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1 Main discussion

I shall discuss here the relation between the symmetry of a magnetic crystal and ex-
tinctions in its neutron diffraction diagram. In doing so I shall provide an outline of a
symmetry classification scheme for magnetically ordered crystals: A scheme which is in-
spired by the spin-group classification of Litvin and Opechowski [1] in which the magnetic
crystal is described by a spin density field S(r), left invariant by a set of rigid motions in
physical space combined with primed or unprimed 1 proper rotations in spin space. Two
aspects of my presentation should be emphasized from the start:

(i) I have extended Litvin and Opechowski’s original scheme to deal with quasiperi-
odic as well as periodic crystals. This includes any spin density field whose Fourier
expansion requires only a discrete set L of wave vectors

S(r) =
∑
k∈L

S(k)eik·r . (1)

As in the case of ordinary space groups there are two approaches for such an ex-
tension. The first, as suggested by Janner and Janssen [2], is to view the quasiperi-
odic magnetic crystal as a 3-dimensional slice of a structure periodic in a higher-
dimensional “superspace”, where the classification of Litvin and Opechowski can be
directly applied using high-dimensional spin groups. I follow the Fourier-space ap-
proach of Rokhsar, Wright, and Mermin [3], which leads one to a redefinition of the
concept of a spin point group and allows for a 3-dimensional classification scheme
for any magnetic crystal — periodic or quasiperiodic.

(ii) Rather than taking the usual geometric route I shall motivate the Fourier-space
classification scheme by asking a question in physics: Are there any restrictions which
are imposed on the Fourier expansion (1) of a spin density field S(r) describing a
physically stable magnetic crystal? 2 Any such restrictions will manifest themselves
experimentally in a diffraction diagram produced by elastic scattering of unpolarized
neutrons, since the scattering intensity at wave vector k is proportional to

|S(k)|2 − |k̂ · S(k)|2, (2)

as shown, for example, by Izyumov et al. [5, equation (17.10)].

1 A primed rotation is one which is followed by time inversion. Time inversion takes S into −S.
2 Mermin [4] has answered a similar question regarding a density function ρ(r) describing a
physically stable non-magnetic crystal. Here I extend his line of argument to the slightly more
involved case of a spin density field S(r).
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Since S(r) is real one has

S(k)∗ = S(−k), (3)

so that if k is in L then so is −k. The question is whether any further restrictions on
the structure of L or that of the Fourier coefficients S(k) follow from the requirement of
physical stability.

A stable spin density field is one which makes stationary a free energy of the general
form

F =
∞∑

n=2

∑
k1...kn∈L

∑
i1...in∈{x,y,z}

Ai1...in(k1, . . . ,kn)Si1(k1) · · ·Sin(kn). (4)

In the absence of any external fields the interactions giving rise to the magnetic crystal
are translationally and rotationally invariant. This imposes two constraints on the free
energy coefficients A:

Ai1...in(k1, . . . ,kn) = 0 unless k1 + · · ·+ kn = 0, (5)∑
j1...jn

γi1
j1 . . . γin

jn
Aj1...jn(gk1, . . . , gkn) = Ai1...in(k1, . . . ,kn) (6)

for any rotation g in physical space and any proper rotation γ in spin space possibly
combined with time inversion. The only exception to condition (6) is that in systems with
“spin-orbit” coupling the spin-space rotation γ must be the axial-vector representation
of the physical space rotation g. A generic set of coefficients A can vary freely with
temperature and pressure subject to these two constraints and no others. Any condition
on the Fourier expansion of S must follow from these constraints alone.

An immediate consequence of condition (5) is that if two spin density fields S and S′

are related by

S′(k) = e2πiχ(k)S(k), (7)

where χ is linear to within an additive integer on the set L of wave vectors at which
S(k) 6= 0, then the two spin density fields have identical free energies. 3 If the magnetic
crystal happens to be periodic then one easily shows that 2πχ(k) is of the form k · d,
so that S and S′ differ only by a translation. Since the degeneracy of their free ener-
gies is generic the two spin density fields must contain the same spatial distribution of
bounded substructures of arbitrary size. Otherwise, one could construct a generic free
energy that would discriminate between the two. The two fields are appropriately called
indistinguishable, and the function χ relating them is called a gauge function.

We adopt the notion of indistinguishability as the underlying criterion of symmetry,
defining the point group G of the magnetic crystal as the set of operations g from O(3)
that leave it indistinguishable to within a transformation γ in spin space. Accordingly,

3 We [6] have also shown the converse: that any two fields, whose Fourier coefficients have
identical products Si1(k1) · · ·Sin(kn) over all sets of wave vectors summing to zero and for all
choices of spin components, must be related by (7).
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for every pair (g, γ) there exists a gauge function, Φγ
g(k), called a phase function, which

satisfies

S(gk) = e2πiΦγ
g (k)γS(k). (8)

Since S([gh]k) = S(g[hk]), one easily establishes that the transformations γ in (8) form a
group Γ and that the pairs (g, γ) satisfying (8) form a subgroup of G× Γ called the spin
point group GS. The corresponding phase functions must satisfy the group compatibility
condition

∀(g, γ), (h, η) ∈ GS : Φγη
gh(k)≡Φγ

g(hk) + Φη
h(k), (9)

where “≡” denotes equality to within an additive integer.

A further consequence of the condition (5) of translational invariance is that if k is
not in L then there is no linear instability against a non-zero S(k) unless there are already
k1 . . .kn in L with k + k1 + · · ·+ kn = 0. In that case there may be non-zero terms in a
generic free energy of the form

Ai1...in,i(k1, . . . ,kn,k)Si1(k1) · · ·Sin(kn)Si(k), i = x, y, z, (10)

which are linear in the components of S(k). The appearance of a non-zero S(k) with an
appropriate phase can lower the free energy and would be expected unless the additional
condition (6) of rotational invariance provides some generic reason for the sum of all such
terms to vanish. In the absence of such a reason we conclude, using (3), that L is a lattice
— it is closed under the addition and subtraction of its wave vectors.

The only combination of terms linear in a given component of S(k) that one can
expect to generically vanish are terms related by elements (g, γ) of the spin point group
with g leaving k invariant. These elements form a subgroup of GS which we call the little
spin group of k, Gk

S. The rotational invariance (6) of the free energy coefficients A then
enables one to combine all terms (10) linear in a given component of S(k) into a smaller
number of terms of the form

Ai1...in,i(k1, . . . ,kn,k)
∑

(g,γ)∈Gk
S

[γ−1S]i1(gk1) · · · [γ−1S]in(gkn)[γ−1S]i(k). (11)

Using the point group condition (8) one can rewrite the sum in (11) as

Si1(k1) · · ·Sin(kn)
∑

(g,γ)∈Gk
S

e2πi(Φγ
g (k1)+···+Φγ

g (kn))[γ−1S]i(k). (12)

If indeed k = −k1 − · · · − kn is in L then the linearity of the phase function Φγ
g further

reduces the sum on the right side of (12) to∑
(g,γ)∈Gk

S

[e−2πiΦγ
g (k)γ−1S]i(k) = Nk[PS]i(k), (13)

where the normalization factor Nk = |Gk
S| is just the order of the little spin group of

k. Thus, by summing all generically related terms we find that it is not the components
of S(k) which couple linearly in terms of the form (10) but rather the components of
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PS(k), where P is an operator in spin space defined by (13). All that is left to complete
the characterization of the Fourier expansion of a physically stable magnetic crystal is to
examine the nature of this operator.

One can verify that P is a projection operator by noting that

P2S(k) =
1

Nk
2

∑
(h,η)∈Gk

S

∑
(g,γ)∈Gk

S

e−2πiΦγη
gh

(k)η−1γ−1S(k) = PS(k), (14)

where the first equality holds due to the group compatibility condition (9) and the second
uses the fact that multiplying all the elements of the group Gk

S by a fixed one of them,
(h, η), merely rearranges them. Multiplying by η and again using the group compatibility
condition, we also have

∀(h, η) ∈ Gk
S : η[PS](k) = e−2πiΦη

h
(k)[PS](k). (15)

Thus, P projects S(k) into a subspace whose spins are simultaneous eigenvectors of all
spin rotations η appearing in the little spin group Gk

S. The corresponding eigenvalues are
predetermined by the symmetry of the spin density field as described by its set of phase
functions. Only the component of S(k) along this subspace can couple linearly to terms
of the form (10) in a generic free energy. One can also show directly from the point group
condition (8) that S(k), if not equal to zero, must completely lie within this subspace.

We have thus arrived at a general characterization of the Fourier expansion (1) of a
spin density field describing a physically stable magnetic crystal:

(i) Every Fourier coefficient S(k) is required to be a simultaneous eigenvector of all
spin transformations in the little spin group of k, with the eigenvalues given by the
corresponding phase functions. This leads directly to the idea of extinctions where:

(ii) The set L of wave vectors appearing in the Fourier expansion must be a lattice (i.e.
closed under addition and subtraction) except that if, for a given k, a non-trivial
eigenvector does not exist which satisfies the first requirement then S(k) may (and
must) be absent from the Fourier expansion.

If, for example, Gk
S contains (e, γ) and its powers where γ is an n-fold rotation about

the z-axis in spin space, then repeated applications of (9) to Φγn

e (k) give nΦγ
e (k)≡0, so

Φγ
e (k)≡j/n. One can then verify that S(k) vanishes unless j = 0 mod n in which case

S(k) = (0, 0, S), or unless j = ±1 mod n in which case S(k) = (S,±iS, 0).

Those fluent in the language of group representations will have immediately recognized
that due to the group compatibility condition (9) the set of eigenvalues in (15) for all
the elements of the group Gk

S form a 1-dimensional representation of that group. The
operator P is simply the projection operator onto the subspace transforming under this
1-dimensional representation. Using this language one can easily determine whether S(k)
must vanish by checking whether the 1-dimensional representation in question is contained
within the decomposition of the 3-dimensional axial-vector representation when the latter
is restricted to the subgroup Gk

S.

2 Some technical details

One thus needs to determine the distinct symmetry classes of quasiperiodic spin den-
sity fields in order to establish the constraints imposed by stability on their Fourier expan-
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sions and through (2) on the outcome of neutron diffraction experiments. This involves
classifying the types of lattices, determining the distinct spin point groups compatible
with those lattices, and finding all the inequivalent sets of phase functions satisfying the
associated group compatibility conditions (9), as briefly outlined below.

2.1 Lattices and Bravais classes

The lattices of wave vectors which appear in the Fourier expansions of magnetic
crystals are the same lattices that appear in the expansions of non-magnetic crystals.
They are characterized by a rank — the smallest number of vectors required to generate
the whole lattice — and a lattice point group GL — the subgroup of O(3) that leaves
the lattice invariant. The point group G of the crystal is necessarily a subgroup of GL.
The classification of lattices into Bravais classes is identical to the non-magnetic case. For
more details see, for example, Lifshitz [7].

2.2 The spin point group

The spin point group GS is a subgroup of G×Γ with the property that every element
of G and every element of Γ appears in at least one pair of GS. Such a subgroup is easily
shown (Ref. [6]) to have the following structure: The set of point-group operations Gε

that are paired in GS with the identity ε of Γ forms a normal subgroup of G; the set of
spin rotations Γe paired with the identity e of G forms a normal subgroup of Γ. The pairs
appearing in GS associate all the elements of each coset of Gε with all the elements of a
single corresponding coset of Γe. This correspondence between cosets is an isomorphism
between the two quotient groups G/Gε and Γ/Γe.

The group compatibility condition (9) further implies that the subgroup Γe is abelian.
If it contains more than just the identity or the identity and time inversion then it must
be either axial, containing only primed or unprimed rotations about a single axis, or
orthorhombic, containing primed or unprimed 2-fold rotations about three mutually or-
thogonal axes. In both cases it may also contain the time inversion.

Because Γe is also a normal subgroup of Γ, for every δ in Γ, γ ∈ Γe implies δγδ−1 ∈ Γe.
If Γe is axial then Γ may only include additional (primed or unprimed) rotations about the
same axis, 2-fold rotations about orthogonal axes, and time inversion. If Γe is orthorhombic
then additional operations in Γ may only permute the three 2-fold axes and are therefore
restricted to operations in the proper cubic point group and time inversion.

Elements of the form (e, γ) describe spin rotations that leave the spin density field
indistinguishable without requiring any rotation in physical space. In the special case of
periodic crystals, these are spin rotations that when combined with a translation leave the
magnetic crystal invariant. The phase functions Φγ

e (k) therefore contain the information
which generalizes to the quasiperiodic case the so-called “spin translation groups” of Litvin
and Opechowski.

2.3 The spin space group

The spin space-group classification is an organization of sets of phase functions sat-
isfying the group compatibility condition (9) into equivalence classes according to two
criteria:
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(i) Two sets of phase functions Φ and Φ′ that describe indistinguishable fields S and S′,
related by a gauge function χ, should clearly be associated with the same spin space
group. Two such sets are related by a gauge transformation

Φ′γ
g(k)≡Φγ

g(k) + χ(gk− k), (16)

and belong to the same gauge-equivalence class. Note that the constraints on the
form of the Fourier coefficients S(k) involve only values of Φγ

g(k) for g’s that leave k
invariant and are therefore, as one may expect, gauge-invariant.

(ii) Two sets of phase functions Φ and Φ′ may also be counted as scale-equivalent if there
is a symmetry s of the lattice L, for which G → sGs−1 is an automorphism of G,
and there is an automorphism σ of Γ, which together take one set into the other

Φ′γ
g(k) = Φσγσ−1

sgs−1 (sk). (17)

The classes of phase functions under gauge and scale equivalence for a given spin
point group and lattice correspond to the spin space group types in the periodic case, and
constitute the extension of the classification scheme to the quasiperiodic case.
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