
Introduction to Computational Learning Theory Spring 2021

Lecture 7: Boosting

Lecturer: Roi Livni Scribe:

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

We are now focusing on the computational aspects of learning, and we will already discussed several learning

algorithms (focusing on learning half-spaces).

On the downside we also discussed hardness results – demonstrating that (statistical) learnability does not

always imply efficient algorithm.

We next discuss Boosting techniques, which is a useful technique to turn ‘finger rules” into a strong prediction

rule. This algorithm can also be thought as a reduction from learning to what we will term weak learning.

7.1 The problem of Boosting

Next, we consider a fundamental property of learning in the PAC model so far considered: it is amenable

to boosting. Roughly speaking, boosting refers to the process of taking a set of rough “rules of thumb” and

combining them into a more accurate predictor.

Consider for example the problem of Optical Character Recognition (OCR) in its simplest form: given a set

of bitmap images depicting hand-written postal-code digits, classify those that contain the digit “1” from

those of “0”.

Seemingly, discerning the two digits seems a formidable task taking into account the different styles of

handwriting, errors, etc. However, an inaccurate rule of thumb is rather easy to produce: in the bottom-left

area of the picture we’d expect many more dark bits for “1”s than if the image depicts a “0”. This is,

of course, a rather inaccurate statement. It does not consider the alignment of the digit, thickness of the

handwriting etc. Nevertheless, as a rule of thumb - we’d expect better-than-random performance, or some

correlation with the ground truth.

7-1

7-2 Lecture 7: Boosting

Figure 7.1: Distinguishing zero vs. one from a single pixle.

The inaccuracy of the simplistic single-bit predictor is compensated by its simplicity. It is a rather simple

task to code up a classifier based upon this rule which is very efficient indeed. The natural and fundamental

question which arises now is: can several of these rules of thumb be combined into a single, accurate and

efficient classifier? From a computational view-point the problem of Boosting can be formalized as follows:

Suppose we have an efficient algorithm (or alternatively, an oracle) O the can learn a class H to precision

ε0 = O(1), where 0 < ε0 < 1/2. The O(1) notation here means some positive constant, but arbitrary.

We require that the weak learner can do better than half, as otherwise the task is trivial. In other words, the

learner does slightly better than random guessing. Can we construct (in the presence of such weak learner)

a learning algorithm that learns to precision ε? More formally, let us define weak learnability and what is a

weak learner:

Definition 7.1 (Weak learnability). A class H of hypotheses is said to be γ-weakly-learnable if the following

holds. There exists a function m : (0, 1) → N, and an algorithm A that accepts a realizable (by H) sample

S = {(x(i), y)}mi=1 and returns an hypothesis in H, hAS , that satisfies:

if m > m(δ) and S is an IID sequence from some arbitrary distribution, the with probability 1− δ,

err(hAS) ≤ 1
2 − γ

This is an apparent weakening of the definition of statistical learnability. An algorithm that achieves weak

Lecture 7: Boosting 7-3

learning is referred to as a weak learner, and respectively we can refer to a strong learner as an algorithm

that attains statistical learning for a certain concept class. We will show that weak and strong learnability

are equivalent.

The AdaBoost algorithm Due to R.Schapire & Y.Freund [2], is probably one of the most useful and successful

algorithms in Machine Learning, both from practical perspective as well as for several theoretical results.

We will present here a simplified version of the original algorithm. The proof we will give here follows the

survey of Arora et al. on the multiplicative weight algorithm [1]. It relies on a framework called “prediction

with expert advice”. The advantage of the proof is that it will allow us to present the two problems in a

unified manner. Further, it will allow us to make a first step in the field of what is known as online learning

7.1.1 Interlude– Prediction with Expert Advice and the Multiplicative Weight

algorithm

We now forget, for a minute, the problem of Boosting and we focus on a seemingly different setting:

Expert Advice In the expert advice setting, we consider the following sequential game between a decision

maker and some adversary.

The game proceeds for T rounds, at each iteration t ≤ T the decision maker has to choose an advice from

one of n experts. The decision maker can choose the expert randomly. Specifically, at each iteration t the

decision maker chooses a distribution pt over the space of experts E = {e1, . . . , en}. Then, given pt the

adversary chooses a loss function `t : E → [0, 1] from the space of experts to the unit interval.

At the end of each round, the decision maker observes the loss function and suffers a loss according to her

random choice of expert and the loss function chosen by the adversary. Specifically the expected loss of the

decision maker at round t is given by

E
ei∼pt

[`t(ei)] =
n∑
i=1

pt(ei) · `t(ei) = pt · `t.

The aim of the learner is to minimize her regret, which is defined to be the difference between her expected

7-4 Lecture 7: Boosting

loss and the loss of the best performing expert in hindsight:

REGRET =
(

T∑
t=1

pt · `t

)
−min

i

T∑
t=1

`t(i).

We next present the Multiplicative Weight (also known as Hedge) algorithm that achieves regert O(
√
T logn):

Algorithm 1 Multiplicative Weight
Inititalization a Weight vector W1 = 1 ∈ Rn % W1 = (1, 1, . . . , 1).

Set p1(i) = 1
nW1(i), i = 1, . . . , n.

for t = 1, 2 . . . T do

Pick it ∝ pt. i.e. p(it = i) = pt(i).

incure loss `t(it).

Update Weights Wt+1(i) = Wt(i) · e−ε`t(i) i = 1, . . . , n (i)

Set pt+1(i) = Wt+1(i)∑
j
Wt+1(j)

i = 1, . . . , n.

end for

return

Lemma 7.2. Let `2 denote the n-dimensional vector of pointwise square losses (i.e `2(i) = (`(i))2), let ε > 0

and assume all losses ` to be non-negative. The Hedge Algorithm satisfies for every expert i∗:

(
T∑
t=1

pt · `t

)
−

T∑
t=1

`t(i∗) ≤ ε
T∑
t=1

pt · `2
t + logn

ε
(7.1)

Proof. Set Φt =
∑n
i=1 Wt(i) for all t ≤ T , and note that Φ1 = n.

Lecture 7: Boosting 7-5

Inspecting the sum of weights

Φt+1 =
∑

Wt+1

=
∑
i

Wt(i)e−ε`t(i)

= Φt
∑
i

pt(i)e−ε`t(i) pt(i) = Wt(i)∑
Wt(j)

≤ Φt
∑
i

pt(i)(1− ε`t(i) + ε2`2
t (i)) ∀x ≥ 0, e−x ≤ 1− x+ x2

= Φt(1− εpt · `t + ε2pt · `2
t)

≤ Φte−εpt·`t+ε2pt·`2
t 1 + x ≤ ex

And by definition of expert i∗ we have that: WT+1(i∗) = e−ε
∑T

t=1
`t(i∗). Given that WT+1(i∗) is less then

the sum of weights ΦT+1, we have that

WT+1(i∗) ≤ ΦT+1 ≤ ne−ε
∑

pt·`t+ε2
∑

pt·`2
t

Taking logarithm of both sides we get:

−ε
T∑
t=1

`t(i∗) ≤ logn− ε
T∑
t=1

pt · `t + ε2
T∑
t=1

pt · `2
t .

And the result follows be rearranging terms.

Theorem 7.3. Apply Alg. 1 to the Online Expert problem, with ε =
√

logn
T then

RegretT = O(
√
T logn)

Proof. First observe that `2 ≤ 1 hence pt · `2
t ≤ 1. Plugging this into Eq. 7.1 we obtain that for every i∗:

∑
pt · `t − `t(i∗) ≤ Tε+ logn

ε

The algorithm picks the action of expert i at iteration i according to pt hence incurs expected loss of pt · `t

7-6 Lecture 7: Boosting

overall we have that for our choice of ε:

RegretT ≤ Tε+ logn
ε
≤ 2
√
T logn

We are now ready to present a simplified version of the ada–Boost algorithm. We will require the following

notation: Given a sample S = {(xi, yi)}mi=1 and a distribution vector p ∈ [0, 1]m (i.e.
∑m
i=1 p(i) = 1), we will

denote p(S) the distribution that shows example i with probability p(i).

Algorithm 2 ada-Boost
Input: A sample S = {(xi, yi)}mi=1 access to a γ-weak learner algorithm for the class H, O.

Inititalization a Weight vector W1 = 1 ∈ Rn % W1 = (1, 1, . . . , 1)

SET T = 4 log |S|/γ2

SET ε =
√

logm
T

SET p1 = 1
nW1.

for t = 1, 2 . . . T do

Receive ht = O(pt(S)).

Set `t(i) = 1[ht(xi) = yi].

Update Weights Wt+1(i) = Wt(i) · e−ε`t(i)

Set pt+1(i) = Wt+1∑
j
Wt(j)

.

end for

return MAJ(h1, . . . , hT)

Theorem 7.4. Let H be a class, and consider algorithm 2. Run it on any realizable sample S (i.e. there

exists h ∈ H such that h(xi) = yi).

Let h1, . . . , hT be the different hypotheses outputted by ada-Boost, and set hadaS = MAJ(h1, . . . , hT) to be the

predictor that outputs

MAJ(h1, . . . ,T)[x] =

1
∑

1[ht(x) = 1] ≥ T/2

0 else
.

Lecture 7: Boosting 7-7

Suppose that at each iteration the output of O is a γ-weak hypothesis for the distribution pt(S). i.e.

E
(x,y)∼pt(S)

[1[ht(x) = y] ≥ 1
2 + γ.

Then

errS(hadaS) = 0

Proof. We basically interpret adaBoost as a sequential game between a decision maker and the weak learner

as follows: The deicision maker is searching for a distribution pt that would make the weak learner “fail”:

Specifically, the decision maker chooses at each iteration a distribution pt over the sample S and an adversary

chooses a hypothesis ht: the decision maker suffers a loss 1 on any point that the adversary labels correctly.

In terms of expert advice, we think of the sample points (x1, y1), . . . , (xT , yT) as experts. Each expert

succeed, if the learner misclassified it (you can think of it as if the decision maker is searching the “hard

examples”).

The decision maker chooses a distribution pt and each “expert” suffers loss

`t(i) = 1[ht(xi) = yi].

With this interpretation, one can observe that the strategy chosen by the decision maker in adaboost is

exactly the MW algorithm. It thus follows that

T∑
t=1

pt · `t −min
i

T∑
t=1

`t(i) ≤ 2
√
T logm

On the other hand, we assume that for every t:

pt · `t ≥
1
2 + γ.

In particular
∑T
t=1 pt · `t ≥ T (1

2 + γ).

Finally, we want to show that for any sample xi, yi we have that hadaS (xi) = yi, by the definition of `t this

would be true if for every i
∑T
t=1 `t(i) ≥

T
2 .

7-8 Lecture 7: Boosting

Assume to the contrary, namely that for some i we have that
∑T
t=1 `t(i) <

T
2

(1
2 + γ)T ≤

∑
pt · `t

≤ min
i

T∑
t=1

`t(i) + 2
√
T logm

≤ 1
2T + 2

√
T logm

Rearranging we obtain the

γT ≤ 2
√
T logm

Equivalently

T ≤ 4 logm
γ2

7.1.2 Generalization Bound

We so far focused on the training error of ada–boost. In particular we showed that given a realizable sample,

the algorithm outputs a hypothesis that has 0 training error. Note that ada–boost is improper : It returns a

function of the form MAJ(h1, . . . , hT). Thus, if we want to show that adaboost generalizes, we need to give

generalization guarantee for a new class. You will prove the following statement in your exercise

Theorem 7.5. Let H be a class with VC dimension d, and let HT be a class of the form

HT = {MAJ(h1, . . . , hT)} : ht ∈ H t = 1, . . . , T}.

Then VCdimHT ≤ dT log T .

In the exercise you will also be required to compute a sample complexity bound for adaboost

Corollary 7.6. Suppose we run ada–boost on a realizable sample S drawn IID according to somae unknown

distribution with access to a γ-weak learner. There exists a sample complexity bound m(ε, δ, γ) such that if

|S| > m(ε, δ, γ), then w.p. at least (1−δ) the output hypothesis of hadaS = MAJ(h1, . . . , hT) has err(hadaS) < ε.

Lecture 7: Boosting 7-9

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-

algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[2] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

	The problem of Boosting
	Interlude– Prediction with Expert Advice and the Multiplicative Weight algorithm
	Generalization Bound

