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Details are given of the theory of magnetic symmetry in quasicrystals, which has

previously only been outlined. A practical formalism is developed for the

enumeration of spin point groups and spin space groups, and for the calculation

of selection rules for neutron scattering experiments. The formalism is

demonstrated using the simple, yet non-trivial, example of magnetically ordered

octagonal quasicrystals in two dimensions. In a companion paper [Even-Dar

Mandel & Lifshitz (2004). Acta Cryst. A60, 179±194], complete results are

provided for octagonal quasicrystals in three dimensions.

1. Introduction

The discovery of Zn±Mg±RE icosahedral quasicrystals, where

RE stands for one of the rare-earth metals Y, Gd, Tb, Dy, Ho

and Er (Niikura et al., 1994; Tsai et al., 1994), and initial

indications that some of these quasicrystals may possess long-

range antiferromagnetic order (Charrier et al., 1997, 1998),

have generated increased interest in the nature of magnetic

order in quasicrystals (Fukamichi, 1999, and references

therein). Subsequent measurements (Islam et al., 1998; Sato et

al., 1998), followed by ongoing vigorous research (Fisher et al.,

1999; Sato et al., 1999; Fisher et al., 2000; Sato, Takakura, Tsai,

Ohoyama et al., 2000; Sato, Takakura, Tsai, Shibata et al., 2000;

DolinsÏek et al., 2001; Kramer et al., 2002), have shown that

only short-range spin correlations exist in these particular

quasicrystals, and therefore the existence of long-range

magnetic order in real quasicrystals remains an unresolved

question of great interest. The recent discovery of cadmium-

based quasicrystals (Guo et al., 2000a,b; Tsai et al., 2000) and

initial studies of magnetic order in the Cd±Mg±Tb icosahedral

quasicrystal (Sato et al., 2002) may provide some insight into

this question. Theoretical models that deal with magnetism on

quasicrystalsÐpurely geometrical models (Niizeki, 1990a,b;

Lifshitz, 1995, 2000) as well as physical ones, such as the Ising

model (Grimm & Baake, 1997; Matsuo et al., 2000, 2002), the

XY model (Hermisson, 2000), the Heisenberg model (Wessel

et al., 2003) and the Hubbard model (Jagannathan & Schulz,

1997; Hida, 2001)Ðare known to exhibit long-range magnetic

order. This is despite initial intuition that aperiodicity neces-

sarily induces geometrical frustration and is therefore incon-

sistent with having magnetic order.

It is therefore clearÐfrom both a theoretical and an

experimental standpointÐthat there is a need for a theoretical

classi®cation of all types of quasiperiodic long-range magnetic

order that are allowed by symmetry. Such a symmetry-based

classi®cation of quasiperiodic magnetic structures, combined

with a calculation of the selection rules, imposed by magnetic

symmetry, will be of great assistance in the study of real

magnetic quasicrystals, if and when they are discovered. It will

also offer valuable guidance in the search for these novel

materials (Lifshitz, 2000). In this paper, we provide the details

of the extension to quasicrystals (Lifshitz, 1998) of Litvin &

Opechowski's theory of spin groups (Litvin, 1973; Litvin &

Opechowski, 1974; Litvin, 1977). In x2, we explain how spin

groups are used to describe the magnetic symmetry of periodic

as well as quasiperiodic crystals. In x3, we give the group

theoretic details of the classi®cation of the different groups

into appropriate equivalence classes. In x4, we develop the

formalism required for the actual enumeration of spin groups

and, in x5, we derive the relations between the magnetic

symmetry of a crystal and the selection rules it imposes on

neutron diffraction experiments. In x6, we treat the case of

octagonal symmetry in two dimensions as a pedagogical

example. In a companion paper (Even-Dar Mandel & Lifshitz,

2004), we perform the actual detailed enumeration of three-

dimensional octagonal spin groups, which turns out to be

surprisingly rich. Complete enumeration for the other

common quasicrystals without explicit details will follow in

future publications.

2. Using spin groups to describe the symmetry of
magnetically ordered crystals

A d-dimensional magnetically ordered crystal, whether peri-

odic or aperiodic, is most directly described by its spin density

®eld S�r�. This ®eld is a three-component real-valued function,

transforming like an axial vector under O�3� and changing sign
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under time inversion. One may think of this function as

de®ning a set of classical magnetic moments, or spins, on the

atomic sites of the material.1 For quasiperiodic crystals, the

spin density ®eld may be expressed as a Fourier sum with a

countable in®nity of wavevectors,

S�r� � P
k2L

S�k�eik�r: �1�

The set L of all integral linear combinations of the wavevec-

tors in (1) is called the magnetic lattice, and is characterized

among other things by a rank D and by a lattice point group

GL: its rank D is the smallest number of wavevectors needed

to generate it by integral linear combinations. For quasiperi-

odic crystals, by de®nition, the rank is ®nite. For the special

case of periodic crystals, the rank is equal to the dimension d

of physical space. The set of (proper or improper) rotations,

which when applied to the origin of Fourier space leave the

magnetic lattice invariant, is the lattice point group GL, also

called the holohedry.

The theory of magnetic symmetry in quasiperiodic crystals

(Lifshitz, 1998) is a reformulation of Litvin & Opechowski's

theory of spin space groups (Litvin, 1973; Litvin &

Opechowski, 1974; Litvin, 1977). Their theory, which is

applicable to periodic crystals, is extended to quasiperiodic

crystals by following the ideas of Rokhsar, Wright & Mermin's

`Fourier-space approach' to crystallography (Rokhsar et al.,

1988a,b).2 At the heart of this approach is a rede®nition of the

concept of point-group symmetry, which enables one to treat

quasicrystals directly in physical space, as opposed to the

alternative `superspace approach' (Janssen et al., 1992). The

key to this rede®nition is the observation that point-group

rotations (proper or improper), when applied to a quasiperi-

odic crystal, do not leave the crystal invariant but rather take it

into one that contains the same spatial distributions of

bounded structures of arbitrary size.

This generalized notion of symmetry, termed indis-

tinguishability, is captured by requiring that any symmetry

operation of the magnetic crystal leaves invariant all spatially

averaged autocorrelation functions of its spin density ®eld

S�r�, for any order n and for any choice of components

�i 2 fx; y; zg,

C�n�
�1...�n

�r1; . . . ; rn� � lim
V!1

1

V

Z
V

dr S�1
�r1 ÿ r� . . . S�n�rn ÿ r�:

�2�
It has been shown (Lifshitz, 1997, in the Appendix) that an

equivalent statement for the indistinguishability of any two

quasiperiodic spin density ®elds, S�r� and S0�r�, is that their

Fourier coef®cients are related by

S0�k� � e2�i��k�S�k�; �3�

where �, called a gauge function, is a real-valued scalar func-

tion that is linear (modulo integers) on the magnetic lattice L.

This simply means that

8 k1; k2 2 L : ��k1 � k2� � ��k1� � ��k2�; �4�
where � denotes equality modulo integers.

With this in mind, we de®ne the point group G of a

d-dimensional magnetic crystal to be the set of operations g in

O�d� that leave it indistinguishable to within rotations 
 in

spin space, possibly combined with time inversion.3 Accord-

ingly, for every pair �g; 
�, there exists a gauge function, �

g �k�,

called a phase function, which satis®es

S�gk� � e2�i�

g �k�
S�k�: �5�

In general, as we shall see later, there may be many spin-space

operations 
 that, when combined with a given physical-space

rotation g, satisfy the point-group condition (5). We denote

physical-space rotations by Latin letters and spin-space

operations by Greek letters. We use a primed Greek letter to

explicitly denote the fact that a spin-space rotation is followed

by time inversion. Thus, the identity rotation in physical space

is e, the identity rotation in spin space is ", and time inversion

is "0. Also note that we use the same symbol 
 to denote an

abstract spin-space operation and to denote the 3 � 3 matrix,

operating on the ®eld S, representing this operation.

If �g; 
� and �h; �� both satisfy the point-group condition

(5), then it follows from the equality

S��gh�k� � S�g�hk�� �6�
that so does �gh; 
��. This establishes that the set ÿ of all

transformations 
 forms a group, and the set GS of all pairs

�g; 
�, satisfying the point-group condition (5), also forms a

group. The latter is a subgroup of G� ÿ, called the spin point

group. We shall consider here only ®nite groups G and ÿ,

although in general this need not be the case. The equality (6)

further implies that the corresponding phase functions, one for

each pair in GS, must satisfy the group compatibility condition,

8 �g; 
�; �h; �� 2 GS : �
�
gh �k� � �


g �hk� ���
h�k�: �7�

Note that successive application of the group compatibility

condition (7) reveals a relatively simple relation between the

phase functions of two conjugate elements �g; 
� and

�hghÿ1; �
�ÿ1� of GS,

8 �g; 
�; �h; �� 2 GS : ��
�ÿ1

hghÿ1 �hk� � �

g �k� ���

h�gkÿ k�:
�8�

A spin space group, describing the symmetry of a magnetic

crystal, whether periodic or aperiodic, is thus given by a

magnetic lattice L, a spin point group GS and a set of phase

functions �

g �k�, satisfying the group compatibility condition

(7). We continue to call this a spin space group even though its

physical-space part is no longer a subgroup of the Euclidean

group E�d�. Nevertheless, the spin space group may be given

an algebraic structure of a group of ordered triplets �g; 
;�

g �

1 We usually consider three-dimensional magnetic moments, or spins, in a
d-dimensional crystal, where d � 2 or 3, and therefore take S�r� to be a three-
component ®eld. If necessary, one can generalize to spins of arbitrary
dimension.
2 For a review, see Mermin (1992b) or Mermin (1999), for an elementary
introduction, see Lifshitz (1996b).

3 Note that since S�r� is an axial vector ®eld we can restrict 
 to be a proper
rotation without any loss of generality.
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in a manner similar to the one shown originally by Rabson et

al. (1988), and more recently again by DraÈger & Mermin

(1996), in the context of ordinary space groups for nonmag-

netic crystals.

In the case of periodic crystals, one can show [Mermin,

1992b, equation (2.18)] that any gauge function 2���k�,
relating two indistinguishable spin density ®elds as in equation

(3), is necessarily of the form k � t for some constant transla-

tion vector t independent of k, so that S0�r� � S�r� t� and

indistinguishability reduces to identity to within a translation.

One can then combine rotations in physical space and in spin

space with translations to recover the traditional spin space

groups of periodic crystals, containing operations that satisfy

S�gr� � 
S�r� t
g �; �9�
leaving the spin density ®eld identical to what it was. In the

quasiperiodic case, one must retain the general form of �

g �k�,

which is de®ned only on the magnetic lattice and cannot be

linearly extended to arbitrary k.

3. Classification of spin groups

The common symmetry properties of different magnetic

structures become clear only after they are classi®ed into

properly chosen equivalence classes. We are concerned here

with the classi®cation of magnetic crystals into Bravais classes

(x3.1), spin geometric crystal classes (x3.2), spin arithmetic

crystal classes (x3.3) and spin-space-group types (x3.4).

3.1. Bravais classes

Magnetic crystals, as well as nonmagnetic crystals, are

classi®ed into Bravais classes according to their lattices of

wavevectors. Intuitively, two magnetic lattices are in the same

Bravais class if they have the same rank D and point group GL

(to within a spatial reorientation) and if one can `interpolate'

between them with a sequence of lattices, all with the same

point group and rank. Stated more formally, as presented by

DraÈger & Mermin (1996), we say that two magnetic lattices L

and L0 belong to the same Bravais class if:

1. the two lattices are isomorphic as abelian groups, i.e there

is a one-to-one mapping, denoted by a prime (0), from L onto

L0:

0 : L ÿ! L0

k ÿ! k0
�10�

satisfying

�k1 � k2�0 � k01 � k02; �11�

2. the corresponding lattice point groups GL and G0
L are

conjugate subgroups of O�d�,
G0

L � rGLr
ÿ1; �12�

for some proper d-dimensional rotation r; and

3. the isomorphism (10) between the lattices preserves the

actions of their point groups, namely

�gk�0 � g0k0; �13�

where g0 � rgrÿ1.

Since the classi®cation of magnetic lattices for magnetic

crystals is the same as the classi®cation of ordinary lattices for

nonmagnetic crystals, we shall not expand on this issue further

but rather refer the interested reader to previous discussions

on the matter (Rokhsar et al., 1987; Mermin et al., 1987, 1990;

Mermin, 1992a,b; Mermin & Lifshitz, 1992; Lifshitz, 1996b;

DraÈger & Mermin, 1996).

3.2. Spin geometric crystal classes

When we say that two magnetic crystals `have the same spin

point group', we normally mean that they belong to the same

equivalence class of spin point groups, called a spin geometric

crystal class. We say that two spin point groups GS and G0
S are

in the same spin geometric crystal class if they are conjugate

subgroups of O�d� � �SO�3� � 10�, where 10 is the time inver-

sion group, containing the identity " and the time inversion

operation "0. This simply means that

G0
S � �r; ��GS�r; ��ÿ1; �14�

for some physical-space rotation r 2 O�d�, and some spin-

space operation � 2 SO�3� � 10. The effect of these rotations

on the spin point group GS is to reorient its symmetry axes

both in physical space and in spin space.

3.3. Spin arithmetic crystal classes

The concept of a spin arithmetic crystal class is used to

distinguish between magnetic crystals that have equivalent

magnetic lattices and equivalent spin point groups but differ in

the manner in which the lattice and the spin point group are

combined. Two magnetic crystals belong to the same spin

arithmetic crystal class if their magnetic lattices are in the same

Bravais class, their spin point groups are in the same spin

geometric crystal class, and it is possible to choose the lattice

isomorphism (10) such that the proper rotation r used in (12)

to establish the lattice equivalence is the same rotation used in

(14) to establish the spin-point-group equivalence.

3.4. Spin-space-group types

The ®ner classi®cation of crystals in a given spin arithmetic

crystal class into spin-space-group types is an organization of

sets of phase functions into equivalence classes according to

two criteria:

1. Two indistinguishable magnetic crystals S and S0, related

as in (3) by a gauge function �, should clearly belong to the

same spin-space-group type. Such crystals are necessarily in

the same spin arithmetic crystal class but the sets of phase

functions � and �0 used to describe their space groups may, in

general, be different. It follows directly from (3) and from the

point-group condition (5) that two such sets of phase functions

are related by

�0

g �k� � �


g �k� � ��gkÿ k�; �15�
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for every �g; 
� in the spin point group and every k in the

magnetic lattice. We call two sets of phase functions that

describe indistinguishable spin density ®elds gauge-equivalent

and equation (15), converting � into �0, a gauge transfor-

mation. The freedom to choose a gauge � by which to trans-

form the Fourier coef®cients S�k� of the spin density ®eld and

all the phase functions �, describing a given magnetic crystal,

is associated in the case of periodic magnetic crystals with the

freedom one has in choosing the real-space origin about which

all the point-group operations are applied.

2. Two distinguishable magnetic crystals S and S0, whose spin

space groups are given by magnetic lattices L and L0, spin

point groups GS and G0
S, and sets of phase functions � and �0

have the same spin-space-group type if they are in the same

spin arithmetic crystal class and if, to within a gauge trans-

formation (15), the lattice isomorphism (10) taking every

k 2 L into a k0 2 L0 preserves the values of all the phase

functions

�0
 0
g0 �k0� � �


g �k�; �16�

where g0 � rgrÿ1 and 
 0 � �
�ÿ1. Two sets of phase functions

that are related in this way are called scale-equivalent. This

nomenclature re¯ects the fact that the lattice isomorphism

(10) used to relate the two magnetic lattices may often be

achieved by rescaling the wavevectors of one lattice into those

of the other.

4. Enumeration of spin groups

The task of enumerating spin groups is limited to the

enumeration of the distinct types of spin point groups and spin

space groups. This is because the classi®cation of magnetic

lattices into Bravais classes, as well as the determination of all

distinct relative orientations of point groups G with respect to

these lattices, giving rise to different arithmetic crystal classes,

are the same as for nonmagnetic crystals, and therefore need

not be enumerated again. The enumeration of possible spin

point groups and spin space groups is greatly simpli®ed if one

®rst lists all the general constraints these groups must obey

owing to their algebraic structure. We list below the general

constraints on the spin point group GS (x4.1), discuss the

consequences of these constraints on the group of spin-space

operations ÿ (x4.2), describe a particularly interesting

connection between a certain subgroup of ÿ and the magnetic

lattice L (x4.3) and then outline the sequence of steps taken in

the enumeration of spin groups (x4.4).

4.1. Structure of the spin point group GS

The algebraic structure of the spin point group GS is

severely constrained by the point-group condition (5) as

described by the ®ve statements below. Proofs for the ®rst four

statements can be found in the review on color symmetry

(Lifshitz, 1997, Section IV.A) as they apply equally to the

structure of the color point group of a colored crystal.

1. The set of real-space operations associated with the spin-

space identity " forms a normal subgroup of G, called G".

Note that as a special case of equation (8) the phase

functions of conjugate elements of G" are related by

8g 2 G"; �h; �� 2 GS : �"
hghÿ1 �hk� � �"

g�k� ���
h�gkÿ k�:

�17�
2. The set of spin-space operations paired with the real-

space identity e forms a normal subgroup of ÿ, called the

lattice spin group ÿe. In the special case of periodic

crystals, the elements of ÿe are spin-space operations

that, when combined with translations, leave the

magnetic crystal invariant.

Again, as a special case of equation (8), the phase func-

tions of conjugate elements of ÿe are related by

8 
 2 ÿe; �h; �� 2 GS : ��
�ÿ1

e �hk� � �

e �k�: �18�

3. The lattice spin group ÿe is abelian.

4. The pairs in GS associate all the elements of each coset of

G" with all the elements of a single corresponding coset

of ÿe. This correspondence between cosets is an

isomorphism between the quotient groups G=G" and

ÿ=ÿe.

5. If two phase functions �

1
e �k� and �


2
e �k�, associated with

the lattice spin group ÿe, are identical on all wavevectors

then 
1 � 
2.

Proof

From the point-group condition (5), we obtain

8 k 2 L : 
1S�k� � 
2S�k�; �19�
implying that the two operations have the same effect on

all the spin density ®elds whose symmetry is described by

this particular spin-space-group type, and are therefore

identical.

4.2. Consequences for C and Ce

The lattice spin group ÿe is severely constrained by being an

abelian subgroup of SO�3� � 10. That is, it can have no more

than a single axis of n-fold symmetry with n> 2. This implies

that the possible lattice spin groups ÿe are the ones listed in

the ®rst column of Table 1.

The fact that the lattice spin group ÿe is a normal subgroup

of ÿ implies that ÿ cannot contain any rotation � 2 SO�3� for

which �ÿe�
ÿ1 6� ÿe. One can easily verify that the possible

supergroups ÿ for each lattice spin group ÿe are the ones listed

in the second column of Table 1.

4.3. Relation between the magnetic lattice L and the lattice

spin group Ce

We have already mentioned that, in the special case of

periodic crystals, the lattice spin group ÿe is the set of all spin-

space operations that, when combined with real-space trans-

lations, leave the magnetic crystal invariant. It should be of no

surprise then that in the quasiperiodic case there should

remain an intimate relation between the lattice spin group ÿe
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and the magnetic lattice L. We describe this relation here

without proof, which can be found in the review on color

symmetry (Lifshitz, 1997, Section IV.C), where a similar

relation exists between the lattice L and lattice color group of

a colored crystal.

Recalling that the lattice L is itself an abelian group under

the addition of wavevectors, one can show that it necessarily

contains a sublattice L0, invariant under the point group G, for

which the quotient group L=L0 is isomorphic to the lattice spin

group ÿe. This isomorphism is established through the prop-

erties of the phase functions �

e �k� associated with all

elements 
 of the lattice spin group. In particular, the

sublattice L0 is de®ned as the set of wavevectors k for which

the phases �

e �k� � 0, for all elements 
 of the lattice spin

group. Furthermore, the relation (18) between phase functions

of conjugate elements of ÿe ensures that the isomorphism

between L=L0 and ÿe is invariant under all elements �h; �� of

the spin point group. In other words, if the isomorphism maps

a particular wavevector k to a particular spin operation 
,

then, for every �h; �� in GS, the wavevector hk is mapped to

�
�ÿ1.

This relation between the lattice spin group and the

magnetic lattice not only imposes a severe constraint on the

possible lattice spin groups but also provides an additional

method to calculate the phase functions �

e �k�. One of two

alternative approaches can be taken to enumerate the allowed

combinations of ÿe and ÿ:

1. For each type of lattice spin group ÿe, listed in Table 1, see

whether there exists an invariant sublattice L0 of L giving a

modular lattice L=L0 isomorphic to ÿe and whether the

possible extensions of ÿe into supergroups ÿ, also listed in

Table 1, allow the isomorphism to be invariant under the spin

point group.

2. For each type of lattice spin group ÿe and its possible

extensions into supergroups ÿ, listed in Table 1, simply try to

solve all the group compatibility conditions (7) imposed on the

phase functions �

e �k�, associated with the elements of ÿe and

the wavevectors of L. If a solution exists, then ÿe is a possible

lattice spin group, otherwise it is not.

It should be emphasized that, either way, the possible

combinations of ÿe and ÿ, and therefore the possible types of

spin point groups, cannot be determined independently of the

choice of magnetic lattice L.

4.4. Enumeration steps

The enumeration of spin point groups and spin space groups

consists of a sequence of steps that are listed schematically in

the ¯ow chart of Fig. 1. We shall illustrate the whole process in

x6 by enumerating, as an example, all the two-dimensional

octagonal spin point groups and spin space groups.

One begins by choosing a lattice L from any of the known

Bravais classes. One then picks any point group G, compatible

with L, and lists all its normal subgroups G" along with the

corresponding quotient groups G=G". One then chooses one

of the normal subgroups G" and calculates, using one of the

two approaches described in the previous section, all allowed

combinations of ÿ and ÿe such that the quotient group ÿ=ÿe is

isomorphic to G=G". One then pairs the cosets of G" in G with

the cosets of ÿe in ÿ in all distinct ways. After checking for

equivalence, as described in x3.2, one arrives at a list of the

distinct types of spin point groups.

For each spin point group, one then looks for all solutions to

the group compatibility conditions (7) not already considered

above. These solutions are organized into gauge-equivalence

and scale-equivalence classes, as described in x3.4, yielding the

distinct spin-space-group types. Because phase functions are

linear on the lattice L [equation (4)], it is suf®cient to specify

their values on a chosen set of D wavevectors that primitively

generate the lattice. Also, it is suf®cient to specify the phase

functions only for a small set of operations �g; 
� that generate

the spin point group. All other phase functions can be deter-

mined through the group compatibility condition. Further-

more, one can greatly simplify the calculation of phase

functions by making a judicious choice of gauge prior to

solving the group compatibility conditions, rather than solving

Acta Cryst. (2004). A60, 167±178 Lifshitz and Even-Dar Mandel � Spin groups for quasicrystals 171
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Table 1
Possible lattice spin groups ÿe and their extensions into the full groups ÿ
of spin-space operations.

All possible ÿe's are listed in the ®rst column. The second column shows the
constraints on ÿ imposed by the fact that ÿe is a normal subgroup of ÿ. The
integer k is arbitrary.

ÿe ÿ

1; 10 ÿ � SO�3� � 10

n; n0; n10 ÿ � �kn�2210

222; 202020 ÿ � 43210

2�z2
020 ÿ � 42210

Figure 1
Flow chart describing the steps required for the enumeration of spin point
groups and spin space groups. Double boxes indicate the classi®cation
into equivalence classes as described in x3.
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the group compatibility conditions and only then organizing

the solutions into gauge-equivalence classes.

5. Calculation of magnetic selection rules

Magnetic selection rules, or symmetry-imposed constraints on

the form of the spin density ®eld, offer one of the most direct

experimental observations of the detailed magnetic symmetry

of a magnetic crystal. In elastic neutron scattering experi-

ments, every wavevector k in L is a candidate for a magnetic

Bragg peak, whose intensity is given by (Izyumov & Ozerov,

1970)

I�k� / jS�k�j2 ÿ jk̂ � S�k�j2; �20�
where k is the scattering wavevector and k̂ is a unit vector in its

direction. It has been shown [Lifshitz (1996a); for a sketch of

the argument see Lifshitz (1996c)] that, under generic

circumstances, there can be only three reasons for not obser-

ving a magnetic Bragg peak at k even though k is in L: (a) the

intensity I�k� 6� 0 but is too weak to be detected in the actual

experiment; (b) the intensity I�k� � 0 because S�k� is parallel

to k; and (c) the intensity I�k� � 0 because magnetic selection

rules require the Fourier coef®cient S�k� to vanish. Selection

rules that lead to a full extinction of a Bragg peak are the most

dramatic and easiest to observe experimentally. Other types of

selection rules [e.g. that lead to an extinction of one of the

components of S�k�, or to a nontrivial relation between the

components of S�k�] are harder to observe.

We calculate the symmetry-imposed constraints on S�k�, for

any given wavevector k 2 L, by examining all spin-point-

group operations �g; 
� for which gk � k. These elements

form a subgroup of the spin point group which we call the little

spin group of k, Gk
S. For elements �g; 
� of Gk

S, the point-group

condition (5) can be rewritten as


S�k� � eÿ2�i�

g �k�S�k�: �21�

This implies that every Fourier coef®cient S�k� is required to

be a simultaneous eigenvector of all spin-space operations 
 in

the little spin group of k, with the eigenvalues given by the

corresponding phase functions. If a non-trivial three-dimen-

sional vector satisfying (21) does not exist, then S�k� will

necessarily vanish. It should be noted that the phase values in

(21) are independent of the choice of gauge (15), and are

therefore uniquely determined by the spin-space-group type

of the crystal.

The process of determining the form of the simultaneous

eigenvector S�k� is greatly simpli®ed if one makes the

following observation. Owing to the group compatibility

condition (7), the set of eigenvalues in (21) for all the elements

�g; 
� 2 Gk
S forms a one-dimensional representation of that

group. Spin-space-group symmetry thus requires the Fourier

coef®cient S�k� to transform under a particular one-dimen-

sional representation of the spin-space operations in the little

spin group of k. We also independently know that S�k�
transforms under spin-space rotations as a three-dimensional

axial vector, changing its sign under time inversion. It is

therefore enough to check whether the particular one-

dimensional representation, dictated by the spin space group,

is contained within the three-dimensional axial-vector repre-

sentation. If it is not, then S�k� must vanish; if it is, then S�k�
must lie in the subspace of spin space transforming under this

one-dimensional representation.

6. Octagonal spin groups in two dimensionsÐan
example

To demonstrate the ideas presented in this paper, we

enumerate the octagonal spin groups in two dimensions and

calculate the magnetic selection rules that arise for each spin-

space-group type. We choose to treat the octagonal crystal

system because it is the most interesting example for a

magnetic quasicrystal in two dimensions. The reason for this is

twofold: ®rstly, as for nonmagnetic two-dimensional crystals,

only when the order of symmetry is a power of 2 is it possible

to have space groups with nonsymmorphic operations;

secondly, only when the order of symmetry is a power of 2 is it

possible to have simple antiferromagnetic order (Niizeki,

1990a,b; Lifshitz, 1997, 2000).

Only partial enumerations of spin groups on quasicrystals

exist to date. Decagonal spin point groups and spin-space-

group types in two dimensions have been listed by Lifshitz

(1995) without providing much detail regarding the

enumeration process. All possible lattice spin groups ÿe for

icosahedral quasicrystals have been tabulated (Lifshitz, 1998)

along with the selection rules that they impose, but a complete

enumeration of all icosahedral spin groups was not given. This

is therefore the ®rst complete and rigorous enumeration of

spin groups and selection rules for a quasiperiodic crystal

system in any dimension. In a companion paper (Even-Dar

Mandel & Lifshitz, 2004), we enumerate the octagonal spin

groups in three dimensions and, in future publications, we

intend to treat all the other common quasiperiodic crystal

systems, although we shall probably not include the full details

of the calculation.

6.1. Two-dimensional octagonal point groups and Bravais

classes

The lowest rank D that a two-dimensional octagonal lattice

can have is 4. There is just a single Bravais class of two-

dimensional rank-4 octagonal lattices (Mermin et al., 1987).

All lattices in this two-dimensional Bravais class contain an

eightfold star of wavevectors of equal length, separated by

angles of �=4 (as shown in Fig. 2), of which four, labeled

b�1� . . . b�4�, can be taken as integrally independent lattice-

generating vectors. The lattice point group GL is 8mm,

generated by an eightfold rotation r8 and either a mirror of

type m, which contains one of the generating vectors and its

negative, or a mirror of type m0, which lies between two of the

generating vectors. The two-dimensional point groups G to be

considered in the enumeration are 8mm and its subgroup 8.

There is only a single way to orient the two point groups with

respect to the lattice, so there is just a single spin arithmetic

crystal class for each spin geometric crystal class.
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6.2. Enumeration of spin point groups

We begin by listing in the ®rst columns of Table 2 all normal

subgroups G" of the point groups G � 8mm and 8, and the

resulting quotient groups G=G". Note that the two subgroups

2mm and m of the point group 8mm are not normal and

therefore do not appear in the table.

As generators of the spin point groups, we take the

generators of G (r8 and m for G � 8mm, and r8 alone for

G � 8) and combine each one with a representative spin-

space operation from the coset of ÿe with which it is paired.

We denote the spin-space operation paired with r8 by � and the

operation paired with m by �. When r8 (or m) are in G", we

take � (or �) to be ". The constraints on the operations � and

�, owing to the isomorphism between G=G" and ÿ=ÿe, are

summarized in the fourth column of Table 2. To the generators

�r8; �� and �m; ��, we add as many generators of the form

�e; 
i� as required, where 
i are the generators of ÿe (three at

the most). Although this set of spin-point-group generators

may, in general, be overcomplete, it is the most convenient set

to take.

6.3. Calculation of possible C and Ce

We use the group compatibility conditions (7) on the phase

functions �

e �k�, associated with elements in the lattice spin

group ÿe, in order to calculate the possible combinations of ÿ
and ÿe.

We ®rst note, from inspection of Table 2, that no quotient

group G=G" contains an operation of order 3. This implies,

among other things, that ÿ=ÿe cannot contain such an

operation and therefore the extensions of the orthorhombic

lattice spin groups ÿe, listed in the third row of Table 1, into

supergroups ÿ cannot be cubicÐthey can be tetragonal at

most. This then implies that, for any possible combination of ÿ
and ÿe,

8 
 2 ÿe; � 2 ÿ : �2
�ÿ2 � 
: �22�
With this relation at hand, we can proceed to prove the

following short lemmas:

1. The lattice spin group ÿe contains no more than three

elements 
 6� ", all of which are of order 2.

Proof

Let � 2 ÿ be the operation paired with r8 in the spin point

group. The relation (22) together with equation (18), relating

phase functions of conjugate elements in ÿe, yields

�

e �b�i�� � ��2
�ÿ2

e �r8
2b�i�� � �


e �r8
2b�i��: �23�

Thus, for any 
 2 ÿe,

�

e �b�1�� � �


e �b�3�� � �; �

e �b�2�� � �


e �b�4�� � �; �24�
and

�

e �ÿb�i�� � �


e �b�i�� ) �

e �b�i�� � 0 or 1

2 : �25�
The last result (owing to the linearity of the phase function)

implies through the group compatibility condition that

�
2

e �b�i�� � 0 and, therefore, that 
2 � " or that 
 is an

operation of order 2. It also implies that each of the phases �
and � in (24) can be either 0 or 1=2, but they cannot both be 0

if 
 6� ". Thus, there can be no more than three operations in

ÿe other than the identity.

2. Only a single element 
 6� " in the lattice spin group ÿe

commutes with the operation � 2 ÿ, paired with r8 in the spin

point group.

Proof

If 
 6� " in ÿe commutes with �, then the relation (18)

between phase functions of conjugate elements of 
e implies

that

�

e �b�i�� � ��
�ÿ1

e �r8b
�i�� � �


e �r8b
�i��: �26�

Thus, 
 is necessarily the operation whose phase function is

given by (24) with � � � � 1=2.

These lemmas, together with the facts that G=G" can be no

bigger than a group isomorphic to 8mm, and that the order of

the operation � paired with r8 is no bigger than 8 (proven in

x6.4.1 below), narrow the possible combinations of ÿ and ÿe,

listed in Table 1, to the ones listed in Table 3.

6.4. Enumeration of spin-space-group types

We now turn to the enumeration of spin-space-group types

by calculating the possible values of the phase functions for
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Figure 2
Generating vectors and mirror lines for two-dimensional octagonal
lattices. The solid arrows are the star of generating vectors and their
negatives �b�1� . . .� b�4�. The dashed lines show the two types of mirrors
in the 8mm point group, as described in the text.

Table 2
Normal subgroups G" of the point groups G � 8mm and 8.

The resulting quotient group G=G" is represented in the third column by a
point group, isomorphic to it. Constraints on the spin-space operations � and
�, paired with the generators r8 and m of G are listed in the fourth column. In
each line, the ®rst power of � that is in ÿe is given. �2 is always in ÿe, therefore
we only note whether � 2 ÿe. If � or � are in ÿe, they are chosen as ".

G G" G=G" Constraints

8mm 8mm 1 � � "; � � "
8 m � � "; � =2ÿe

4mm 2 �2 2 ÿe; � � "
4m0m0 2 � � �=2ÿe

4 2mm �2 2 ÿe; � =2ÿe; �ÿe 6� �ÿe

2 4mm �4 2 ÿe; � =2ÿe; �
2ÿe 6� �ÿe

1 8mm �8 2 ÿe; � =2ÿe; �
4ÿe 6� �ÿe

8 8 1 � � "
4 2 �2 2 ÿe

2 4 �4 2 ÿe

1 8 �8 2 ÿe
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the generators �r8; �� and �m; �� on the star of generating

vectors b�i�.
6.4.1. The phase function for (r8, d). As in the case of

regular space groups for nonmagnetic crystals (Rokhsar et al.,

1988b; Rabson et al., 1991), there is a gauge in which the phase

function ��
r8
�k� � 0 on the whole lattice. This can be shown by

starting with arbitrary values for the phase function ��
r8

and

performing a gauge transformation (15) with the gauge func-

tion

��b�i�� � 1
2 �

�
r8

Pi�3

j�i
b�j�

 !
; i � 1; . . . ; 4; �27�

where b�j� � ÿb�jÿ4� for j � 5; 6; 7; 8. The change to ��
r8

caused

by this gauge transformation exactly cancels it:

���
r8
�b�i�� � ��r8b

�i� ÿ b�i��
� 1

2 �
�
r8
�b�i�4� ÿ b�i��

� ÿ��
r8
�b�i��; �28�

so that after the gauge transformation ��
r8
�k� � 0 for all

wavevectors k. Note that this implies, through the group

compatibility condition (7), that ��8

e �k� � 0, so that �8 � ",

imposing an additional restriction on the group ÿ, as indicated

in Table 3.

6.4.2. The phase function for (m, l). When G � 8mm, we

need to calculate the additional phase function ��
m�k�, asso-

ciated with the second point-group generator �m; ��. The

generating relations that contribute to the determination

of this phase function are �m; ��2 � �e; �2� and

�r8; ���m; ���r8; �� � �m; ����. Applying the group compat-

ibility condition (7) to these relations, in the gauge where

��
r8
�k� � 0, yields

��2

e �b�i�� � ��
m�mb�i� � b�i��; �29�

����
m �b�i�� � ��

m�r8b
�i��: �30�

We shall ®rst determine the value of the phase ��
m�b�1�� using

equation (29), and then use equation (30) to infer the values of

��
m on the remaining three generating vectors. We start by

noting that �2 is an operation in ÿe that is the square of an

operation in ÿ. Inspection of all the possibilities, listed in Table

3, reveals that only two operations, 2�z and ", satisfy this

condition. Furthermore, if m is the mirror that leaves b�1�

invariant, then application of equation (29) to b�3�, which is

perpendicular to m (mb�3� � ÿb�3�) yields

��2

e �b�3�� � ��
m�mb�3� � b�3�� � 0: �31�

This implies that �2 cannot be 2�z because �
2�z
e has the value 1

2

on all lattice generating vectors. Therefore, �2 must be equal

to ". Application of equation (29) to b�1� now yields

0 � 2��
m�b�1�� ) ��

m�b�1�� � 0 or 1
2 ; �32�

and application of equation (29) to b�2� and b�4� shows that

��
m�b�2�� � ��

m�b�4��, but provides no further information

regarding the actual values of these phases.

Next, we examine equation (30), which can be rephrased

[using the group compatibility condition (7)] as

��
m�b�i�� ���ÿ1���

e �b�i�� � ��
m�r8b

�i��: �33�
The value of ��

m on b�1� determines the values of ��
m on the

remaining generating vectors through some phase function,

associated with an element of ÿe. Note that �ÿ1��� is an

operation in ÿe, which is the product of two operations, �ÿ1��
and �, that are conjugate in ÿ. Inspection of Table 3 shows

that, if the product of any two conjugate operations in ÿ is in

ÿe, then this product is necessarily either 2�z or the identity ".
Substituting the values �"

e�b�i�� � 0000 and �
2�z
e �b�i�� � 1

2
1
2

1
2

1
2,

we conclude that

��
m�b�i�� � 0000 or 1

2
1
2

1
2

1
2 if ��� � �,

0 1
2 0 1

2 or 1
2 0 1

2 0 if ��� � �2�z.

�
�34�

Table 3
Possible lattice spin groups ÿe and their extensions into the full groups ÿ
of spin-space operations, compatible with the two-dimensional rank-4
octagonal lattice.

All possible ÿe's are listed in the ®rst column and constraints on the possible
supergroups ÿ are listed in the second column. The phase functions for the
generators of ÿe are listed in the third column.

ÿe Constraints on ÿ Phase functions for generators of ÿe

1 ÿe � ÿ � 82210 N/A

10 ÿe � ÿ � 82210 �"0
e �b�i�� � 1

2
1
2

1
2

1
2

2 ÿe � ÿ � 82210 �
2�z
e �b�i�� � 1

2
1
2

1
2

1
2

20 ÿe � ÿ � 82210 �
20
�z

e �b�i�� � 1
2

1
2

1
2

1
2

222 422 � ÿ � 42210 �
2�x
e �b�i�� � 0 1

2 0 1
2 ;�

2�y
e �b�i�� � 1

2 0 1
2 0

2�z2
020 42020 � ÿ � 42210 �

20
�x

e �b�i�� � 0 1
2 0 1

2 ;�
20
�y

e �b�i�� � 1
2 0 1

2 0

Table 4
Two-dimensional octagonal spin point groups and spin-space-group types
with point group G � 8.

The phase function �

" is zero everywhere by choice of gauge. The values of

the phase function �

e for 
 2 ÿe on the lattice-generating vectors are listed in

Table 3. The symbols for the spin space groups are listed in the rightmost
column using the notation described in x6.5.

ÿe G" G=G" ÿ Generators Space groups

1 8 1 1 �r8; "� P8
4 2 2� �r8; 2��z� P82�

10 �r8; "
0� P80

2 4 4� �r8; 4��z� P84�

1 8 8� �r8; 8��z� P88�

�r8; 83�
�z � P883�

2 8 1 2 �r8; "�; �e; 2�z� P8�2�
4 2 4� �r8; 4��z�; �e; 2�z� P84� �2�

2�2�2 �r8; 2��x��e; 2�z� P82�
�x �2�

210 �r8; "
0��e; 2�z� P80�2�

2 4 8� �r8; 8��z��e; 2�z� P88� �2�
20 8 1 20 �r8; "��e; 20�z� P8�20�

4 2 20202 �r8; 2��x��e; 20�z� P82�
�x �20�

210 �r8; "
0��e; 20�z� P80�20�

2 4 410 �r8; 4�z��e; 20�z� P84�20�
1 8 810 �r8; 8�z��e; 20�z� P88�20�

10 8 1 10 �r8; "��e; "0� P8�10�
4 2 210 �r8; 2�z��e; "0� P82�10�
2 4 410 �r8; 4�z��e; "0� P84�10�
1 8 810 �r8; 8�z��e; "0� P88�10�

�r8; 83
�z��m; "0� P883 �10�

222 4 2 4�22� �r8; 4��z��e; 2�x��e; 2�y� P84� �222�
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Thus, there are two spin space groups for each two-dimen-

sional octagonal spin point group with G � 8mm.

6.5. Spin group tables

The resulting two-dimensional octagonal spin point groups

and spin space groups are listed in Table 4 for G � 8, and in

Table 5 for G � 8mm, using the following notation:

Each line in the tables represents one or more spin point

group and its associated spin space groups. The spin point

groups are given by their generators, listed in the ®fth column

of each table. The ®rst four columns provide the group

theoretic structure of the spin point group by listing the lattice

spin group ÿe, the normal subgroup G" of G, paired with ÿe,

the quotient group G=G", and the full group of spin-space

rotations ÿ, satisfying the requirement that G=G" ' ÿ=ÿe. We

use stars and daggers to denote optional primes on elements

of ÿ (i.e. the application of time inversion after a spin-space

rotation). If two operations in ÿ can be independently primed

or unprimed, we use a star for the ®rst and a dagger for the
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Table 5
Two-dimensional octagonal spin point groups and spin-space-group types with point group G � 8mm.

The phase function ��
r8

is zero everywhere by choice of gauge. The values of the phase function �

e for 
 2 ÿe on the lattice-generating vectors are listed in Table 3.

The possible values of the phase function ��
m are listed in the sixth column using the notation described in x6.5. The symbols for the spin space groups are listed in

the rightmost column using the notation that is also described in x6.5.

ÿe G" G=G" ÿ Generators ��
m Spin-space-group types

1 8mm 1 1 �r8; "��m; "� 0; 1
2 P8mm; P8bm

8 2 2� �r8; "��m; 2��z� 0; 1
2 P8m2�m; P8b2�m

10 �r8; "��m; "0� 0; 1
2 P8m0m; P8b0m

4mm 2 2� �r8; 2��z��m; "� 0; 1
2 P82�mm; P82�bm

10 �r8; "
0��m; "� 0; 1

2 P80mm; P80bm
4m0m0 2 2� �r8; 2��z��m; 2��z� 0; 1

2 P82�m2�m; P82�b2�m
10 �r8; "

0��m; "0� 0; 1
2 P80m0m; P80b0m

4 2mm 2�2y2�y �r8; 2��z��m; 2
y
�x� 0; 1

2 P82�m2
y
�xm; P82�b2

y
�xm

210 �r8; 2��z��m; 20��z� 0; 1
2 P82�m20�m; P82�b20�m

�r8; 2��z��m; "0� 0; 1
2 P82�m0m; P82�b0m

�r8; "
0��m; 2��z� 0; 1

2 P80m2�m; P80b2�m
2 4mm 4�2y2�y �r8; 4��z��m; 2

y
�x� 0; 1

2 P84�m2ym; P84�b2ym
1 8mm 8�2y2�y �r8; 8��z��m; 2

y
�x� 0; 1

2 P88�m2
y
�x 2; P88�b2

y
�xm

�r8; 83�
�z ��m; 2

y
�x� 0; 1

2 P883�
m2

y
�x 2; P883�

b2
y
�xm

2 8mm 1 2 �r8; "�; �m; "��e; 2�z� 0; 1
2 P8mm�2�; P8bm�2�

8 m 2�2�2 �r8; "��m; 2��x��e; 2�z� 0; 1
2 P8m2�

�x m�2�; P8b2�
�xm�2�

210 �r8; "��m; "0��e; 2�z� 0; 1
2 P8m0m�2�; P8b0m�2�

4mm 2 2�2�2 �r8; 2��x��m; "��e; 2�z� 0; 1
2 P82�

�xmm�2�; P82�
�x bm�2�

210 �r8; "
0��m; "��e; 2�z� 0; 1

2 P80mm�2�; P80bm�2�
4� �r8; 4��z��m; "��e; 2�z� A P84�mam�2�; P84�bam�2�

4m0m0 2 2�2�2 �r8; 2��x��m; 2��x��e; 2�z� 0; 1
2 P82�

�xm2�
�xm�2�; P82�

�x b2�
�xm�2�

210 �r8; "
0��m; "0��e; 2�z� 0; 1

2 P80m0m�2�; P80b0m�2�
4 2mm 4�2y2�y �r8; 4��z��m; 2

y
�x��e; 2�z� 0; 1

2 P84�m2
y
�xm�2�; P84�b2

y
�xm�2�

�r8; 2
y
�x��m; 2�xy��e; 2�z� A P82

y
�xm

2�
xy
a m�2�; P82

y
�x b

2�
xy
a m�2�

22210 �r8; "
0��m; 2��x��e; 2�z� 0; 1

2 P80m2�
�xm�2�; P80b2�

�xm�2�
�r8; 2��x��m; "0��e; 2�z� 0; 1

2 P82�
�xm0m�2�; P82�

�x b0m�2�
�r8; 2��x��m; 2�

0
�x ��e; 2�z� 0; 1

2 P82�
�xm20�

�x m�2�; P82�
�x b20�

�x m�2�
2 4mm 8�2y2�y �r8; 8��z��m; 2y�x��e; 2�z� 0; 1

2 P88�m2
y
�xm�2�; P88�b2

y
�xm�2�

20 8mm 1 20 �r8; "��m; "��e; 20�z� 0; 1
2 P8mm�20�; P8bm�20�

8 m 20220 �r8; "��m; 2�x��e; 20�z� 0; 1
2 P8m2�xm�20�; P8b2�xm�20�

210 �r8; "��m; "0��e; 20�z� 0; 1
2 P8m0m�20�; P8b0m�20�

4mm 2 20220 �r8; 2�x��m; "��e; 20�z� 0; 1
2 P82�xmm�20�; P82�x bm�20�

210 �r8; "
0��m; "��e; 20�z� 0; 1

2 P80mm�20�; P80bm�20�
4m0m0 2 20220 �r8; 2��x��m; 2�x��e; 20�z� 0; 1

2 P8m2�
�x m2�

�xm�20�; P8m2�
�x b2�

�xm�20�
210 �r8; "

0��m; "0��e; 20�z� 0; 1
2 P80m0m�20�; P80b0m�20�

4 2mm 22210 �r8; "
0��m; 2��x��e; 20�z� 0; 1

2 P80m2�xm�20�; P80b2�xm�20�
�r8; 2��x��m; "0��e; 20�z� 0; 1

2 P82�xm0m�20�; P82�x b0m�20�
2 4mm 42210 �r8; 4��z��m; 2�x��e; 20�z� 0; 1

2 P84�m2�xm�20�; P84�m2�xm�20�
1 8mm 82210 �r8; 8��z��m; 2�x��e; 20�z� 0; 1

2 P88�m2�xm�20�; P88�b2�xm�20�
10 8mm 1 10 �r8; "��m; "��e; "0� 0; 1

2 P8mm�10�; P8bm�10�
8 m 210 �r8; "��m; 2�z��e; "0� 0; 1

2 P8m2m�10�; P8b2m�10�
4mm 2 210 �r8; 2�z��m; "��e; "0� 0; 1

2 P82mm�10�; P82bm�10�
4m0m0 2 210 �r8; 2�z��m; 2�z��e; "0� 0; 1

2 P82m2m�10�; P82b2m�10�
4 2mm 22210 �r8; 2�z��m; 2�x��e; "0� 0; 1

2 P82m2�xm�10�; P82b2�xm�10�
2 4mm 42210 �r8; 4�z��m; 2�x��e; "0� 0; 1

2 P84m2�xm�10�; P84b2�xm�10�
1 8mm 82210 �r8; 8�z��m; 2�x��e; "0� 0; 1

2 P88m2�xm�10�; P88b2�xm�10�
�r8; 83

�z��m; 2�x��e; "0� 0; 1
2 P883

m2�xm�10�; P883

b2�xm�10�
222 4mm 2 4�22� �r8; 4��z��m; "��e; 2�x��e; 2�y� A P84�mam�222�; P84�bam�222�

4 2mm 42210 �r8; 4�z��m; "0��e; 2�x��e; 2�y� A P84m0
am�222�; P84b0am�222�
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second. For example, the symbol 2�2�2 stands for the two

possible groups ÿ � 222 and 20202, whereas the symbol 4�2y2�y

stands for four distinct groups, ÿ � 422, 40220, 42020 and 40202.

To list the spin space groups for each spin point group, we

must specify the values of the phase functions for all the spin-

point-group generators on the four generating vectors of the

lattice. The phase functions �

e for generators of the form

�e; 
� are already listed in Table 3 and are not repeated in

Tables 4 and 5. The phase function ��
r8

is zero everywhere

owing to the choice of gauge, and is therefore also not listed in

Tables 4 and 5. The two possible values of the phase function

��
m when the point group is 8mm, which according to equation

(34) depend on the value of ���, are listed in the sixth column

of Table 5. If ��� � �, we write 0; 1
2 to indicate that

��
m�b�i�� � 0000 or 1

2
1
2

1
2

1
2. When ��� 6� �, we write A to indi-

cate that ��
m�b�i�� � 0 1

2 0 1
2 or 1

2 0 1
2 0, alternating its value from

one generating vector to the next.

In the last column of each table, we give a unique symbol for

each spin space group, based on the familiar International

(Hermann±Mauguin) symbols for the regular (nonmagnetic)

space groups. To incorporate all the spin-space-group infor-

mation, we augment the regular symbol in the following ways:

(i) The symbol for the lattice spin group ÿe is added in

parentheses immediately after the regular space-group

symbol, unless ÿe � 1. (ii) In the case of two-dimensional

octagonal spin space groups, the values of the phase functions

associated with the elements of ÿe are unique and therefore

need not be listed. In general, one can encode these phase

functions by indicating the sublattice L0 (for which L=L0 is

isomorphic to ÿe, as described in x4.3) as a subscript of the

magnetic lattice symbol P. (iii) To each generator of the point

group G, we add a superscript listing an operation from the

coset of ÿe with which it is paired (if that operation is ", we

omit it, if it is "0, we simply add a prime, we use stars and

daggers, as described above, to denote multiple groups, and we

omit the axis about which rotations are performed if it is the �z
axis). (iv) The value of the phase function ��

m, when the point

group is 8mm, is encoded by replacing the secondary m by a b

(as in the International symbols) when ��
m�b�i�� � 1

2
1
2

1
2

1
2, and by

adding a subscript a (for alternating) so that ma indicates that

��
m�b�i�� � 0 1

2 0 1
2 and ba indicates that ��

m�b�i�� � 1
2 0 1

2 0.

6.6. Selection rules due to Ce

Operations in G that impose selection rules for neutron

diffraction are those that leave some lattice vectors invariant.

In two dimensions, these can be the identity e, which leaves all

lattice vectors invariant or mirror lines that leave all vectors

along them invariant. We ®rst consider the selection rules that

arise from operations �e; 
�, where 
 2 ÿe, and therefore apply

to all lattice vectors, expressed in terms of the four generating

vectors as k � n1b
�1� � n2b

�2� � n3b
�3� � n4b

�4�.
6.6.1. Selection rules for Ce = 2,2000,1000. If we denote the

generator of ÿe by 
, the phases �

e �b�i�� � 1

2
1
2

1
2

1
2 in all of these

cases. This implies through the eigenvalue relation (21) that

Table 6
Restrictions on the form of S�k� for any wavevector k in the magnetic
lattice when ÿe � 2, 20 or 10.

In each case, the form of S�k� depends on the parity of
P

ni where
k �P

nib
�i�. Colors refer to the points in Fig. 3.P

ni even
P

ni odd
ÿe Red or black Green or blue

2 �0; 0; Sz� �Sx; Sy; 0�
20 �Sx; Sy; 0� �0; 0; Sz�
10 �0; 0; 0� �Sx; Sy; Sz�

Table 7
Restrictions on the form of S�k� for any wavevector k in the magnetic
lattice when ÿe � 222 or 22020.

In each case, the form of S�k� depends on the parities of n1 � n3 and n2 � n4,
where k �P

nib
�i�. Colors refer to the points in Fig. 3.

n1 � n3 even n1 � n3 odd n1 � n3 odd n1 � n3 even
n2 � n4 even n2 � n4 odd n2 � n4 even n2 � n4 odd

ÿe Red Black Green Blue

222 �0; 0; 0� �0; 0; Sz� �Sx; 0; 0� �0; Sy; 0�
22020 �0; 0; Sz� �0; 0; 0� �0; Sy; 0� �Sx; 0; 0�

Figure 3
A subset of the wavevectors of the two-dimensional octagonal lattice,
exhibiting all possible selection rules. The lattice-generating vectors b�i�

and their negatives, as well as the origin, are denoted by solid black
circles. The rest of the points shown are of the form
k � n1b

�1� � n2b
�2� � n3b

�3� � n4b
�4�, with indices running from ÿ6 to 6.

Colors encode the parities of the indices of k at each point as follows.
Red: n1 � n3 and n2 � n4 both even; black: n1 � n3 and n2 � n4 both odd;
blue: n1 � n3 even and n2 � n4 odd; green: n1 � n3 odd and n2 � n4 even.
These color codes should be used together with Tables 6 and 7 to
determine the selection rules at each wavevector that are due to the
lattice spin group ÿe. Vectors ki � nib

�i� � li�b�iÿ1� � b�i�1�� invariant
under mirrors mi with ni odd, and vectors k0i � ni�b�i� � b�i�1�� �
li�b�iÿ1� � b�i�2�� invariant under mirrors m0

i, with ni � li odd, are
represented as open circles. These points should be used together with
Table 8 in determining the additional selection rules for wavevectors
along mirror lines, when the point group is 8mm.
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the form of S�k� depends on 
 and on the parity of
P

ni as

follows:


S�k� � eÿi�
P

niS�k�: �35�
Namely, whenever

P
ni is even the phase in equation (35)

vanishes and S�k� must be invariant under the operation 
;

and whenever
P

ni is odd the phase is i� and S�k� must

change its sign under 
. The consequences for the three

possible operations 
 are summarized in Table 6.

6.6.2. Selection rules for Ce = 222, 220002000. Here ÿe is

generated by �e; 2��x� and (e; 2��y), with phase functions given by

�
2�
�x

e �b�i�� � 0 1
2 0 1

2 and �
2�
�y

e �b�i�� � 1
2 0 1

2 0. The eigenvalue rela-

tions (21) for the two generators are

2��xS�k� � eÿi��n2�n4�S�k�; �36�
2��yS�k� � eÿi��n1�n3�S�k�; �37�

so that S�k� remains invariant (changes its sign) under 2��x if

n2 � n4 is even (odd); and remains invariant (changes its sign)

under 2��y if n1 � n3 is even (odd). These results are summar-

ized in Table 7 for the two possible ÿe's.

6.7. Selection rules on mirror lines

In addition to the selection rules arising from ÿe, there are

also selection rules that occur when k lies on one of the mirror

lines and is therefore invariant under re¯ection through that

particular mirror. In this case, the eigenvalue equation (21)

imposes further restrictions on the Fourier coef®cients of the

spin density ®eld.

Vectors lying along the mirror mi, which leaves the gener-

ating vector b�i� invariant, have the general form

ki � nib
�i� � li�b�iÿ1� � b�i�1��; i � 1; 2; 3; 4; �38�

where all indices are taken modulo 8, and b�j� � ÿb�jÿ4� for

j � 5; 6; 7; 8. Selection rules along m1, which is the mirror m

used to generate the point group (see Fig. 2), are determined

by the equation

�S�k1� � eÿ2i�n1�
�
m�b�1��S�k1�; �39�

where we have used the fact [equation (34)] that

��
m�b�2�� ÿ��

m�b�4�� � 0. Therefore, the form of S�k1� depends

on �, on the parity of n1 and on the phase ��
m�b�1�� as follows:

if n1 is odd and ��
m�b�1�� � 1

2, then S�k1� must change its sign

under �, otherwise S�k1� must remain invariant under �.

To obtain the selection rules for vectors lying along the

remaining mirrors mi �i � 2; 3; 4�, we use successive applica-

tions of the symmetry operation �r; �� to the result (39) for m1.

Since mk1 � k1, it follows from relation (8), between phase

functions of conjugate operations, that

�iÿ1��1ÿiS�ki� � eÿ2i�ni�
�
m�b�1��S�ki�: �40�

Thus, in general, for a vector ki, given by equation (38) and

lying along the mirror mi, the form of S�ki� must satisfy the

following requirement: if ni is odd and ��
m�b�1�� � 1

2, then S�ki�
must change its sign under �iÿ1��1ÿi, otherwise S�ki� must

remain invariant under �iÿ1��1ÿi. Note that ��
m�b�1�� � 0 for

spin space groups of type P8�m�m�ÿe� and P8�m�
a m�ÿe�, and

that ��
m�b�1�� � 1

2 for spin space groups of type P8�b�m�ÿe�
and P8�b�a m�ÿe�. Also note that in most cases ÿ is abelian, so

�iÿ1��1ÿi � � and the selection rules take a much simpler

form. These results are summarized in the second column of

Table 8.

Vectors lying along the mirror m0
i, which is between the

generating vector b�i� and b�i�1�, have the general form

k0i � ni�b�i� � b�i�1�� � li�b�iÿ1� � b�i�2��; i � 1; 2; 3; 4; �41�
again with all indices taken modulo 8, and b�j� � ÿb�jÿ4� for

j � 5; 6; 7; 8. Using the group compatibility condition for the

relation m0
1 � r8m1 (see Fig. 2), in the gauge where ��

r8
�k� � 0,

yields

���
m0

1
�k01� � ��

m�k01� � �n1 � l1����
m�b�1�� ���

m�b�2���; �42�
where we have used the fact [equation (34)] that

��
m�b�3�� � ��

m�b�1�� and ��
m�ÿb�4�� � ��

m�b�2��. Therefore, the

selection rules for m0
1 are determined by the equation

��S�k01� � eÿ2i��n1�l1����
m�b�1�����

m�b�2���S�k01�; �43�
and again, by successive rotations �r; ��, we obtain the selec-

tion rules for the remaining mirrors m0
i,
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Table 8
Additional restrictions on the form of S�k� for special wavevectors that are invariant under mirror re¯ections when G � 8mm.

Note that in most cases the group of spin-space rotations ÿ is abelian (except when ÿ contains a fourfold or an eightfold rotation, with optional primes), in which
case �iÿ1��1ÿi � � and �i��1ÿi � ��, and the selection rules take a much simpler form. Vectors ki along mirrors mi with ni odd and vectors k0i along mirrors m0

i with
ni � li odd are represented as open circles in Fig. 3.

ki � nib
�i� � li�b�iÿ1� � b�i�1�� k0i � ni�b�i� � b�i�1�� � li�b�iÿ1� � b�i�2��

Spin-space-group type along mi along m0
i

P8�m�m�ÿe� �iÿ1��1ÿiS�ki� � S�ki� �i��1ÿiS�k0i� � S�k0i�

P8�b�m�ÿe� �iÿ1��1ÿiS�ki� � S�ki� if ni even

�iÿ1��1ÿiS�ki� � ÿS�ki� if ni odd

�
�i��1ÿiS�k0i� � S�k0i�

P8�m�
a m�ÿe� �iÿ1��1ÿiS�ki� � S�ki� �i��1ÿiS�k0i� � S�k0i� if ni � li even

�i��1ÿiS�k0i� � ÿS�k0i� if ni � li odd

�

P8�b�a m�ÿe� �iÿ1��1ÿiS�ki� � S�ki� if ni even

�iÿ1��1ÿiS�ki� � ÿS�ki� if ni odd

�
�i��1ÿiS�k0i� � S�k0i� if ni � li even

�i��1ÿiS�k0i� � ÿS�k0i� if ni � li odd

�
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�i��1ÿiS�k0i� � eÿ2i��ni�li����
m�b�1�����

m�b�2���S�k0i�: �44�

Thus, in general, for a vector k0i, given by equation (41) and

lying along the mirror m0
i, the form of S�k0i� must satisfy the

following requirement: if ni � li is odd and ��
m�b�1�� �

��
m�b�2�� � 1

2 then S�k0i� must change its sign under �i��1ÿi,
otherwise S�k0i� must remain invariant under �i��1ÿi. Note that

��
m�b�1�� ���

m�b�2�� � 0 for spin space groups of type

P8�m�m�ÿe� and P8�b�m�ÿe�, and that ��
m�b�1�� ���

m�b�2�� �
1
2 for spin space groups of type P8�m�

a m�ÿe� and P8�b�a m�ÿe�.
Also note that in most cases ÿ is abelian, so �i��1ÿi � ��, and

the selection rules take a much simpler form. These results are

summarized in the third column of Table 8.
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