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Abstract

Neural networks have recently re-emerged as
a powerful hypothesis class, yielding impres-
sive classification accuracy in multiple domains.
However, their training is a non-convex opti-
mization problem which poses theoretical and
practical challenges. Here we address this diffi-
culty by turning to “improper” learning of neural
nets. In other words, we learn a classifier that
is not a neural net but is competitive with the
best neural net model given a sufficient number
of training examples. Our approach relies on a
novel kernel construction scheme in which the
kernel is a result of integration over the set of
all possible instantiation of neural models. It
turns out that the corresponding integral can be
evaluated in closed-form via a simple recursion.
Thus we translate the non-convex, hard learning
problem of a neural net to a SVM with an
appropriate kernel. We also provide sample
complexity results which depend on the stability
of the optimal neural net.

1 Introduction

Deep learning architectures have re-surfaced in the last
decade as a powerful hypothesis class that can capture com-
plex mappings from inputs to target classes via multiple
layers of non-linear transformations. Using several core
training and modeling innovations, applications relying on
deep architectures have brought these models into the focus
of the machine learning community, achieving state-of-the-
art performance in varied domains ranging from machine
vision [12] to natural language processing and speech
recognition [9].

While the practical potential of deep learning is undeni-
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able, training such models involves difficult non-convex
optimization, requires the use of a range of heuristics, and
typically relies on architectures that are quite complex in
nature. This is in stark contrast to the previous trend in
machine learning, namely support vector machines, that
achieve non-linearity using the so called kernel trick, and
that are trained using quadratic programming [17].

Consequently, an obvious intriguing question is whether
the power of deep architectures can be leveraged within the
context of kernel methods. In an elegant approach to this
problem, Cho and Saul [4] suggested a new family of ker-
nels that “mimic the computation in large neural networks”.
Briefly, they provide a kernel whose features are the output
of all possible hidden units, for the continuum of weight
vectors. A nice trick allows them to apply this kernel
recursively resulting in a deep infinite network. Their
work is also similar in spirit to other continuous neural net
formalism (e.g., see [16]). The above works have employed
kernels by considering infinite deep nets. A key question,
which we address here, is whether kernels can be employed
in the context of finite architectures (i.e., a discrete number
of hidden units). We show that this can be achieved via
an “improper learning” approach (e.g., see [18, 6]). In the
improper learning approach, the learner is not required to
output a function which belongs to a given hypothesis class.
Instead, the learner can return a function from an arbitrary
class, and the goal is that the function will perform at least
as well as any function from the given class. The benefit
from this approach is that the learning problem may, in
some cases, become computationally tractable [20].

Here we follow an improper learning approach by extend-
ing the class of neural net classifiers to weighted combi-
nations of such classifiers. The weighting function is high
dimensional and continuous and therefore seems hard to
optimize at first. However, we show that this problem can
be overcome via a closed-form expression which specifies
a kernel, that can be used within a standard SVM optimizer.
We complement our algorithm with sample complexity
bounds which illustrate the trade-off between data size and
tractability.

Finally, we evaluate our improper deep kernel on simulated
data as well as object recognition benchmarks.
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2 Parametric Improper Learning

Our improper learning approach will take a parametric hy-
pothesis class of interest (e.g., neural networks) and extend
it, such that the new extended class can be learned with
kernels. We begin by describing this general approach.
In the next section we will make this idea concrete, and
provide an efficient algorithm to compute the kernel for the
hypothesis class of deep neural networks.

For simplicity in what follows we consider the binary
classification task, where a label y ∈ {0, 1} is predicted
from an input x. Given a parametric family of functions
f(x,w) (e.g., an L layered neural network with a scalar
output), the predicted label is:

y = Θ (f(x,w)) Θ (z) =

{
1 z ≥ 0
0 z < 0

(1)

In the case of a neural network,w are the weights assigned
to the different neurons at all levels of the network.

Denote the training set with M samples by {xm, ym}Mm=1.
In our setting, we aim to discriminatively learn a set of
parameters w which minimizes the classification loss on
the training set, namely to minimize the zero-one loss:

M∑
m=1

1 (ym 6= Θ (f(xm,w))) ,

where 1() is the indicator function and the summation is
over training instances.

The above combinatorial, non-convex loss is computation-
ally hard to minimize. The standard approach to circum-
venting this problem is to use a convex surrogate of the
zero-one loss, and solve the resulting convex minimization
problem. Here we will consider the hinge loss:1

M∑
m=1

max [1− 2(ym − 0.5)f(xm,w), 0] . (2)

When the function f(·,w) is linear in w (as in standard
SVM), the above would be convex in w, making the
optimization problem tractable. However, for f(·,w)
derived from a general parametric model, and in particular
from a neural network, this will generally not be the case.
We thus adopt a different approach, which will lead to a
convex optimization problem.

Our approach is to define a new feature space and a
hypothesis-class, such that the resulting prediction rules
are a superset of those obtained in Equation 1, and thus
of stronger expressive power. Therefore, we think of
this approach as an instance of improper learning of the

1Note that we are using {0, 1} labels, and hence the expression
is different from that for {−1,+1} labels. The former is more
appropriate for our later derivation.

discriminative classifier (e.g., see [6] for a review of
improper learning and related sample and computational
complexity results).

Formally, denote by F the set of functions from the
parameter vector w to the reals. Define the map ψ : X →
F as follows:

ψ(x) = f(x,w). (3)

The mapping ψ transforms the input vector x into a feature
function from the domain of w to the reals. We now
consider linear classifiers in this feature space. Each such
classifier is defined via a weight function α(w), and the
output label for a given input x is:

y = Θ

(∫
f(x,w)α(w) dw

)
. (4)

Denote the set of classifiers of the form in Equation 1
by A and the set of classifiers as in Equation 4 by A+.
Then clearly A+⊇A since the classifier f(x,w0) can be
obtained from Equation 4 by choosing α(w) = δ(w−w0),
where δ() is the Dirac delta function.2

The classifiers in A+ can be thought of as mixtures of
classifiers in A. We could have further constrained α(w)
to be a density, in which case it could have been interpreted
as a prior over A. However, we do not introduce this
additional constraint, as it limits expressive power and at
the same time complicates optimization.

We now turn to show how classifiers in A+ can be learned
efficiently. Note that the expression in the sum of Equation
2 is linear so that the following regularized hinge loss
minimization problem is convex in the function α(w):

min
α(w)

M∑
m=1

max

[
1− ym

∫
f(xm,w)α(w) dw , 0

]
+
C

2

∫
α2(w) dw. (5)

Despite the convexity of this objective in α(w) it is still not
clear how to optimize it efficiently, since α(w) is a function
over a high dimensional parameter setw. However, it turns
out that we can now use the kernel trick [17], and in turn
optimize the above problem efficiently, as shown next.

We start be defining the inner product or kernel function in
this case to be:3

K(x,x′) =

∫
f(x,w)f(x′,w)dw. (6)

2There is a technical subtlety here since δ is a generalized
function, but it is a limit of continuous differentiable functions, so
that f can be approximated arbitrarily well by such a continuous
α(w) as well.

3We assume that the integral in Equation 6 is bounded so that
the kernel exists. In later sections we propose an approach for
ensuring finiteness.
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The representer theorem [17] in this context states that
if α∗(w) is the solution to Equation 5, then there exist
coefficients β1, . . . , βM such that:∫

f(x,w)α∗(w)dw =
∑
i

βiy
iK(x,xi).

The coefficients β can be found as follows (e.g., see
[17]). Define the M × M kernel matrix K such that
Klm = ylymK(xl,xm). The β are then the solution to
the following dual quadratic program:

max
β

∑
i

βi −
1

2
βTKβ s.t.0 ≤ βi ≤ C.

In other words we have obtained a standard SVM dual
which uses the kernel defined in Equation 6. What remains
is to show how the general form of our kernel can be
evaluated for the case when f(x;w) is a finite deep neural
network. This is discussed in the next section.

3 A Kernel for Deep Networks

One of the key insights of the current work is that for
deep neural networks with threshold activation functions,
the kernel in Equation 6 can be calculated in closed form.
In this section, we derive the resulting kernel.

We begin with some notations. The architecture of a
depth M neural network will be defined via integers
N0, N1, . . . , NM representing the number of neurons in
each layer. Here N0 = d, the dimension of the input,
and NM+1 = 1 since we are considering a scalar output.
A weight matrix Wk ∈ RNk×Nk−1 parameterizes the
transition of outputs from layer k−1 into the input of layer
k. Since the last layer is a scalar we denote the last weight
vector by wM+1. We use wi

k do denote the ith row of the
matrix Wk which corresponds to input to the i′th neuron
at level k. The set of weights W1, . . . ,Wk will be denoted
byW1:k, and the overall set of weights byW .

Recall that Θ (·) is the threshold activation function defined
in Equation 1. We also apply it to vectors in an element-
wise fashion. The input into the kth layer will be a vector
zk ∈ RNk , defined recursively as:

zk(x,W1:k) = Θ (Wkzk−1(x,W1:k−1)) k > 1,

where z1 = Θ (W1x) is the input into the first layer. The z
depend recursively on x and the other parameters, but this
dependence will be dropped when clear from context.

The output of the final, linear, layer is:

f(x;W) = wT
M+1zM (x,W1:M ).

As discussed in the previous section, the output class is then
Θ (f(x;W)).

Using a well known integral [8, 4], the following function
of two vectors v,v′ will be useful throughout:

H(v,v′) ≡
∫

Θ
(
wTv

)
Θ
(
wTv′

)
dw

=
1

2
− 1

2π
arccos

v · v′

‖v‖2‖v′‖2
. (7)

We shall also make use of the following function:

J(k, l,m) ≡ 0.5− 1

2π
arccos

m√
k
√
l
. (8)

Finally, we use the binomial coefficient:

B(Nn, k, s, s
′) =

(
Nn

k, s− k, s′ − k,Nn − s− s′ + k

)
.

The following theorem provides a recursive expression for
the kernel K(x,x′) in Equation 6.

Theorem 3.1. Consider a neural network with architecture
N0, . . . , NM . Assume that the Wks are independent and
that the distribution of wi

k is uniform on the ball. The
kernel K(x,x′) in Equation 6 is given by:

K(x,x′) = VM,0(x,x′),

where Vn,q is defined recursively using:

Vn,q(x,x
′) =

Nn−1∑
s=1

Nn−1∑
s′=1

min{s,s′}∑
k=[s+s′−Nn−1]+

(
JNn−q(s, s′, k)(0.5− J(s, s′, k))qB(Nn−1, k, s, s

′)

Vn−1,s+s′−2k(x,x′)

)
The base of the recursion is:

V1,q(x,x
′) = HN1−q(x,x′)(0.5−H(x,x′))q.

Proof. For compactness we will use the following short-
hands: zM ≡ zM (x′,W1:M ), and similarly z′M ≡
zM (x′,W1:M ). The kernel is defined as:

K(x,x′) =

∫
f(x,W)f(x′,W)dW

=

∫
wT
M+1zMw

T
M+1z

′
MdW

Using the fact that E
[
wM+1w

T
M+1

]
= 1

NM
I we have:

K(x,x′) =
1

NM

∫
zTMz

′
MdW1:M
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The integral can be broken down as follows:

NMK(x,x′) =∫ (∫
Θ (WMzM−1)

T
Θ
(
WMz

′
M−1

)
dWM

)
dW1:M−1∫ (∫ NM∑

i=1

Θ
(
wi
MzM−1

)
Θ
(
wi
Mz
′
M−1

)
dWM

)
dW1:M−1

∫ (NM∑
i=1

∫
Θ
(
wi
MzM−1

)
Θ
(
wi
Mz
′
M−1

)
dwi

M

)
dW1:M−1

NM

∫ (∫
Θ (wMzM−1) Θ

(
wMz

′
M−1

)
dwM

)
dW1:M−1

NM

∫
H(zM−1, z

′
M−1)dW1:M−1

In order to compute this, we will make use of the following
auxiliary integral:

Vj,q(x,x
′) ≡ (9)∫

HNj−q(zj−1, z
′
j−1)(0.5−H(zj−1, z

′
j−1)qdW1:j−1

Note that from the aboveK(x,x′) = VM,0. Thus, to prove
our result, it remains to develop the recursive computation
of Vj,q .

The vectors z have only {0, 1} values. Furthermore, the
functionH depends only on the dot product of z(x) ·z(x′)
and their norms. Thus, we only need to consider all possi-
ble values for these dot products and norms. Accordingly,
we are interested in integrals overW conditioned on certain
z vectors. For two vectors v,v′ ∈ {0, 1}Nj define the set
ofW1:j such that z(x,W1:j) = v, z(x′,W1:j) = v′:

Cj(v,v
′,x,x′) ≡

{W1:j : zj(x,W1:j) = v, zj(x
′,W1:j) = v′}

Using this definition, and recalling the auxiliary function
Equation 8, we can rewrite Equation 9 by breaking it down
according to the norms and dot products of the z vectors:

Vj,q(x,x
′) =

Nj−1∑
s=1

Nj−1∑
s′=1

(
min{s,s′}∑

k=[s+s′−Nj−1]+

JNj−q(s, s′, k)(0.5− J(s, s′, k))q

∑
v,v′:

‖v‖=s,‖v′‖=s′,
v·v′=k

V (Cj−1(v,v′,x,x′))

)

where V () denotes the volume of the set of assignments.
This still seems hard, since there are exponentially many
assignments v. However, using Lemma 3.2 below, we
can rewrite Vj by counting how many v,v′ there are with

given s, s′, k and multiplying by the corresponding volume
element. Using simple combinatorial arguments we have:

Vj,q(x,x
′) =

(
∑
s,s′,k

JNj−q(s, s′, k)(0.5− J(s, s′, k))q

B(Nn, k, s, s
′)Vj−1,Nj−1−s−s′+2k,s+s′−2k(x,x′)

)
,

which gives the desired result.

To complete the proof, the following lemma simplifies the
form of the volume term V (Cj(v,v

′,x,x′)):

Lemma 3.2. Given two vectors v,v′ with s = ‖v‖1, s′ =
‖v‖1, k = v · v′, the volume of Cj(v,v′,x,x′) is only
dependent on s, s′, k,x,x′, and is given by:

V (Cj(v,v
′,x,x′)) = Vj,Nj−s−s′+2k,s+s′−2k(x,x′).

Proof. We write V (Cj(v,v
′,x,x)) via an integral

whose integrand takes the value of one on points in
Cj(v,v

′,x,x′) and zero otherwise. This is done via the
threshold functions Θ (·) which are constructed to be 1
whenever v is obtained as the output of the previous layers,
and a separation into the four binary cases. Below we
abuse notation and use v to represent the indices for which
vi = 1. Similarly we use vC to represent the complement
set where vi = 0. We denote the ith row of Wj by wi

j .

V (Cj(v,v
′,x,x′)) =∫( ∏

i∈v∩v′

∫
Θ
(
wi
jzj−1

)
Θ
(
wi
jz
′
j−1
)
dwi

j

∏
i∈vC∩v′C

∫
(1−Θ

(
wi
jzj−1

)
)(1−Θ

(
wi
jz
′
j−1
)
)dwi

j

∏
i∈v∩v′C

∫
Θ
(
wi
jzj−1

) (
1−Θ

(
wi
jz
′
j−1
))
dwi

j

∏
i∈vC∩v′

∫ (
1−Θ

(
wi

jzj−1
))

Θ
(
wi
jz
′
j−1
)
dwi

j

)
dWj−1.

To simplify this, note that the inner integrals in the first line
are simply of the formH(zj−1, z

′
j−1). The integrals of the

second line are also of this form:∫
(1−Θ

(
wi
jzj−1

)
)(1−Θ

(
wi
jz
′
j−1
)
)dwi

j

= 1−
∫

Θ
(
wi
jzj−1

)
dwi

j −
∫

Θ
(
wi
jz
′
j−1
)
dwi

j

+

∫
Θ
(
wi
jzj−1

)
Θ
(
wi
jz
′
j−1
)
dwi

j

=

∫
Θ
(
wi
jzj−1

)
Θ
(
wi
jz
′
j−1
)
dwi

j

= H(zj−1, z
′
j−1).
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Similarly, the integrals of the third and fourth line are∫
(1−Θ

(
wi
jzj−1

)
)Θ
(
wi
jz
′
j−1
)
dwi

j

=

∫
Θ
(
wi
jzj−1

)
dwi

j −
∫

Θ
(
wi
jzj−1

)
Θ
(
wi
jz
′
j−1
)
dwi

j

= 0.5−
∫

Θ
(
wi
jzj−1

)
Θ
(
wi
jz
′
j−1
)
dwi

j

= 0.5−H(zj−1, z
′
j−1).

Now, since the products of each line are the same, all that
we need to derive the final result is the size of each product
group. The size of v ∩ v′ is k by definition and the size
of vC ∩ v′C is Nj − s − s′ + k while the size of v ∩ v′C
and vC ∩ v′ is s − k and s′ − k, respectively. Putting this
together we can write:

V (Cj(v,v
′,x,x′))

=

∫ (
H(zj−1, z

′
j−1)

)Nj−s−s′+2k

(0.5−H(zj−1, z
′
j−1))s+s

′−2kdW1:j−1

= Vj,s+s′−2k(x,x′)

which completes our proof.

4 Generalization Bounds

Our approach extends the hypothesis class of functions
f(x;w) to a larger class defined by α, as defined in
Equation 4. As in Section 2 we refer to these as A and
A+ respectively. Using a larger class introduces the typical
bias-variance tradeoff. On the one hand, the larger class
is more expressive; on the other hand it is more prone
to over-fitting. In the theoretical analysis below, we ask
a simple question. Given that there exists an ε0 accurate
hypothesis in A, how many samples are required to find it
when learning in A+.

In what follows, we use the hinge loss to quantify the error
of a classifier:4

`(z, y) = max(1− 2(y − 0.5)z, 0). (10)

Given a function α(w) we consider classifiers as in Equa-
tion 4. Namely, we define a function:

g(x;α) =

∫
f(x,w)α(w)dw, (11)

and the classifier is y = Θ (g(x;w)). The corresponding
empirical and generalization hinge losses are:

L̂(α) =
1

M

M∑
m=1

`(g(xm;α), ym)

L(α) = E(x,y)∼D [`(g(x;α), y)]] ,

4Recall we are considering labels in {0, 1}.

Where D is the true underlying distribution. Finally, define
the squared norm of α via:

‖α‖2 =

∫
α2(w)dw. (12)

For simplicity, we let dw be the uniform distribution over
the unit ball in Rd.

4.1 Dimension Based Bound

We begin by recalling a standard sample complexity result
for linear classifiers, relating the norm of the weights (in
our case the function α) to generalization error. The
theorem follows Corollary 4 in [21].

Theorem 4.1. Let {(xm, ym)}Mm=1 be a sample of size M
drawn IID from D. Given δ > 0 and α0, the following
holds with probability at least 1 − δ over a sample of size

M . Assume that C is chosen such that C = O(

√
log 1/δ√
‖α0‖2M

).

Then the α that minimizes Equation 5 satisfies:

L(α) ≤ L(α0) +O

(√
‖α0‖2 log 1/δ

M

)
,

The above is a standard result for learning inA+. However,
our key interest is in relating A to A+. Specifically, we
would like to identify cases where learning in A+ will
result in similar generalization to learning in A.

Denote the best hypothesis in A by w0, and denote its
generalization error by ε0. When can learning in A+

result in error ε0? As stated earlier, the hypothesis w0 ∈
A corresponds to a hypothesis α ∈ A+ where α is a
delta function centered at w0. However, this α will have
large (unbounded) norm ‖α‖2, and will thus require an
unbounded sample size to discover.

To overcome this difficulty, we add an assumption that w0

is not an isolated good solution, but is rather part of a ball
of good solutions. Formally, assume there exists an L such
that ‖w0‖ < 1− 1/L and:

E
‖w−w0‖<1/L

[L(f(x,w))] < ε0. (13)

In other words, w0 is the center of a ball of radius 1/L
where the expected loss is at most ε0. Intuitively, this
means that the quality of the solution w0 is stable with
respect to perturbations of radius 1/L. As the follow-
ing lemma states, this assumption implies that there is a
bounded norm α with error ε0.

Lemma 4.2. Denote the overall number of parameters in
the network by N . Under the assumptions on w0 above,
there exists an α0 with ‖α0‖2 = LN such that

L(α0) < ε0 (14)
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Proof. Consider the following function:

α0(w) =

{
LN ‖w −w0‖ < 1/L

0 else
. (15)

Note that
∫
α0(w)dw = 1 and that:

‖α0‖2 =

∫
α2
0(w)dw =

∫
‖w−w0‖<1/L

L2Ndw = LN .

(16)
Next, we relate the performance of α0 to the performance
of w in the vicinity of w0:

L(α0) = E
[
`

(∫
f(x,w)α0(w), y

)]
≤ E

[∫
` (f(x,w), y)α0(w)dw

]
= E

‖w−w0‖<1/L
[L(f(x;w))] < ε0,

where the first inequality follows from Jensen and the fact
that

∫
α0(w)dw = 1, and the last inequality follows

from the assumption Equation 13. Thus we see that the
performance of α0 is the expected error of the solutions in
a neighborhood of w0.

The above Theorem 4.1 and Lemma 4.2 imply a sample
complexity result linking A and A+.

Corrolary 4.3. Given δ > 0, ε > 0 and number of samples
M = O

(
LN log 1/δ

ε2

)
, the α that minimizes Equation

5 attains a generalization error of at most ε0 + ε with
probability at least 1− δ..

The corollary has the following intuitive interpretation: the
larger the volume of good solutions in A is, the better the
sample complexity of learning in A+. The complexity is
exponential in N , but improves as L approaches 1 (i.e., as
w0 becomes more stable). It should however be noted that
the learning algorithm itself is polynomial in the number of
samples, rendering the method practical for a given training
set.

4.2 Margin Based Bound

The previous section used the number of parameters N
in the sample complexity bound. A common alternative
notion of complexity in learning theory is that of a margin.
Here we consider a margin based result for the case of a
one hidden layer network with k hidden units. As before,
we denote the weight vectors of the first layer by wi

0 for
i = 1, . . . , k and an output vector w1.

This network can for example implement an intersection of
halfspaces (if w1 is set accordingly). Previous works have
studied learning in this setting under margin assumption

[1, 10]. We make a similar assumption and study its
consequences. Specifically, we assume existence of a
solution w0,w1 such that |(w

i
0)
>x|

‖x‖ > γ for each hidden
neuron i. We further add an assumption of robustness for
the last output layer. Namely, that for every w ∈ Rk such
that ‖w −w1‖ < γ we have that

E [`(w ·Θ (W0x), y)] < ε0. (17)

Together, the above assumptions state that each hyperplane
in the first layer has a margin of γ and that there is a
ball of good output vectors w1. It easily follows that
the assumption in the previous section is satisfied with
L = γ−1. This in turn implies a sample complexity of
O(1/γ)dk+k.

The result can be improved further via a random projection
argument as in [1, 2]. Consider for example, Theorem 5
in [3]. It states that if a linear classifier separates with
margin γ then we can project to dimension O( 1

γ2 log 1
ε1δ

)
such that the resulting feature space can be separated with
error ε1 at margin γ

4 . We need the result to hold for all
the k classifiers in the first layer. Applying a union bound
yields a projection dimension of O( 1

γ2 log k
ε1δ

).

The above implies that we can use the projected dimension
in place of the input dimension d. Since that margin γ is
preserved, the assumption of the previous section is still
preserved with L = O( 1

γ ). Putting all these components
together we arrive at a sample complexity of

O(
1

ε2
γ
− k
γ2

log kδ log
1

δ
).

The dependence on the input dimension has been replaced
by a dependence the margin γ. The number of hidden units
k remains, since we have not reduced the dimensionality of
the hidden layer.

Our sample complexity result is similar to existing results
on intersection of hyperplanes [1, 10] in the sense of
exponential dependence on the margin and the number of
hyperplanes (i.e., k in our case), although the bound in [10]
has a better dependence.

5 Experimental Evaluation

In this section we evaluate our method on both synthetic
and object recognition benchmarks. To compare our ap-
proach to baseline kernels, we use an identical learning
setup for all methods and only vary the kernel function.
Concretely, we compare the following: an RBF kernel, our
improper deep learning kernel (IDK), and the kernel of
[4]. For the latter, we consider two variants: one with a
threshold activation function (CS0) and one with a rectified
linear unit (CS1).
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Figure 1: (left) Comparison of test prediction accuracy as a function of the margin for our kernel (IDK) and those of Choi and Saul
(CS0 and CS1) relative to the performance of the RBF on synthetic data generated from a network with two hidden layers. The y
axis shows accuracy advantage over RBF so that larger numbers correspond to larger reduction in error. Results are averaged over 700
repetitions. (right) Comparison of test prediction accuracy when using our IDK kernel to a numerical estimation of the kernel integral
using random features, as a function of the number of features used for estimation.

5.1 Synthetic Experiments

We start by considering a synthetic setting. Training
data is generated from a network with two hidden layers,
and a threshold activation function Θ (·), as in our kernel
derivation. The input to the network is two dimensional
and the number of hidden neurons is 40 and 20 for the first
and second layer (performance was not sensitive to these
settings). The weight of each unit is sampled uniformly
in the range [−1, 1] and normalized to 1. Inputs were
uniformly sampled form the two dimensional unit square.
Input samples were also required to have a balanced label
distribution, so that cases where one of the label probabili-
ties was below 0.4 were discarded.

Finally, our theoretical analysis predicts that data with a
large margin should be easier to learn. We thus vary the
margin of the training data by removing training points
that are γ close to the decision boundary.

Comparison to Other Kernels: To fairly compare
the accuracy of the different kernels, we tune
the hyperparameters of all kernels on a holdout
set. For RBF , the kernel width is chosen from
[0.001, 0.01, 0.1, 1, 10, 100]. For IDK, we consider
network structures [40], [40, 20], [4, 4, 4, 4]. Similarly, for
CS0, CS1, we choose between 1− 5 hidden layers.

Figure 1(left) shows the performance of the classifiers as
a function of the margin parameter. It can be seen that
our IDK kernel outperforms the other methods across all
margin values. It can also be seen that as the margin grows,
all methods improve, as expected.

Comparison to Random Features: Recall that our kernel
is based on a closed form solution of the integral Equation
6. An alternative to evaluating this integral is to sample
w vectors randomly, and numerically evaluate the integral
via an empirical average. This approach is similar to the
kitchen sinks of [15], and has the advantage of being solved
via a linear SVM (where the dimension is the number of
sampled features). Here we test this approach for different
numbers of random features. For this comparison, both our
closed form IDK and the random features use the correct
model structure. Results are shown in Figure 1(right). It
can be seen that the random features approach improves as
more features are added (note the logarithmic scale of the
x-axis) but there is still a gap between it and the closed form
IDK kernel.

5.2 Object Recognition Benchmarks

One of the great success stories of deep learning is the
task of object recognition [11]. Namely, labeling an image
with a set of categories (e.g., building, frog, paper clip).
Here we evaluate IDK on two such standard benchmarks.
We use the CIFAR-10 and STL-10 datasets, with the same
preprocessing as in [7].

For the IDK hyperparameters we test the structures
[4], [4, 4, 4, 4], [16], [32], [32, 16] and [32, 16, 4]. For both
CS0 and CS1, we test up to eight hidden layers. For RBF
we test widths of [0.01, 0.1, 1, 10, 100].

Results are reported in Table 1 where we also two ad-
ditional literature baselines, namely Sum Product Net-
works (SPN ) [7] and Convolutional Kernels Networks
(CKN )[14]. On CIFAR-10 the CS1 outperforms IDK
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IDK RBF CS0 CS1 SPN CKN
CIFAR-10 81.8 81.8 81.63 82.49 83.96 82.18
STL-10 62.6 61.7 62.3 52 62.3 62.32

Table 1: Classification accuracy (in %) for the CIFAR-10 and STL-10 benchmarks. Compared are our IDK kernel, as well as the
CS0,CS1 and RBF kernels, Sum Product Networks (SPN ) [7], and Convolutional Kernels Networks (CKN )[14].

by 0.7%, and SPN outperforms all methods. For STL-10
CS1 performs quite badly, and the IDK method outper-
forms the other methods, although by a small margin.

6 Discussion

We presented a method for learning a class that extends
deep neural networks. Learning in the extended class is
equivalent to solving an SVM with the kernel derived in
Theorem 3.1. The neural nets we consider use a threshold
activation function, and a fully connected architecture with
different parameters for each weight. In this case the
outputs of hidden layers are binary, a fact which lets us
enumerate over the possible outputs and use symmetries
in the integral. Furthermore, the fact that each weight
has its own parameter further decouples the integral, and
facilitates our recursive close form kernel.

Modern deep learning architectures are different from our
architecture in several respects. First, they typically use a
rectified linear unit (ReLU) for activation (e.g., see [12]),
which yields better models.5 It is not clear whether our
integral can be solved in closed form for ReLUs, as we
can no longer use the discrete nature of the outputs. A
second difference is the use of convolutional networks,
which essentially tie different weights in the network. Such
tying does complicate our recursive derivation, and it is not
clear whether it will allow a closed form solution. Finally,
a commonly used component is max-pooling, which again
changes the structure of the integral. An exciting avenue
for future research is to study the kernel resulting from
these three components, and seeing whether it can be
evaluated in closed-form or approximated.

As mentioned in Section 5.1, it is natural to try and
evaluate the kernel numerically by sampling a finite set of
parameters w, and approximating the integral in Equation
6 as a finite average over these. As our experiments show,
this does not perform as well as using our closed form
expression for the integral, even with a large number of
random features. However, for cases where the integral
cannot be found in closed form, there may be intermediate
versions that combine partial closed form and sampling.
This may have interesting algorithmic implications, since
random features have recently been shown to result in fast
kernel based learning algorithms [5].

5Note that it is not clear whether this is due to improved
optimization or better modeling.

Recent work [13] has shown that replacing the activation
function with a quadratic unit results in improper learn-
ing that is poly time both algorithmically and in sample
complexity. It would be interesting to study such activation
functions with our kernel approach.

Another interesting recent work employing kernels is [14].
However, there the focus is on explicitly constructing a
kernel that has certain invariances. Our empirical results
show comparable results to [14].

The algorithm we present is polynomial in the number
of samples, and globally optimal due to convexity. Our
analysis in Section 4 shows that the cost of convexity is
an increase in sample complexity. Namely, to guarantee
finding a model that generalizes as well as the original
neural architecture, we need O(LN ) samples. This is
perhaps not unexpected given the recently proved hardness
of improper learning for related hypothesis classes such as
intersection of hyperplanes [6]. As we also show in 4, the
input dimension d can be replaced with the inverse margin
1
γ2 . Again, exponential dependence on margin for such
problems is manifested in related works [1, 10, 19, 13].

The key open problem in this context, and indeed for
the deep learning field, is to understand what alternative
distributional assumptions may lead to both algorithmic
tractability and polynomial sample complexity. Our kernel
approach attains tractability at the cost of increased sample
complexity. It will be very interesting to study which
assumptions will improve its sample complexity.
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