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Lecture 2: The PAC Model
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

We now start a formal introduction of the PAC setting introduced in [1], that generalizes the example of

learning rectangles in the last class. PAC stands for:

Probably Approximately Correct

2.1 Learning Problem

In the basic statistical setting a learning problem is characterized by the following:

• Domain Set An arbitrary set X , this is usually the set of objects that we wish to classify or label. We

will usually be concerned with the case where X = Rd or X = {0, 1}d for some d: thus, in the general

case, each object that the learner might want to classify is described by d real numbers or binary bits.

The attributes, or coordinates, of the vector are refered to as features.

As an example, if X is the set of all 32 × 32 images, we may describe each image as a set of 32 × 32

real numbers, each correspond to a pixel in the picture. If for example, we wish to classify a set of

students, we might want to describe each student using her grades in a set of d exams.

• Label Set: The set Y = {0, 1} will describe the labels or class: It is the objective of the learner to

assign for each x ∈ X a label y ∈ Y. A slightly more general setup allows us to label x with labels that

are not necessarily binary (multi-class or even real numbers). But here we consider a restricted setup

where Y is binary.

• Hypothesis Class: An hypothesis class (also concept class) consists of target functions (or predictors,

or classifiers) H ⊆ YX that receive points from the domain X and return a label from Y.

2-1



2-2 Lecture 2: The PAC Model

2.2 Learning algorithm’s input/output

Given a learning problem, we analyse the performance of a learning algorithm, which depends on the domain,

the label set and the hypothesis class. The learning algorithm has access to the following:

• Input: Training Data. The input of a learning algorithm is a finite sample of labelled examples:

S = {(x1, y1), . . . (xm, ym)}. Such labelled examples are also referred to as training set. The size of the

sample set m is the sample size.

We make an assumption that there exists a distribution D over the domain X ×Y that generates

the labelled examples IID. The algorithm doesn’t know D

(in other words, it doesn’t depend on D).

• Equivalently: We can also describe a learner as an algorithm that has Oracle Access to labelled

examples. That means the algorithm can call a procedure EXAMPLE that outputs an example (x, y).

We again assume that at every call to EXAMPLE, the output (x, y) is a new independent realization

of a random variable (x, y) ∼ D distributed by some unknown distribution D. The sample complexity

of the algorithm is again defined as the number of calls the algorithm makes to the oracle EXAMPLE

• Output: The output of a learning algorithm is a prediction rule which is a function f : X → Y that

receives an unlabeled example and outputs a label. f is sometimes called a predictor, or a classifier.

2.3 Expected Error

Given an input sample S, we measure the success of the learner with respect to its success in prediction: Let

`0,1(h(x), y) =


1 h(x) 6= y

0 else
.

The objective of the learner will then be to return the smallest possible error, i.e. to minimize

errD(h) := E(x,y)∼D [`0,1(h(x), y)] (2.1)
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Eq. 2.1 depicts the expected error of the hypothesis h.

Remark. If no confusion arises, we will omit dependence on D and write err(h).

2.4 The PAC Model

Let us define the objective of the learner more formally:

Definition 2.1. [(realizable) PAC Learning] An hypothesis class H of target functions is PAC learnable if

there exists an algorithm A and function mA : (0, 1)2 → N with the following property:

Assume S = ((x1, y1), . . . , (xm, ym)) is a sample of IID examples generated by some arbitrary distribution D

such that y = h(x) w.p. 1 for some h ∈ H.

If S is the input of A and m > mA(ε, δ) then the algorithm returns a hypothesis hAS such that, with probability

1− δ (over the random choice S) :

err
(
hAS
)
< ε.

The function mA(ε, δ) is referred to as the sample complexity of algorithm A.

We say that the sample complexity of H is at most mH(ε, δ) if there exists an algorithm A such that

mH(ε, δ) ≥ mA(ε, δ) (we will usually omit the subscript H if there is no room for confusion).

2.4.1 Examples

Example 2.1. [Axis Aligned Rectangles] The first example of a hypothesis class will be of rectangles aligned

to the axis. Here we take the domain X = R2 and we let H include be defined by all rectangles that are

aligned to the axis. Namely for every (z1, z2, z3, z4) consider the following function over the plane

fz1,z2,z3,z4(x1, x2) =


1 z1 ≤ x1 ≤ z2, z3 ≤ x2 ≤ z4

0 else

Then H = {fz1,z2,z3,z4 : (z1, z2, z3, z4) ∈ R4}.
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We showed in the last lecture that the sample complexity for learning Axis Aligned Rectangles is

m(ε, δ) ≤ 4
ε

log 4/δ.

Example 2.2. [Half-spaces] A second example that is of some importance is defined by hyperplane. Here

we let the domain be X = Rd for some integer d. For every w ∈ Rd, induces a half space by considering all

elements x such that w · x ≥ 0. Thus, we may consider the class of target functions described as follows

H = {fw : w ∈ Rd, fw(x) = sign(w · x)}
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2.5 Learning Finite Classes

As a first example for learnable classes, we consider finite classes. We assume that H = {h1, . . . , hn} is a

finite set of target functions and we denote by |H| the size of H:

Theorem 2.2 (Finite Classes are learnable). Any finite hypothesis class is learnable with (realizable) sample

complexity

m = O

(
1
ε

ln |H|
δ

)
.
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The algorithm A that achieves the above rate works as follows: Given a sample S, return hS ∈ H such that:

hS = arg min
h∈H

1
m

m∑
i=1

`0,1(h(xi), yi) (2.2)

Empirical Risk Minimization (ERM)

Before we set out to prove theorem 2.2 we discuss the suggested algorithm for the solution.

The Empirical Risk Given a sample S the empirical risk is defined to be

errS(h) = 1
m

m∑
i=1

`0,1(h(xi), yi).

The algorithm we described for learning the class H simply picks any hypothesis h with small empirical

error. This is in fact not really an algorithm but more of a meta-algorithm.

ERM Rule: We call an algorithm an Empirical Risk Minimizer (or ERM algorithm, or ERM rule) any

algorithm that simply chooses an hypothesis with the smallest empirical risk. In other words, the algorithm

solves the optimization problem

minimize
h∈H

errS(h) = 1
m

m∑
i=1

`0,1(h(x), y). (2.3)

What we next show is that, in the realizable case, a finite class H is learnable by any ERM rule, or any

ERM algorithm. In other words any optimization algorithm for eq. (2.3) will work.

Proof of theorem 2.2

Given a sample S, let hAS be the hypothesis returned by algorithm A, and let h∗ be the optimal hypothesis

in the class. We know by definition that

errS(hAS ) ≤ errS(h∗) = 0.
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So first, we bound that probability that for some h ∈ H with err(h) > ε we observe a sample S such that

errS(h) = 0. Suppose err(h) > ε:

P(errS(h) = 0) = P(h(x1) = y1 ∧ h(x2) = y2∧, . . . ,∧h(xm) = ym)

=
m

Π
i=1

P(h(xi) = yi) i.i.d assumption

≤
m

Π
i=1

(1− ε) err(h) > ε

= (1− ε)m

≤ e−εm (1− ε) ≤ e−ε

Note that our choice m satisfies m ≥ 1
ε ln 1/δ. In particular, we have that for a fixed h ∈ H, w.p 1− δ

errS(h) > 0.

Since errS(hAS ) = 0, does that mean err(hAS ) < ε, as required?

Note, that to estimate the error of a fixed hypothesis, we relied on the independence between the sample

(i.i.d assumption). Notice that hAS depends on the sample. Hence the probability of error are not i.i.d any

longer.

We will next show that for m sufficiently large, we have (w.p. (1−δ)) that for every h ∈ H with err(h) > ε,

errS(h) 6= 0. Namely, define:

HSgood := {h ∈ H : errS(h) = 0}

and

Hgood = {h ∈ H : err(h) < ε},

and let us show that w.p. (1− δ), over the sample S:

HSgood ⊆ Hgood.

This will finish the proof. Indeed, since hAS ∈ HSgood we obtain that with probability (1− δ) over the sample
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S, hAS ∈ Hgood

To prove the claim we need to show that no bad hypothesis (i.e. h /∈ Hgood) belongs to HSgood. So next, we

bound the probability that for some h ∈ H we have that errS(h) = 0 even though err(h) > ε.

P({s : ∃h /∈ Hgood ∧ errS(h) = 0}) = P(∪h/∈Hgood{S : errS(h) = 0})

≤
∑

h/∈Hgood

P(errS(h) = 0) union bound

≤ (|H| − |Hgood|) |e−εm

≤ |H|e−εm

≤ δ m >
1
ε

ln |H|
δ

2.6 Agnostic Setting

So far we discussed the realizable setting and showed that any class is learnable with sample complexity

O

(
ln |H|/δ

ε

)
.

Realizability is often considered a strong assumption. Indeed, in most cases while we can provide a reasonable

model for a certain prediction task we don’t necessarily assume it is 100% accurate. There are many reasons

for this amongst others

• Noisy labels – Data is often manually labeled, there may be mistakes in the labeling process

• Outliers – While we wish to classify typical cases, we should expect that some of the data is non-typical,

or even corrupted

• Efficiency Vs. Accuracy – In many cases, we might even prefer a reasonable model that is simple

then an accurate model that is expensive (e.g. you want to implement a prediction rule that can be

computed fast even at the cost of accuracy.

Let us now consider the following agnostic variant of the PAC model
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Definition 2.3. [(agnostic) PAC Learning] A concept class H of target functions is PAC learnable if there

exists an algorithm A and function mA : (0, 1)2 → N with the following property:

Assume S = ((x1, y1), . . . , (xm, ym)) is a sample of IID examples generated by some arbitrary distribution

D. If S is the input of A and m > mA(ε, δ) then the algorithm returns a hypothesis, hAS , such that with

probability 1− δ (over the choice of the m training examples):

err(hAS ) < min
h∈H

err(h) + ε

The function mA(ε, δ) is referred to as the sample complexity of algorithm A.

We will prove the following result:

Theorem 2.4 (Finite Classes are learnable – Agnostic case). Any finite hypothesis class is learnable and

any ERM learning rule A learns with sample complexity

mA = O

(
ln |H|/δ
ε2

)
.

Similar to the realizable case, we provide a uniform bound on our ability to estimate all hypotheses in the

calss:

Claim 2.5. Consider a finite class of target functions H = {h1, . . . , hn} over a domain X . Then if S =

{(x1, y1), . . . , (xm, ym)} is a sample drawn IID from some arbitrary distribution, and if m > 2
ε2 ln 2|H|

δ then

with probability 1− δ we have that

∀h ∈ H, |errS(h)− err(h)| < ε

The focus of this lecture will be to prove claim 2.5, before we begin let us show how it implies theorem 2.4.

Proof of theorem 2.4. Let D be some distribution over X × Y, and A an ERM rule. Given a sample S, let

hAS be the hypothesis returned by algorithm A, and let h∗ be the optimal hypothesis in the class. We know
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by construction that for an ERM rule errS(hAS ) ≤ errS(h∗). On the other hand choose:

m ≥ 2
(ε/2)2 ln 2H

δ
= 8
ε2

ln 2H
δ
.

we have that with probability at least (1− δ) that

|errS(hAS )− err(hAS ))| ≤ max
h∈H
|errS(h)− err(h)|

≤ ε

2 claim 2.5

and also

|errS(h∗)− err(h∗)| ≤ ε

2 .

Thus we get that

err(hAS ) ≤ errS(hAS ) + ε

2 ≤ errS(h∗) + ε

2 ≤ err(h∗) + ε.

2.6.1 Proof of Claim 2.5

For the proof we will need the following, well known and fundemental, result about the concentration of IID

random variables:

Theorem 2.6 (Hoeffding’s inequality). Let X1, . . . Xm be IID random variables such that 0 ≤ X ≤ 1.

Set X̄ = 1
m

∑m
i=1 Xi then

P(|X̄ − E(X̄)| ≥ t) ≤ 2e−2mt2

Let H = {h1, . . . , hn}. Assume (x, y) are distributed according to some unknown distribution D and let

S = {(x1, y1), . . . , (xm, ym)} be an IID sample.
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For a fixed hi ∈ H, consider the random variable errS(hi) = 1
m

∑m
j=1 `0,1(hi(xj), yj). Note that errS(hi) is

the mean of m IID positive random variables bounded by 1 with expectation err(hi).

In other words, for a fixed hi set

Xj = `0,1(hi(xj), yj).

Then X1, . . . , Xm are IID, bounded by one, random variables and

X̄ = 1
m

m∑
j=1

Xj = 1
m

m∑
j=1

`0,1(hi(xj), yj) = errS(hi).

Also,

E
S

(X̄) = E
S

[errS(hi)]

= E
S

 1
m

m∑
j=1

`0,1(hi(xj), yj)


= 1
m

m∑
j=1

E
S

[`0,1(hi(xj), yj)] (E
S

[`0,1(hi(xj), yj)] = E
(x,y)∼D

[`0,1(hi(x), y)])

= 1
m

m∑
j=1

err(hi)

= err(hi)

Thus, applying Hoeffding’s inequality we obtain that for fixed hi, taking probability over the sample:

P(|errS(hi)− err(hi)| > ε) < 2e−2mε2
(2.4)

Now we perform a similar calculation as in previous lecture:

P({S : ∃h, |errS(h)− err(h)| ≥ ε}) = P(∪h{S : |errS(h)− err(h)| ≥ ε})

≤
n∑
i=1

P(|errS(hi)− err(hi)| ≥ ε) union bound

≤ |H| · 2e−2mε2
m >

1
2ε2 ln 2|H|

δ

≤ δ
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The uniform convergence property To prove that a finite class is learnable, we proved a much

stronger result. We in fact showed that, given enough samples, we can estimate the expected error of

every hypothesis in the class, even the hypotheses our learner doesn’t choose.

Definition 2.7 (Uniform Convergence Property). We say that a hypothesis class H has the uniform

convergence property if there exists a function m : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and for

every probability distribution D over X , if S = ((x1, y1), . . . , (xm, ym)) is a sample of size m ≥ m(ε, δ)

drawn IID according to D then with probability at least (1− δ) we have that

∀h ∈ H, |errS(h)− err(h)| < ε
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