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Abstract
We present provable algorithms for learning linear representations which are trained in a supervised
fashion across a number of tasks. Furthermore, whereas previous methods in the context of multi-
task learning only allow for generalization within tasks that have already been observed, our
representations are both efficiently learnable and accompanied by generalization guarantees to
unseen tasks. Our method relies on a certain convex relaxation of a non-convex problem, making
it amenable to online learning procedures. We further ensure that a low-rank representation is
maintained, and we allow for various trade-offs between sample complexity and per-iteration cost,
depending on the choice of algorithm.
Keywords: Multi-task learning, representation learning, online learning, generalization bounds.

1. Introduction

There are very few examples of provable methods that efficiently learn a succinct representation of
data that can generalize well to unseen tasks. Even formally stating the goal of such a representation
is non-trivial. Despite the lack of theoretical guarantees, representation learning is immensely
successful in practice: deep neural representations for vision (Krizhevsky et al., 2012) and word
embeddings for natural language processing (Mikolov et al., 2013; Pennington et al., 2014) are two
notable examples.

In this paper we ask: what kind of representation can be learned over training data, such that it
will provably generalize well to future tasks? One option is to consider generative models that give
rise to numerous successful examples such as topic models and deep generative networks. However,
the optimization problems arising in these contexts are typically NP-hard.

We instead take a discriminative approach. Consider a distribution over learning problems, each
with its own training and test set. In this setting, a good representation of the data is such that we can
efficiently learn a linear classifier over this representation and attain small error. This gives rise to a
natural loss function over the class of representations: namely, for each task we apply a predefined
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learning algorithm over the new representation (with its own generalization guarantees), and the loss
of the representation is measured in terms of the loss of the (sub)-learner.

We analyze our setting when the sub-learners are linear separators (learned by optimizing a
regularized convex risk minimization problem), and we focus on learning linear representations,
a.k.a. dimensionality reduction. Surprisingly, we show that this double optimization problem of
learning a linear representation that can be optimized via linear separators can be formulated as a
convex optimization problem. Thus, it can be learned efficiently. We further show how to efficiently
learn a linear representation that generalizes across tasks, the first result of its kind in multi-task
learning, to the best of our knowledge.

1.1. Related Work

Multi-task learning (Caruana, 1997) and the related approaches for learning to learn (Thrun and
Pratt, 1998) have been empirically effective on numerous problems. For instance, in computer vision,
the supervised learning of 1,000 classes of images (Krizhevsky et al., 2012) has led to improved
underlying image representations useful across a number of tasks. In the context of word embeddings,
due to their successful application across a number of fields, a common approach to representing
sentences and paragraphs has been to use a weighted average of the word vectors, though more
advanced techniques have been shown to improve performance (Le and Mikolov, 2014; Arora et al.,
2017). It is also common to seed NLP algorithms with word embeddings and then optimize the
embedding for the particular downstream task at hand (e.g. Peng and Dredze, 2015).

Several papers analyze multi-task learning in the context of Gaussian processes (Schwaighofer
et al., 2004; Yu et al., 2005; Bonilla et al., 2007), as well as other generative assumptions (Hernández-
Lobato et al., 2010; Guo et al., 2011). Issues such as sample complexity have also been investigated
in several papers (Baxter et al., 2000; Ando and Zhang, 2005; Maurer and Pontil, 2013; Maurer et al.,
2016). Baxter et al. (2000) and Maurer et al. (2016) in particular note their focus on the statistical
complexity of the problem, rather than the algorithmic component.

Learning a linear representation has been studied by Balcan et al. (2015). Under isotropic log
concave distributions, Balcan et al. (2015) learn a low-dimensional representation for linear threshold
functions (half-spaces) (see also (Rish et al., 2008)). Additionally, Argyriou et al. (2008) study a
related problem in finding a linear representation using multi-task learning, whereby they learn a
rotation of the data to allow sparse classifiers. We do not restrict our attention to just rotations, and
we allow any linear transformation that will improve classification.

Amit et al. (2007) and Harchaoui et al. (2012) suggest learning a representation coupled with
classifiers using a trace norm constraint, then using factorization to output a representation. This
differs from our approach in several aspects. First, this approach is not amenable to tasks being
streamlined in an online manner. More importantly, our algorithm comes with an online-to-batch
generalization guarantee with respect to future tasks. In contrast, the known bounds for trace norm
constraints are restricted to observed tasks (see (Maurer and Pontil, 2013)). Furthermore, framing the
problem in the view of online learning provides the option for optimization algorithms that induce a
low-rank representation. The theoretical framework for defining generalization of representations is
inspired by the non-generative framework of Hazan and Ma (2016).

The online Frank-Wolfe algorithm was first presented in the work by Hazan and Kale (2012), and
improvements to the regret were shown to be possible by Garber and Hazan (2013) when optimizing
over polyhedral decision sets. The works of Arora and Kale (2007) and Warmuth and Kuzmin (2012)
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independently discovered the matrix multiplicative weights algorithm, the latter being based on the
earlier work of Tsuda et al. (2005).

2. Problem Setup

We begin by formally defining the learning model of interest. An empirical minimization task in
d-dimensions consists of a pair (X ,Y) of a matrix X ∈ [−1, 1]m×d and a label vector Y ∈ {−1, 1}m
for somem ∈ N. As different tasks can have differentm, we define |X | := m to be the corresponding
number of examples for a given task (X ,Y). For normalization, we will assume that the rows of X
(i.e., the samples within the task) are restricted to the unit ball. Our setting assumes that a learner is
faced with different tasks, generated i.i.d. according to some distribution D. Throughout the paper,
unless otherwise noted, we let ‖·‖ refer to the `2-norm. In addition, we let A •B :=

∑
i,j Aij ·Bij

denote the matrix inner product, and we let ‖·‖F and ‖·‖tr denote the Frobenius and trace norms of a
matrix, respectively.

The aim of the learner is to choose a linear representation over the tasks from a pre-specified
class of matrices. We will be concerned with two classes, namely the class of low-rank embeddings:

F low
r :=

{
M ∈ Rd×r : M � 0, ‖M‖F = 1

}
and the class of Frobenius norm constrained matrices:

F :=
{
M ∈ Rd×d : M � 0, ‖M‖F = 1

}
.

The performance of the representation over a given task (X ,Y) is measured in terms of the
performance of the optimal linear classifier over the regularized empirical loss. Specifically, for a
representation and a given task, the learner suffers a loss of

Lλ(M ; (X ,Y)) := min
w

λ

2
‖w‖2 +

1

|X |

|X |∑
i=1

`(w>M>xi, yi), (1)

where X = [x1, . . . ,xm]> and Y = [y1, . . . , ym]>.
Without loss of generality, we restrict our attention to Frobenius norm constrained matrices, as

we can always learn the more complex class by scaling the λ regularizer which inhibits the norm of
the classifiers to be learned.

For a fixed empirical task, the loss function Lλ is a proxy to the generalization performance of the
linear classifier. ForC > 0 and some fixedM , choosing λ = O(C/ε) and assuming |X | = O(C/ε2),
it is known that solving Eq.1 over a set X generated i.i.d. will lead to a classifier that competes
against the optimal C-bounded norm classifier in terms of generalization error (Sridharan et al.,
2009). In turn, once we learn and fix a representation that leads to small expected empirical error, as
long as the sample size of future tasks is large enough, we are guaranteed to learn future tasks.

The objective of the learner then is to choose a linear representation that minimizes, in expectation,
the regularized empirical error objective. Namely, we wish to choose M ∈ F that would minimize

Lλ(M ;D) := E
(X ,Y)∼D

[Lλ(M ;X ,Y)] . (2)
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2.1. Main Results

We next describe our main theoretical guarantees, namely two supervised algorithms for learning the
optimal linear representation over empirical tasks. When using online Frank-Wolfe (OFW) as our
black-box optimization procedure, we have the following generalization guarantee:

Theorem 1 Assume for simplicity `(·) is a 1-Lipschitz convex function. Let S be a sample of
empirical tasks drawn i.i.d. according to some distributionD over empirical tasks. Then, Algorithm 1
outputs MS ∈ F low

|S| such that if |S| = O
((

1
λε

)4
log2(1δ )

)
, then for any δ < 1

2 , with probability at
least 1− δ over S we have that

Lλ(MS ;D) ≤ min
M∈F

Lλ(M ;D) + ε. (3)

We can obtain faster rates using a different algorithm, namely matrix multiplicative weights
(MMW) (Tsuda et al., 2005; Arora et al., 2012), at a higher cost for each iteration:

Theorem 2 Assume for simplicity `(·) is a 1-Lipschitz convex function. Let S be a sample of
empirical tasks drawn i.i.d. according to some distributionD over empirical tasks. Then, Algorithm 2

outputs MS ∈ F low
|S| such that if |S| = O

((
1
λε

)2 (√
log(d) + λ

√
log(1δ )

)2)
and |S| ≥ log(d),

then for any δ < 1
2 , with probability at least 1− δ over S we have that

Lλ(MS ;D) ≤ min
M∈F

Lλ(M ;D) + ε. (4)

Note that whenever the problem dimension exceeds the necessary sample complexity, both
Theorem 1 and Theorem 2 can provide a low-rank representation of the data due to the fact that their
respective procedures inherently construct low-rank solutions.

3. Algorithm and Proofs

Our general strategy for learning the linear representation is to minimize the empirical objective using
a sequential online algorithm. In the context of online learning, we may consider any repeated game
between a decision maker and an adversary. The decision maker iteratively generates a hypothesis
xt from a convex set K. An adversary then picks a convex loss function ft, and the decision maker
suffers a loss of ft(xt). We then define the regret of the online decision maker after T rounds to be

RegretT :=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

In order to successfully apply such an online algorithm, we first need a convex formulation
for our problem. Therefore, we begin with the observation that the loss over an empirical task
Lλ(M ; (X ,Y)) can be represented by a convex formulation using an appropriate change of variable.
After having done so, we may present our online algorithm for minimizing the regret.
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3.1. Convexification

Note that a priori, the loss objective (Eq.1) is the minimum of convex functions (i.e., for each fixed
w in Eq.1 we obtain a convex problem). In general, the minimum over convex functions does not
yield a convex function. However, by turning to the dual, one obtains a natural representation of the
problem which is convex. Indeed, for a fixed empirical task (X ,Y), considering the dual formulation
of the problem over w, we obtain the identity

Lλ(M ; (X ;Y)) = Gλ(MM>; (X ,Y)),

where we have
Gλ(MM>; (X ,Y)) := max

α
φX ,Y(MM>,α),

and

φ(X ,Y)(B,α) :=
1

|X |

|X |∑
i=1

−`∗(−λ|X |αi, yi)−
λ

2
α>XBX>α.

Here, `∗(b, yi) is the convex conjugate of `(a, yi), i.e., `∗(b, y) := maxa{a · b− `(a, y)}. We may
note that, by definition, having ‖MM>‖tr = 1 is equivalent to having ‖M‖F = 1.

The following lemma shows that by considering the dual formulation, we can obtain a convex
formulation of our problem.

Lemma 3 For every empirical task, the function G(B, (X ,Y)) is convex in B. Furthermore, the
gradient∇G(B, (X ,Y)) is efficiently computable. Finally, if B = MM> then

Gλ(B, (X ,Y)) = Lλ(M, (X ,Y)).

Proof The identity follows from standard Fenchel duality, fixingM and considering the loss objective
as a function of the variable w. Next, note that φX ,Y(B,α) is a linear function over B, hence
Gλ(B, (X ,Y)) is a convex function inB (being the maximum over linear functions). Moreover, since
Gλ(B, (X ,Y)) = maxα φ(X ,Y)(B,α), we can also compute its gradient efficiently. Indeed, it is
known that for a convex function that is the maximum over convex functions, its subgradient coincides
with the gradient of the maximizer. In particular, we have that if α∗ = argmaxα φ(X ,Y)(B,α), then

∇G(B, (X ,Y)) = ∇φ(X ,Y)(B,α∗) = −λ
2
X>α∗α∗>X . (5)

3.2. Algorithm

We next outline our algorithm for learning the representation, LRL (Linear Representation Learner),
using both online Frank-Wolfe and matrix multiplicative weights. Algorithm 1 and Algorithm 2
perform regret minimization with respect to the class of PSD trace-norm bounded matrices B over
the sequence of convex functions {Gλ(B, (Xt,Yt))}Tt=1. Specifically, we apply both the online
Frank-Wolfe (Hazan and Kale, 2012) and matrix multiplicative weights (Tsuda et al., 2005; Arora
and Kale, 2007) algorithms as black-box procedures for an online convex optimization task.
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Algorithm 1 LRL-OFW (Linear Representation Learner, via Online Frank-Wolfe)

Input: iterations T , ε > 0
Initialize B1 = e1e

>
1 , η = O(1/

√
T )

for t = 1 to T do
Get example (Xt,Yt)
Let ft(B) := G(B, (Xt,Yt))
Predict Bt, suffer loss ft(Bt)
Compute αt = argmaxα φ(Xt,Yt)(Bt,α)

Set ∇ft(B) = −λ
2X
>
t αtα

>
t Xt

Ft(B) = η
t∑

τ=1
∇fτ (Bτ ) •B + 2

λ 4√t‖B − e1e
>
1 ‖2

vt ← Approx-EV (−∇Ft(Bt), ε)
Bt+1 = (1− t−1)Bt + t−1vtv

>
t

end for

B̄ = 1
T+1

T+1∑
t=1

Bt

return M s.t. B̄ = MM>

To present our algorithms, we include the notation Approx-EV(X, ε) to denote a procedure that
computes (approximately, up to ε error) the largest singular value of the matrix X . The first method
is presented in Algorithm 1.

One advantage to online Frank-Wolfe is that it removes the projection step and instead per-
forms a linear optimization step, which is more efficient than the eigendecomposition needed for
matrix multiplicative weights. We next state our main theorem concerning the regret achieved by
Algorithm 1.

Algorithm 2 LRL-MMW (Linear Representation Learner, via Matrix Multiplicative Weights)

Input: iterations T , λ

Initialize B1 = 1
dId, η = O

(
λ

√
log(d)
T

)
for t = 1 to T do

Get example (Xt,Yt)
Let ft(B) := G(B, (Xt,Yt))
Predict Bt, suffer loss ft(Bt)
Compute αt = argmaxα φ(Xt,Yt)(Bt,α)

Set ∇ft(B) = −λ
2X
>
t αtα

>
t Xt

Let Pt := ∇ft(Bt)

Vt+1 = exp

(
−η

t∑
τ=1

Pτ

)
Bt+1 = Vt+1

‖Vt+1‖tr
end for

B̄ = 1
T+1

T+1∑
t=1

Bt

return M s.t. B̄ = MM>
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Theorem 4 Let S = {(Xt,Yt)}Tt=1 be a stochastic sequence of empirical tasks, and let Bt be
defined by the output of Algorithm 1 applied to S . Then, for K = {B : B � 0, ‖B‖tr = 1}, we have

T∑
t=1

Gλ(Bt, (Xt,Yt))− min
B∈K

T∑
t=1

Gλ(B, (Xt,Yt)) ≤ O

(
T 3/4

λ

)
. (6)

The following lemma will be useful for the proofs of both Theorem 4 and Theorem 8.

Lemma 5 For all t = 1, . . . , T , we have that

‖∇Gλ(B, (Xt,Yt))‖F ≤
2

λ
.

Proof As discussed, ∇Gλ(B, (Xt,Yt)) is given by −λ
2X
>
t αα>Xt. It is well known that we may

obtain a solution to the maximizer, such that ‖α‖1 ≤ 2
λ (Shalev-Shwartz et al., 2007). Thus, we

obtain a bound on the Frobenius norm of∇Gλ(B, (Xt,Yt)):

‖∇Gλ(B, (Xt,Yt))‖F =
λ

2
‖
∑
i

αixi‖2 ≤
λ

2
‖α‖21 ≤

2

λ
.

Proof [Proof of Theorem 4] We start by stating the regret bounds for online Frank-Wolfe below.

Theorem 6 (Hazan and Kale (2012), Thm 4.4) Let {ft}Tt=1 be an arbitrary sequence of L-Lipschitz
convex functions. Let K be a convex set with diameter at most D, and let {xt}Tt=1 ∈ K be the output
of the online Frank-Wolfe algorithm applied to {f̂t}Tt=1 where f̂t = ∇ft(xt) + (L/D)t−1/4. Then
we have that

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤ O(LDT 3/4).

Algorithm 1 essentially performs online Frank-Wolfe as described in Theorem 6, with the
sequence of functions {Gλ(B, (Xt,Yt))}Tt=1 which are defined over the bounded domain K = {B :
B � 0, ‖B‖tr = 1}. To see how the regret is achieved, we may observe that the diameter D of
K is indeed bounded by O(1). Furthermore, by Lemma 5, we know that {Gλ(B, (Xt,Yt))}Tt=1 are
O
(
1
λ

)
-Lipschitz. Also note that for the classK, the procedure Approx-EV calculates (approximately)

the largest singular vector v of the matrix−∇Ft(B), which in turn definesX = vv> which is known
to be the solution to min‖X‖tr=1∇ft(B) •X .

The rest of the proof follows from the observations made in Lemma 3 that the functions ft(B) =
Gλ(B, (Xt,Yt)) are indeed convex, and that the gradient of ft is indeed ∇ft(B), as we compute in
Algorithm 1.
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3.3. Proof of Theorem 1

Having derived the necessary bound on the regret for Algorithm 1, we may continue to prove the
main theorem of the paper. The proof follows from an online-to-batch argument (Cesa-Bianchi et al.,
2002; Cesa-Bianchi and Lugosi, 2006) applied on the regret bound obtained in Theorem 4. The
following theorem, which is known as the online-to-batch conversion theorem, can be found in, e.g.,
Hazan et al. (2016).

Theorem 7 (Hazan et al. (2016), Theorem 9.3) Let {xt}Tt=1 be a sequence of decisions with regret
bounded by RegretT , such that x̄ = 1

T

∑
t xt ∈ K, and let ft ∼ D be convex loss functions chosen

i.i.d. from D. Then, for δ < 1
2 , w.p. at least 1− δ,

E
f∼D

(f(x̄)) ≤ min
x∈K

E
f∼D

(f(x)) +
RegretT
T

+

√
8 log 2

δ

T
.

We can now apply this theorem with the decision set being all matrices B that are in K = {B :
B � 0, ‖B‖tr = 1}, and convex loss functions being Gλ(B; (X ,Y)), for (X ,Y) ∼ D chosen at
random from the underlying distribution D over tasks. We get that with probability at least 1− δ,

Gλ(B̄,D) ≤ min
B∈K
Gλ(B,D) +O


√

log 1
δ

λT 1/4

 .

The only thing we have to take care of is the bound on the rank of the matrix M . However, note
that B̄ = MSM

>
S is in the convex hull of the |S| 1-rank matrices vtv>t . This implies that the rank

of B̄ is at most |S| which in turn implies the same on MS . Furthermore, this implies ‖B‖tr = 1,
since the singular values of MS are such that ‖MS‖2F = ‖B‖tr = 1. Therefore MS ∈ F low

|S| . Let
B∗ := argminB∈K Gλ(B,D), and consider M∗ such that B∗ = M∗M∗>. Then, since by definition
Gλ(B̄,D) = Lλ(MS ,D) and Gλ(B∗,D) = Lλ(M∗,D), we have

Lλ(MS ,D) ≤ min
M∈F

Lλ(M,D) +O


√

log 1
δ

λT 1/4

 .

3.4. Proof of Theorem 2

Having dealt with the guarantees for the online Frank-Wolfe algorithm, we now move on to the setting
of matrix multiplicative weights. We begin by showing the following regret bound for Algorithm 2.

Theorem 8 Assume T ≥ log(d). Let S = {(Xt,Yt)}Tt=1 be a stochastic sequence of empir-
ical tasks, and let Bt be defined by the output of Algorithm 2 applied to S. Then, for K =
{B : B � 0, ‖B‖tr = 1}, we have

T∑
t=1

Gλ(Bt, (Xt,Yt))− min
B∈K

T∑
t=1

Gλ(B, (Xt,Yt)) ≤ O

(√
log(d)T

λ

)
. (7)

Proof As was the case in proving Theorem 1, we first need to establish the relevant regret bounds
attained when using matrix multiplicative weights as our black-box algorithm.
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Theorem 9 (Tsuda et al. (2005); Arora et al. (2012), Theorem 5.1) Let {Pt}Tt=1 be an arbitrary
sequence of cost matrices, let K = {B : B � 0, ‖B‖tr = 1}, let ft(B) = B • Pt, and let {Bt}Tt=1

be the matrices played by the matrix multiplicative weights algorithm. Further, suppose η is chosen
such that η‖Pt‖sp ≤ 1 for all t, where ‖ · ‖sp is the spectral norm. Then, we have that

T∑
t=1

ft(Bt)− min
B∈K

T∑
t=1

ft(B) ≤ η
T∑
t=1

Bt • P 2
t +

log(d)

η
.

Note that we may apply the algorithm since we are optimizing over the convex setK = {B : B �
0, ‖B‖tr = 1}. The computation of the gradient is done in the exact same manner as before, and the

gradients are treated as the cost matrices in the algorithm. Furthermore, by setting η = λ
2

√
log(d)
T , we

ensure that η‖Pt‖sp ≤ 1 since ‖Pt‖sp ≤ ‖Pt‖F ≤ 2
λ by Lemma 5, and T ≥ log(d) by assumption.

In addition, it follows from Lemma 5 and the fact that Bt ∈ K that

Bt • P 2
t ≤ ‖Bt‖tr · ‖P 2

t ‖sp ≤ ‖Bt‖tr · ‖Pt‖2F ≤
4

λ2
.

Taken together with our choice of η, we have that

η
T∑
t=1

Bt • P 2
t +

log(d)

η
≤ 4ηT

λ2
+

log(d)

η
=

4
√

log(d)T

λ
,

which completes the proof of Theorem 8.

We may observe that the regret bound achieved by the algorithm improves upon that of online
Frank-Wolfe by a factor of T 1/4, thus leading to an improved sample complexity in the final
theorem. Additionally, an important observation in our particular setting is that Pt = ∇ft(Bt) =
−λ

2X
>
t αtα

>
t Xt is a rank-one matrix. Thus, Algorithm 2 can be seen to naturally enforce a low-rank

structure of the output solution, as the rank of B̄ is again at most |S|, and so MS ∈ F low
|S| . The

sample complexity advantage comes at the cost of an eigendecomposition for each iteration of the
algorithm, although this can still be done in polynomial time. A guarantee on the low-rank structure
of the solution cannot hold for, e.g., projected online gradient descent, as any projection step could
destroy the low-rank structure.

To complete the proof of Theorem 2, we can again apply Theorem 7, using the regret bound
derived in Theorem 8. Consider the set of convex loss functions as Gλ(B; (X ,Y)), for (X ,Y) ∼ D.
Then, we have that with probability at least 1− δ,

Gλ(B̄,D) ≤ min
B∈K
Gλ(B,D) +O

√log(d) + λ
√

log
(
1
δ

)
λ
√
T

 .

Following the same reasoning as before, where we let MS be such that B̄ = MSM
>
S , we may

conclude that

Lλ(MS ,D) ≤ min
M∈F

Lλ(M,D) +O

√log(d) + λ
√

log
(
1
δ

)
λ
√
T

 .
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4. Discussion

We have presented efficient algorithms for linear representation learning that provably generalize,
using a methodology that stems from online learning and convex relaxation. This allows us to
simultaneously derive efficient algorithms and prove generalization error bounds that follow from
the regret guarantees.

Our model assumes a learner who is presented with tasks arriving online and attempts to find a
linear representation that would minimize the classification error on future tasks. An important aspect
of our work is that we measure the loss of the representation in terms of the empirical error of the
learner. This allows us to decouple the generalization error of the learner from the generalization error
of the sub-learners. In other words, when we discuss the generalization abilities of our algorithm, we
do not need to worry about the generalization of the sub-learners.

The generalization performance of the sub-learners is then susceptible to the classical analysis of
learning algorithms, and would depend on the sample size of the problems we observe. To summarize,
we guarantee that over the new embedded space, the empirical error of future sub-learners will be
small. Their generalization error would then depend on the expected sample size and the complexity
of the representation we have learned.

Because we could reduce our task to an online convex optimization task, our method outputs
a representation that generalizes toward future tasks. An interesting direction would be to explore
generalization by uniform convergence for linear representations. This seems elusive due to the
inherent double-optimization, for both the representation learning and the classification over tasks.

In addition, dimensionality reduction, which can be achieved in the case of both algorithms, is
especially useful when one is faced with a novel classification task with little data. Otherwise, data
from other problems would not be necessary and one could perform representation learning together
with classification on data from the problem at hand.
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