FIXED EXCHANGE RATES and Foreign Exchange Intervention

Central Bank Balance Sheet

Assets

1. Foreign Assets
2. Domestic Assets

Liabilities

1. Deposits held by Private Banks
2. Currency in circulation

\[H = \text{Base Money} \]

- Foreign Assets Sale \rightarrow Base Money contracts
- Foreign Assets Purchase \rightarrow Base Money Expands
Fixed Exchange Rate

\[\bar{S} = \text{fixed exchange rate} \]

\[i^* + \frac{\bar{S} - S}{S} \]

return

Automatic increase in M following CB intervention in the foreign exchange market.

Result: Base Money is endogenous
The Sustainability of Fixed Exchange Rate Regime

\[\frac{M}{P} = L(i) = e^{-\eta i} \]

Demand for money

\[\log \left(\frac{M}{P} \right) = -\eta i \]

(1) \[m_t - p_t = -\eta i_t \]

\[i_t = i^* + \frac{dS_t}{S_t dt} = i^* + \frac{d \log S_t}{dt} \approx i^* + \Delta s_t \]

Interest parity

\[\Delta s_t = s_{t+1} - s_t \]

(2) \[i_t = i_t^* + (s_{t+1} - s_t) \]
Purchasing Power Parity

\[P_t = S_t P_t^* \]

\[\log P_t = \log S_t + \log P_t^* \]

(3) \[p_t = s_t + p_t^* \]

Substitute (2) & (3) into (1):

(4) \[m_t = s_t + p_t^* - \eta (s_{t+1} - s_t) - \eta i_t^* \]

\[P_t^* = P^* , \quad i_t^* = i^* \]

\[m_t = \text{constant } + s_t - \eta (s_{t+1} - s_t) \]
Fixed Exchange Rate

\[m_t = -s + p^*_t \]
money supply is totally endogenous

\[\bar{m} = \bar{s} + p^* \]
if \(P^*_t = P^* \)

A Simple Model (Krugman 1979) \(P^* = i^* = 0 \)

\[m_t = m = s \]
fixed exchange rate

\[m_t - s_t = -\eta (s_{t+1} - s_t) = -\eta \mu \]
if \(s_{t+1} - s_t = \mu \)

flexible exchange rate
International Reserves

\[B_{H,t} + \bar{S} B_{F,t} = \bar{M} \]

\[B_{H,t+1} + \bar{S} B_{F,t+1} = \bar{M} \]

\[B_{H,t+1} - B_{H,t} = -\bar{S} \left[B_{F,t+1} - B_{F,t} \right] \]

\[B_{F,t+1} - B_{F,t} = -\frac{1}{\bar{S}} \left[B_{H,t+1} - B_{H,t} \right] \]

\[B_{F,t+1} - B_{F,t} = -\frac{1}{\bar{S}} \mu B_{H,t} \]
Central Bank Balance Sheet

\[M_t = B_{H,t} + \bar{S}B_{F,t} \]

Domestic Credit Expands Indefinitely

\[\frac{B_{H,t+1} - B_{H,t}}{B_{H,t}} = \mu \]

rate of expansion

\[b_{H,t+1} - b_{H,t} \cong \mu \]

“Shadow” Exchange Rate

\[\tilde{s}_t = b_{H,t} + \eta \mu \]
Logarithmic Approximation

\[B_{H,t+1} = (1 + \mu)B_{H,t} \]

\[b_{H,t+1} = \log (1 + \mu) + b_{H,t} \]

\[f(x) = f'(x^0)(x - x^0) \]

\[\log(1 + \mu) = 1(1 + \mu - 1) = \mu \]

\[x = 1 + \mu, \quad x^0 = 1 \]

\[b_{H,t+1} = b_{H,t} + \mu \]
The “Shadow” exchange rate is:

a market-based exchange rate when the central bank has no international reserves:

\[\tilde{s}_t = b_{H,t} + \eta \mu \]
Implications:

(1) Instantaneous Collapse

\[\tau \approx 0 \text{ s} \]

(2) Calculations:

\[\tilde{s}_T = \bar{s} \Rightarrow b_{H,T} + \eta\mu = \bar{s} \Rightarrow b_{H,T} \]

\[b_{H,t+1} = b_{H,t} + \mu \Rightarrow \]

\[b_{H,T} = b_{H,T-1} + \mu = b_{H,T-2} + 2\mu = T\mu b_{H,0} \Rightarrow T \]
\[b_{H,t+1} = b_{H,t} + \mu \]

\[B_{F,t+1} - B_{F,t} = -\frac{\mu}{S} B_{H,t} \]
Sustainability of Fixed Exchange Rate

(1) \(\tilde{S} \)

\(S \)

\(\sim \)

\(S \)

no budget deficit (\(\mu = 0 \))

(2) imperfect asset substitutability
 (a) regulating capital inflows
 (b) risk premium

\[i_t = i_t^* + \frac{ES_{t+1} - S_t}{S_t} + \rho \]

\(\rho \) is a function of external debt
if ρ is a function of external debt (B) minus domestic assets (A) a sterilized intervention which keeps M constant switches reserves (negative external debt) for domestic assets would change the risk premium, and change domestic interest rate. Sales of reserves accompanied by purchase of domestic bonds will raise ρ and i.