Publications

 

ADS website: ADS results

42. The Evolution and Internal Structure of Jupiter and Saturn with Compositional Gradients

Vazan, A., Helled, R., Podolak, M. & Kovetz, A. (2016). ApJ, in press.


41. A possible correlation between planetary radius and orbital period for intermediate-mass and low-mass planets

Helled, R., Lozovsky, M. & Zucker, S. (2015), MNRAS, 455, L96.


40. Methane Planets and Their Mass-Radius Relation

Helled, R., Podolak, M. & Vos, E. (2015). ApJL, 805, 11.


39. A Fast Spinning Saturn Determined From Its Gravitational Field and Oblateness

Helled, R., Galanti, E. & Kaspi, Y. (2015). Nature, 520, 202.


38. Convection and Mixing in Giant Planet Evolution

Vazan, A., Helled, R., Kovetz, A. & Podolak, M. (2015). ApJ, 803, 32.


37. The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets

Arridge, C. S. et al. (2014). PSS, 104, 122.


36. Neptune and Triton: Essential pieces of the Solar System puzzle

Masters, A. et al. (2014). PSS, 104, 108.


35. The Formation of Uranus and Neptune: Challenges and Implications For Intermediate-Mass Exoplanets

Helled, R. & Bodenheimer, P. (2014). ApJ, 789, 69.


34. Measuring Jupiter’s water abundance by Juno: the link between interior and formation models

Helled R. & Lunine, J. (2014). MNRAS. 441, 2273.


33. Scientific rationale of Saturn’s in situ exploration

Mousis, O. et al. (2014). PSS, 104, 29.


32. Core-assisted gas capture instability: a new mode of giant planet formation by gravitationally unstable discs

Nayakshin, S., Helled R. & Boley, A. (2014). MNRAS. 440, 3797.


31. The PLATO 2.0 Mission

Rauer, H. et al. (2014). Experimental Astronomy, 38, 249. 


30. Giant Planet Formation, Evolution, and Internal Structure

Helled R., Bodenheimer, P., Alibert, Y., Podolak, M. Nayakshin, S., Boley, A., Boss, A., Fortney, J. J., Meru, F. & Mayer, L. (2013). Protostars and Planets VI.


29. The Science of Exoplanets and their Systems

Lammer, H. et al. Astrobiology, (2013). 13, #9. 


28. The Effect of Composition on the Evolution of Giant and Intermediate-Mass Planets

Vazan, A., Kovez, A., Podolak, M. & Helled R. MNRAS, (2013), 434, 3283.


27. Atmospheric confinement of jet streams on Uranus and Neptune

Kaspi, Y., Showman, A. P., Hubbard, W. B., Aharonson, O. & Helled, R. Nature, (2013), 497, 344.


26. Interior Models of Saturn: Including the Uncertainties in Shape and Rotation

Helled R. & Guillot, T. ApJ, (2013), 767, 113.


25. New Indication for a Dichotomy in the Interior Structure of Uranus and Neptune from the Application of Modified Shape and Rotation Data

Nettelmann, N., Helled, R., Fortney, J. J. & Redmer, R., PSS (2013), 77, 143.


24. What do we Really Know about Uranus and Neptune?

Podolak, M. & Helled, R., ApJL (2012), 759, 32.


23. On the Evolution and Survival of Protoplanets Embedded in a Protoplanetary Disk

Vazan, A. and Helled, R., ApJ (2012), 756, 90.


22. OSS(Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

Christophe, B. et al. (2012). Experimental Astronomy, 34, 203.


21. Uranus Pathfinder: Exploring the Origins and Evolution of Ice Giant Planets

Arridge, C. S et al. (2012). Experimental Astronomy, 33, 753.


20. The Change in Jupiter’s Moment of Inertia due to Core Erosion and Planetary Contraction

Helled, R. (2012). ApJL, 748, L16.


19. Composition of Massive Giant Planets

Helled, R., Bodenheimer, P. & Lissauer, J. J. (2011). The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution. IAU Proceedings, 276, 95.


18. Jupiter’s Moment of Inertia: Juno Error Analysis, and Implications for Jupiter’s Internal Structure

Helled, R., Anderson, J. D., Schubert, G. & Stevenson, D. J. (2011). Icarus, 216, 440.


17. Shapes and gravitational fields of rotating two-layer Maclaurin ellipsolids: Application to planets and satellites

Schubert, G., Anderson, J. D., Zhang, K., Kong, D. & Helled, R. (2011). PEPI, 187, 364.


16. Constraining Saturn’s Core Properties by a Measurement of Its Moment of Inertia - Implications to the Solstice Mission

Helled, R. (2011). ApJL, 735, L16.


15. The Heavy Element Composition of Disk Instability Planets Can Range From Sub- to Super-Nebular

Boley, A., Helled, R. & Payne, M. (2011). ApJ, 735, 30.


14. Jupiter’s Occultation Radii: Implications for its Internal Dynamics

Helled, R. (2011). GRL, 38, L08204.


13. Interior Models of Uranus and Neptune

Helled, R., Anderson, J. D., Podolak, M. & Schubert, G. (2011). ApJ, 726, 15.


12. The Effects of Metallicity, and Grain Growth and Settling on the Early Evolution of Gaseous Protoplanets

Helled, R. & Bodenheimer, P. (2011). Icarus, 211, 939.


11. Uranus and Neptune: Shape and Rotation

Helled, R., Anderson, J. D. & Schubert, G. (2010). Icarus, 210, 446.


10. Metallicity of the Massive Protoplanets Around HR 8799 If Formed by Gravitational Instability

Helled, R. & Bodenheimer, P. (2010). Icarus, 207, 503.


9. Planetary Formation and Evolution Revealed with a Saturn Entry Probe: The Importance of Noble Gases

Fortney, J. J., Zahnle, K., Baraffe, I., Burrows, A., Dodson-Robinson, S. E., Chabrier, G., Guillot, T., Helled, R., Hersant, F., Hubbard, W. B., Lissauer, J. J. & Marley, M. S. (2009) submitted to the Giant Planets panel of the 2013-2022 Planetary Science Decadal Survey.


8. Jupiter and Saturn Rotation Periods

Helled, R., Schubert, G. & Anderson, J. D. (2009). Planet and Space Science, 57, 1467.


7. Heavy Element Enrichment of a Jupiter-mass Protoplanet as a Function of Orbital Location

Helled, R. & Schubert, G. (2009). ApJ, 697, 1256.


6. Empirical models of pressure and density in Saturn's interior: Implications for the helium concentration, its depth dependence, and Saturn's precession rate

Helled, R. Schubert, G. & Anderson, J. D. (2009). Icarus, 199, 368.


5. Core formation in giant gaseous protoplanets

Helled, R. & Schubert, G. (2008). Icarus, 198, 156.


4. Grain Sedimentation in a Giant Gaseous Protoplanet.  

Helled, R. Podolak, M. & Kovetz, A. (2008). Icarus, 195, 863.


3. Planetesimal capture in the disk instability model  

Helled, R., Podolak, M. & Kovetz, A. (2006). Icarus, 185, 64.


2. Meteor light curves: the relevant parameters   

Brosch, N., Helled, R., Polishook, D., Almoznino, E. & David, N. (2004). MNRAS, 335, 111.


1. Light curves of Geminids in 2001

Brosch, N., Helled, R., Polishook, D., Schijvarg & S., Manulis, I. (2002). In: Proceedings of Asteroids, Comets, Meteors - ACM 2002. ESA Publications Division, ISBN 92-9092-810-7, 2002, 209.