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Lecture 7: Stability

Lecturer: Roi Livni Scribe:

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

We so far discussed uniform-convergence generalization bounds, and provided dimension-dependent bounds

for general convex functions and improved rates for general linear models. We now move towards a new

technique that, surprisingly does not go through the uniform convergence argument.

7.1 Uniform Stability

The overall intuition behind stability arguments is to measure the sensitivity of the algorithm to a perturba-

tion of a single point. In other words, we want to measure the difference between the algorithm’s prediction

rule given that it has observed a certain point, to it’s decision had it not observed that point.

Today there are many stability arguments which largely differ on the process in which one excludes a

point out of the sample (e.g. exclusion, replacement, randomly, worst-case etc...). We will work here with

a slight variant of the following, original notion, of uniform stability introduced in [1]. Given a sample

S = {z1, . . . , zm} and a sample S′, let us write |S − S′| ≤ 1 that is S and S′ differ by at most one sample

point, and given an algorithm A, we denote by wAS the output of algorithm A on sample S:

Definition 7.1 (Uniform Stability). An algorithm A is said to be β(m)-uniform stable if given a sample S

and S′ of size m, such that

|S − S′| ≤ 1,

then

sup
z∈Z
|f(wAS , z)− f(wAS′ , z)| ≤ β(m).

Theorem 7.2. Suppose algorithm A is β(m) stable. Let wAS be the output of algorithm A on an i.i.d sample
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S drawn from distribution D. Then:

E
S∼D

[∣∣∣F (wAS )− F̂m(wAS )
∣∣∣] = E

S∼D

[∣∣∣∣∣ 1
m

m∑
i=1

f(wAS , zi)− E[f(wAS , z)]

∣∣∣∣∣
]
≤ β(m).

Corollary 7.3. Suppose algorithm A is β(m) stable, and given sample S returns wS such that

F̂m(wS) ≤ min
w∈W

F̂m(w) + ε(m).

Then

E
S∼D

[F (wS)] ≤ min
w∈W

F (w) + ε(m) + β(m).

Proof of corollary 7.3. Let w? be the minimizer of F (w) on the set W:

E
S∼D

[F (wS)− F (w?)] ≤ E
S∼D

[F (wS)− F̂m(wS) + F̂m(wS)− F (w?)]

≤ β(m) + E
S∼D

[F̂m(wS)− F (w?)] theorem 7.2

≤ β(m) + ε(m) + E
S∼D

[F̂m(w?)− F (w?)] F̂m(wS) ≤ F̂m(w?) + ε(m)

= β(m) + ε(m) + E
S∼D

[
1
m

m∑
i=1

f(w?, zi)
]
− F (w?)

= β(m) + ε(m) + 1
m

m∑
i=1

E
S∼D

[f(w?, zi)]− F (w?)

= β(m) + ε(m) E
S∼D

[f(w?, zi)] = F (w?), ∀i = 1, . . . ,m

7.1.1 Proof of theorem 7.2

Given a sample S = {z1, . . . , zm} and a point z′ ∈ Z, define for any i ∈ {1, . . . ,m}

F̂ (i)(w) = 1
m

∑
j 6=i

f(w, zj) + f(w, z′)

 ,

and also denote by wS
(i) the output of A given sample S(i) which is the that same as the original sample,

except for example zi that is replaced by z′.
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By stability we have that ∀z1, . . . , zm, z
′, z ∈ Z, |f

(
wS , z

)
− f

(
wS

(i), z
)
| ≤ β(m).

Consider a process where we randomly sample z1, . . . , zm and a point z′ all i.i.d from the distribution D.

Note that

E [F (wS)] = E
[
F (wS(i))

]
= E

[
f
(
wS

(i), zi

)]
= 1
m

m∑
i=1

E
[
f
(
wS

(i), zi

)]
.

In addition,

E
[
F̂m(wS)

]
= E

[
1
m

m∑
i=1

f (wS , zi)
]

= 1
m

m∑
i=1

E [f (wS , zi)]

Combining the two:

E
[
F (wS)− F̂m(wS)

]
= 1
m

m∑
i=1

E
[
f
(
wS

(i), zi

)
− f (wS , zi)

]
≤ β(m)

7.2 Regularization

Next, we wish to apply the technique of stability to obtain improved generalization rate. In particular, we

want dimension-independent bounds.

As we will later see, in general, an ERM algorithm or an Empirical Risk Minimzer need not be stable. So we

will need to “stabilize” the algorithm. We will do it by adding a small regularization term. Given a sample

S, let us denote the regularized empirical risk function by:

F̂λ(w) = λ

2 ‖w‖
2 + 1

m

m∑
i=1

f(w, zi).

Theorem 7.4. Let W = B(0, R), and let f be an L lipschitz function bounded by 1. Given a sample S, let

wλS ∈ W be the minimizer of the objective function

F̂λ(w) = λ

2 ‖w‖
2 + 1

m

m∑
i=1

f(w, zi). (7.1)

Then
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E
S∼D

[
F (wλS)

]
≤ min
w∈W

F (w) + λR2

2 + 4L2

λm
.

In particular, for a choice λ = 2L
R
√
m

, we have:

E
S∼D

[
F (wλS)

]
≤ min
w∈W

F (w) + 3 LR√
m
.

Plugging the right choice of sample-size m yields the following corollary:

Corollary 7.5. Any L-Lipschitz convex function is learnable (in expectation)1 over the domainW = B(0, R),

with sample complexity

m(ε) = O

(
L2R2

ε2

)
.

7.2.1 Proof of theorem 7.4

The proof relies on bounding the sub-optimality of the solution with respect to the empirical risk, as well

as the stability of the minimizer of the regularized empirical risk. Specifically, theorem 7.4 follows from

corollary 7.3 as well as the next two claims (which we next prove):

Claim 7.6. Let S be a sample and wλS ∈ W be the minimizer of eq. (7.1). Then

F̂m(wλS) ≤ min
w∈W

F̂m(w) + λR2

2 .

Claim 7.7. The algorithm A that, given a sample S, returns wλS ∈ W which is the minimizer of eq. (7.1) is
4L2

λm -stable.

Proof of claim 7.6. Again let w? be the minimizer of F̂m in w ∈ W:

F̂m(wλS) ≤ λ

2 ‖w
λ
S‖2 + F̂m(wλS) ‖wλS‖2 ≥ 0

≤ λ

2 ‖w
?‖2 + F̂m(w?) minimality of wλS

≤ λR2

2 + F̂m(w?) ‖w?‖ ≤ R.

1Recall that a function is learnable if it is learnable in expectation (Exercise 5.2)
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Proof of claim 7.7. Let S = {z1, . . . , zm} and S′ = {z′1, . . . , z′m} be two samples that differ on example i.

We set:

F̂S,λ(w) = λ

2 ‖w‖
2 + 1

m

∑
z∈S

f(w, z),

and for convenience of notation let us suppress the dependence of wλS , wλS′ and simply write wS , wS′ :

F̂S,λ
(
wS′
)
− F̂S,λ

(
wS
)

= λ

2
(
‖wS′‖2 − ‖wS‖2)+ f (wS′ , zi)− f (wS , zi)

m
+
∑
j 6=i

f (wS′ , zj)− f (wS , zj)
m

= f (wS′ , zi)− f (wS , zi)
m

+ f (wS , z′i)− f (wS′ , z′i)
m

+ λ

2
(
‖wS′‖2 − ‖wS‖2)+

m∑
j=1

f(wS′ , z′j)− f(wS , z′j)
m

= f (wS′ , zi)− f (wS , zi)
m

+ f (wS , z′i)− f (wS′ , z′i)
m

+ F̂S′,λ(wS′)− F̂S′,λ(wS)︸ ︷︷ ︸
≤0

≤ |f(wS′ , zi)− f(wS , zi)|
m

+ |f(wS′ , z′i)− f(wS , z′i)|
m

≤ 2L
m
‖wS′ − wS‖

We next exploit the strong convexity of the regularized empirical risk. Recall (definition 4.4) that a function

F is called λ-strongly-convex if

F (w)− F (w′) ≤ ∇F (w)>(w − w′)− λ

2 ‖w − w
′‖2,

and note that Fλ,S is indeed λ -strongly convex (Exercise 4.2). By the λ-strongly convex property of the

empirical loss:

F̂S,λ
(
wS′
)
− F̂S,λ(wS) ≥ ∇Fλ,S(wS)T (wS′ − wS) + λ

2 ‖wS
′ − wS‖2

= λ

2 ‖wS
′ − wS‖2 theorem 2.12
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Exploiting the upper as well as lower bound on the difference in the empirical loss we obtain that:

λ

2 ‖wS
′ − wS‖2 ≤ 2L

m
‖wS′ − wS‖ ⇒ ‖wS′ − wS‖ ≤

4L
λm

.

Finally, we exploit Lipschitzness of f :

sup
z∈Z
|f(wS , z)− f(w′S , z)| ≤ L‖wS′ − wS‖ ≤

4L2

λm
.

Exercise 7.1. Let f(w, z) be an L-Lipschitz, λ-strongly convex function defined onW = B(0, 1) and bounded

by 1. Assume D is an unknown distribution over z, and denote by F̂m, F the empirical and population risks

respectively. Let ŵ be such that:

F̂m(ŵ) ≤ min
w∈W

F̂m(w) + ε0,

and let w̄ be the minimizer of F̂m in W. Show that

1. ‖ŵ − w̄‖ ≤
√

2ε0
λ .

2. |F (ŵ)− F (w̄)| ≤
√

2L2ε0
λ

3.

E
S∼D

[F (w̄)] ≤ min
w∈W

F (w) + 4L2

λm
.

Conclude that if L = 1, any algorithm that minimizes F̂m to ε0 = O(λε2) precision where m = O(1/(λε))

then:

E
S∼D

[F (ŵ)] ≤ min
w∈W

F (w) + ε. (7.2)

How many first order oracle calls are needed if we want to use GD to find ŵ that satisfies eq. (7.2)? Describe

which variant of GD should be used (i.e. the step size).
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7.3 No Uniform Convergence

The learnability proof we provided here avoids uniform convergence. Moreover, when we apply a uniform

convergence argument we basically show that any minimizer of the empirical risk will generalize. Instead,

here, we provided what is termed an algorithmic-dependent proof: we showed that there exists an algorithm

(regularized empirical risk) that finds a solution that generalizes. A natural question is then, could we have

used uniform convergence bounds to obtain similar rates. We next answer this question in the negative, due

to a construction by [3]. We will show that any bound that is obtained via uniform convergence must be

dimension dependent:

Theorem 7.8. There exists a 1-Lipschitz convex function f(w, z), defined over W = B(0, 1), and a distri-

bution D over z such that if m ≤ O(logn) then w.p. 2/3 over a sample S drawn from the distribution D,

there exists ŵ ∈ W such that

F̂m(ŵ) = min
w∈W

F̂m(w) = 0,

but:

F (ŵ) ≥ min
w∈W

F (w) + 1
2 .

In particular, muc(1/4, 1/3) = Ω(logn).

Remark 1. The dependence in the dimension can be improved to linear, which matches the bounds for

uniform convergence that we obtained in the last lecture. We refer the reader to [2] for a slightly more

involved construction.

Proof. For our function we will let z = {0, 1}n and our distribution D over z is defined such that z(i) = 0

w.p 1/2 and z(i) = 1 w.p. 1/2 independent of other coordinates. Finally, the function f is defined to be

f(w, z) =
n∑
j=1

z(j)w2(j).

Now, given a sample z1, . . . , zm let us denote by Ej the event such that:

∀zi, zi(j) = 0.

Note that for any j we have that P (Ej) = 2−m. However, we claim that if n ≥ 2m ln 3/2, then w.p at least
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1/3 for some ĵ, the event Eĵ occurs. Indeed, because the coordinates are sampled i.i.d we have that the

events E1, . . . , En are independent and:

P
(
¬ ∪nj=1 Ej

)
= P

(
∩nj=1¬Ej}

)
=

n∏
j=1

P (¬Ej) Ej are independent

=
n∏
j=1

(1− 2−m)

= (1− 2−m)n

≤ (1− 1
2m )2m ln 3/2

≤ 2/3

Overall then, we obtain that w.p 1/3 for some ĵ the event Eĵ occurs. For a sample S, we choose then ŵ = eĵ

the standard basis vector at the coordinate where Eĵ happens. We have that

F̂m(ŵ) = 0.

However,

E
z∼D

[f(ŵ, z)] = E
z∼D

[z(ĵ)] = 1
2 .
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