 3) − �1

I r (1 − r) + �1

)
≡ I r
θ + 
μ. (A4)
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