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Lecture 3: Cutting Plane Methods

Lecturer: Roi Livni Scribe: Idan Amir

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

In previous lecture we defined the standard setting of convex optimization. Today we will encounter and

review a few algorithms to optimize convex problem, from a family of methods termed cutting plane methods.
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Recall that we consider a standard setup where we want to minimize a convex function f , and we assume a

first order oracle. Namely, given a parameter x we can obtain a (sub)gradient g of the function f at point

x, and we start by defining an abstract algorithm that exploits a first order oracle to the function f in order

to find a minimizer of f .
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3.0.1 Center of Gravity Algorithm

Algorithm 1 Center of Gravity
Let S1 =W

for t ≥ 1 do

Compute ct = 1
vol(St)

∫
x∈St

xdx

Query first-order oracle at ct and obtain gt ∈ ∂f(ct)

Set St+1 = St ∩ {x ∈ Rn : gTt (x− ct) ≤ 0}

end for

If we stop after t0 steps, use the zeroth-order oracle to find arg minct∈{c1,...,ct0}
f(ct)
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Theorem 3.1. Suppose we ran the COG(Center of Gravity) algorithm for t iterations and wt = arg minc′∈{c1...ct} f(c′)

then,

f(wt)− min
w∈W

f(w) ≤ 2C
(

1− 1
e

) t
n

where f :W → [−C,C].

Relying on theorem 3.1 we can find the condition on the number of iterations t that guarantees an ε-accurate

solution.

f(wt) ≤ f(w?) + ε

⇓

2C
(

1− 1
e

) t
n

≤ ε

⇓

n log 2C
ε

log−1
(

e

e− 1

)
≤ t

therefore t = O
(
n log 2C

ε

)
.
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Lemma 3.2 (Grünbaum (without proof)). Given a convex bodyW centered around 0, namely
∫
x∈W xdx = 0,

then for any v ∈ Rn:

vol
(
W ∩ {x ∈ Rn : vTx ≥ 0}

)
≥ 1
e

vol(W)

proof of theorem 3.1. Denote w? ∈ W such that f(w?) = minw∈W f(w). In round t we obtain gt ∈ ∂f(ct)

therefore,

∀w ∈ W f(ct)− f(w) ≤ gTt (ct − w)

We examine the set St \ St+1:

St \ St+1 ⊂ {w ∈ W : (w − ct)T gt > 0}

⊆ {w ∈ W : f(w) > f(ct)}

this implies that w? ∈ St for all t. Without loss of generality, assume that gt 6= 0 otherwise 0 ∈ ∂f(ct) and

thus ct is the minimum. Applying lemma 3.2 recursively we obtain,

vol(St+1) ≤
(

1− 1
e

)t
vol(W)

Suppose 0 < ε < 1 and define,

Xε = {(1− ε)w? + εw : w ∈ W}
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An immediate observation is that vol(Xε) = εnvol(W) and for ε > (1− 1
e ) t

n we get,

vol(St+1) < vol(Xε)

This implies that there exists w̄ ∈ Xε such that w̄ /∈ St+1. It also means that there exists some round t′ such

that w̄ ∈ St′ and w̄ /∈ St′+1. Thus, by the nature of our algorithm, we can deduce that (w̄− ct′)T gt′ > 0 and

finally conclude,

f(ct′) < f(w̄)

= f((1− ε)w? + εw)

≤ (1− ε)f(w?) + εC

≤ f(w?) + 2εC

This result guarantees that there exists a round t′ for ε > (1− 1
e ) t

n such that f(ct′)−f(w?) ≤ 2C
(
1− 1

e

) t
n .

Note that in the center of gravity algorithm we need, at each iteration to compute the center-of-gravity. This

is in many cases not feasible or relatively complex. But we were able to show that the algorithm is efficient

in regard to number of oracle calls.
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Exercise 3.1. In the center of gravity method we do not choose the last iteration. Show an example of a

convex function where the sequence of values in the centers f(c1), . . . , f(ct) is not monotonically decreasing:

In particular, the last iteration need not be optimal.
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3.1 The Ellipsoid Method

3.1.1 Separation Oracle

As discussed the main drawback of the center of gravity method is that it assumes we can compute the

center of gravity of an arbitrary set. The next algorithm we present avoids this computation, but requires a

separation oracle for the convex set W:

Definition 3.3 (Separation Oracle). Consider a convex set W ⊆ Rn. A separation oracle for the set W

receives x ∈ Rn and states if x ∈ W, and if x /∈ W it provides v such that

v>x > v>w ∀w ∈ W.

Example 3.1 (LP-Linear Programming). Linear programs are problems that take the form:

minimize c>w

s.t. A>w ≤ 0

For a given z, a separation oracle would check if AT z ≤ 0, and if not then there exists a row i such that

aTi z > 0 and thus gt = ai.
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Example 3.2 (SDP-Semidefinite Programming). In SDP we minimize over the positive semidefinite matri-

ces domain, namely S+ = {X ∈ Rn×n : X = XT , X � 0}. Semidefinite programs take the form:

minimize Tr(X · C)

s.t. X ∈ S+

Tr(X ·A1) ≤ b1

...

Tr(X ·Ai) ≤ bi

A well known SDP problem in learning is the matrix completion problem defined as:

minimize Tr(X)

s.t. Xi,j = Yi,j

∀(i, j) ∈ Ω

When Ω is the set of all observed indices of the matrix X.
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Exercise 3.2. Show that an SDP is a convex program. In particular, consider Rn2 as the space of n by n

matrices and show

• That the mapping X → Tr(X · C) is a linear mapping for every C. In particular, convex.

• The set S+ is convex.

• For every A and b the set {X : Tr(X ·A) ≤ b} is convex.

• If W1, . . . ,Wi are convex sets, then ∩Wi is a convex set.

• Conclude that an SDP is a convex program.

Exercise 3.3. Consider the space of matrices with the scalar product: < A,B >=
∑
i,j Ai,jBi,j. In other

words, we consider each matrix M ∈ Rn×n as a vector in Rn2 . Show that we can efficiently build a separation

oracle for an SDP (the complexity may scale with number of constraints and dimensions).
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We begin to describe the ellipsoid method:

Definition 3.4. An ellipsoid is a convex set of the form,

E = {x ∈ Rn : (x− c)TH−1(x− c) ≤ 1}

where c ∈ Rn and H is a symmetric positive definite matrix.

Lemma 3.5 (e.g, [1]). Let E0 = {x ∈ Rn : (x− c0)TH−1
0 (x− c0) ≤ 1}. For any g ∈ Rn, g 6= 0, there exists

an ellipsoid E such that:

E ⊃ {x ∈ E0 : gT (x− c0) ≤ 0}

and

vol (E) ≤ e− 1
2n vol (E0)

Furthermore for n ≥ 2 one can take E = {x ∈ Rn : (x− c)TH−1(x− c) ≤ 1} where,

c = c0 −
1

n+ 1
H0g√
g>H0g

H = n2

n2 − 1

(
H0 −

2
n+ 1

H0gg
>H0

g>H0g

)



3-12 Lecture 3: Cutting Plane Methods

3.1.2 Ellipsoid Method Algorithm

Recall that a separation oracle receives x ∈ Rn and states if x ∈ W and if x /∈ W it provides v such that

v · x ≥ v · k for every k ∈ W. We describe now the ellipsoid method, which assumes a separation oracle for

the set W. Let E0 = B(0, R) be the ball of radius R that contains W.
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Algorithm 2 Ellipsoid Method
Let c0 = 0, H0 = R2 · In×n, E0 = B(0, R)

for t = 0, . . . , t′ do

if ct /∈ W then

Call separation oracle to obtain gt ∈ Rn such that

W ⊂ {x : g>t (x− ct) ≤ 0}

else

Call first order oracle to obtain gt ∈ ∂f(ct)

end if

Let Et+1 be the ellipsoid given in Lemma 3.5 that contains {x ∈ Et : gTt (x− ct) ≤ 0}

end for

if {c1, . . . , ct′} ∩W 6= ∅ then

Use the zeroth order oracle to output

wt′ = arg min
c∈{c1,...,ct′}∩W

f(c)

end if
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Theorem 3.6. For t′ ≥ 2n2 log(R/r) the ellipsoid method satisfies {c1, . . . , ct′} ∩W 6= ∅ and

f(wt′)− min
x∈W

f(x) ≤ 2CR
r

exp
(
− t′

2n2

)

where f :W → [−C,C].

We observe that the number of iterations needed to guarantee an ε-accurate solution is O
(
n2 log( 1

ε )
)
, which

is worse than the one of the center of gravity method. However, from a computational point of view we favor

the ellipsoid method since that in many cases one can derive an efficient separation oracle, while the center

of gravity method is basically always intractable.

Ellipsoid method and Center of Gravity are both parts of a family of methods called cutting plane methods

(where they basically rely on the fact that at each iteration, we “cut” the search-space using a plane). An

improvement over the Ellipsoid method, is Vaidya’s cutting plane method that achieves oracle complexity of

Õ(n) (We use Õ(n) notation to supress logarithmic factor i.e. Õ(n) = O(n · poly(logn))). Grötschel, Lorasz

and Schrijver showed that under the membership oracle assumption one can achieve oracle complexity of

Õ(n2) [2].
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