Trading Tasks:
A Simple Theory of Offshoring

Gene M. Grossman
Princeton University

and

Esteban Rossi-Hansberg
Princeton University

October 2006
Introduction

- The nature of international trade has changed

- For centuries, trade largely entailed an exchange of complete goods
 - Transportation and communication were exceedingly slow and costly
 - Specialization by task, as noted by Adam Smith, required proximity

- Paradigm of trade theory conceptualized the production process as generating finished goods from bundles of inputs combined at a single plant

- Now, trade increasingly involves bits of value being added in many different locations: Trade in tasks
The nature of international trade has changed

For centuries, trade largely entailed an exchange of complete goods

- Transportation and communication were exceedingly slow and costly
- Specialization by task, as noted by Adam Smith, required proximity

Paradigm of trade theory conceptualized the production process as generating finished goods from bundles of inputs combined at a single plant

Now, trade increasingly involves bits of value being added in many different locations: *Trade in tasks*
The nature of international trade has changed

For centuries, trade largely entailed an exchange of complete *goods*

- Transportation and communication were exceedingly slow and costly
- Specialization by task, as noted by Adam Smith, required proximity

Paradigm of trade theory conceptualized the production process as generating finished goods from bundles of inputs combined at a single plant

Now, trade increasingly involves bits of value being added in many different locations: *Trade in tasks*
The nature of international trade has changed

For centuries, trade largely entailed an exchange of complete *goods*

- Transportation and communication were exceedingly slow and costly
- Specialization by task, as noted by Adam Smith, required proximity

Paradigm of trade theory conceptualized the production process as generating finished goods from bundles of inputs combined at a single plant

Now, trade increasingly involves bits of value being added in many different locations: *Trade in tasks*
The nature of international trade has changed

For centuries, trade largely entailed an exchange of complete *goods*

- Transportation and communication were exceedingly slow and costly
- Specialization by task, as noted by Adam Smith, required proximity

Paradigm of trade theory conceptualized the production process as generating finished goods from bundles of inputs combined at a single plant

Now, trade increasingly involves bits of value being added in many different locations: *Trade in tasks*
The nature of international trade has changed

For centuries, trade largely entailed an exchange of complete goods

- Transportation and communication were exceedingly slow and costly
- Specialization by task, as noted by Adam Smith, required proximity

Paradigm of trade theory conceptualized the production process as generating finished goods from bundles of inputs combined at a single plant

Now, trade increasingly involves bits of value being added in many different locations: *Trade in tasks*
Boom in “offshoring” of both manufacturing tasks and other business functions

- Revolutionary advances in transportation and (especially) communications technology
- Weaker link between specialization and geographic concentration
 - Firms can take advantage of factor cost disparities in different countries without sacrificing the gains from specialization

Need for a new paradigm, one that puts task trade at center stage

We develop a simple and tractable model of offshoring that features such trade in tasks
Introduction

- Boom in “offshoring” of both manufacturing tasks and other business functions

 - Revolutionary advances in transportation and (especially) communications technology

 - Weaker link between specialization and geographic concentration

 - Firms can take advantage of factor cost disparities in different countries without sacrificing the gains from specialization

- Need for a new paradigm, one that puts task trade at center stage

- We develop a simple and tractable model of offshoring that features such trade in tasks
Introduction

- Boom in “offshoring” of both manufacturing tasks and other business functions
 - Revolutionary advances in transportation and (especially) communications technology
 - Weaker link between specialization and geographic concentration
 - Firms can take advantage of factor cost disparities in different countries without sacrificing the gains from specialization
- Need for a new paradigm, one that puts task trade at center stage
- We develop a simple and tractable model of offshoring that features such trade in tasks
Introduction

- Boom in “offshoring” of both manufacturing tasks and other business functions
 - Revolutionary advances in transportation and (especially) communications technology
 - Weaker link between specialization and geographic concentration
 - Firms can take advantage of factor cost disparities in different countries without sacrificing the gains from specialization
- Need for a new paradigm, one that puts task trade at center stage
- We develop a simple and tractable model of offshoring that features such trade in tasks
Introduction

- Boom in “offshoring” of both manufacturing tasks and other business functions
 - Revolutionary advances in transportation and (especially) communications technology
 - Weaker link between specialization and geographic concentration
 - Firms can take advantage of factor cost disparities in different countries without sacrificing the gains from specialization
- Need for a new paradigm, one that puts task trade at center stage
- We develop a simple and tractable model of offshoring that features such trade in tasks
Boom in “offshoring” of both manufacturing tasks and other business functions

- Revolutionary advances in transportation and (especially) communications technology
- Weaker link between specialization and geographic concentration
 - Firms can take advantage of factor cost disparities in different countries without sacrificing the gains from specialization

Need for a new paradigm, one that puts task trade at center stage

We develop a simple and tractable model of offshoring that features such trade in tasks
Some Evidence of Task Trade

- Hard evidence on the growing scale of task trade is hard to come by
 - Trade data are collected and reported as gross flows rather than as foreign value added (NRC, 2006)
 - Some of this trade leaves no paper trail
- But hints of the global disintegration of the production process abound:
 - Share of imported inputs in total inputs used by goods-producing sectors in the US rose from 7% in 1972 to 18% in 2000
 - Intra-firm trade accounted for 47% of U.S. total imports in 2005
 - In the US, imports of Business, Professional and Technical (BPT) services have increased by more than 66% in real terms from 1997 to 2004
Some Evidence of Task Trade

- Hard evidence on the growing scale of task trade is hard to come by
 - Trade data are collected and reported as gross flows rather than as foreign value added (NRC, 2006)
 - Some of this trade leaves no paper trail

- But hints of the global disintegration of the production process abound:
 - Share of imported inputs in total inputs used by goods-producing sectors in the US rose from 7% in 1972 to 18% in 2000
 - Intra-firm trade accounted for 47% of U.S. total imports in 2005
 - In the US, imports of Business, Professional and Technical (BPT) services have increased by more than 66% in real terms from 1997 to 2004
Some Evidence of Task Trade

- Hard evidence on the growing scale of task trade is hard to come by
 - Trade data are collected and reported as gross flows rather than as foreign value added (NRC, 2006)
 - Some of this trade leaves no paper trail

- But hints of the global disintegration of the production process abound:
 - Share of imported inputs in total inputs used by goods-producing sectors in the US rose from 7% in 1972 to 18% in 2000
 - Intra-firm trade accounted for 47% of U.S. total imports in 2005
 - In the US, imports of Business, Professional and Technical (BPT) services have increased by more than 66% in real terms from 1997 to 2004
Some Evidence of Task Trade

- Hard evidence on the growing scale of task trade is hard to come by
 - Trade data are collected and reported as gross flows rather than as foreign value added (NRC, 2006)
 - Some of this trade leaves no paper trail

- But hints of the global disintegration of the production process abound:
 - Share of imported inputs in total inputs used by goods-producing sectors in the US rose from 7% in 1972 to 18% in 2000
 - Intra-firm trade accounted for 47% of U.S. total imports in 2005
 - In the US, imports of Business, Professional and Technical (BPT) services have increased by more than 66% in real terms from 1997 to 2004
Some Evidence of Task Trade

- Hard evidence on the growing scale of task trade is hard to come by
 - Trade data are collected and reported as gross flows rather than as foreign value added (NRC, 2006)
 - Some of this trade leaves no paper trail

- But hints of the global disintegration of the production process abound:
 - Share of imported inputs in total inputs used by goods-producing sectors in the US rose from 7% in 1972 to 18% in 2000
 - Intra-firm trade accounted for 47% of U.S. total imports in 2005
 - In the US, imports of Business, Professional and Technical (BPT) services have increased by more than 66% in real terms from 1997 to 2004
Some Evidence of Task Trade

- Hard evidence on the growing scale of task trade is hard to come by
 - Trade data are collected and reported as gross flows rather than as foreign value added (NRC, 2006)
 - Some of this trade leaves no paper trail

- But hints of the global disintegration of the production process abound:
 - Share of imported inputs in total inputs used by goods-producing sectors in the US rose from 7% in 1972 to 18% in 2000
 - Intra-firm trade accounted for 47% of U.S. total imports in 2005
 - In the US, imports of Business, Professional and Technical (BPT) services have increased by more than 66% in real terms from 1997 to 2004
Some Evidence of Task Trade

- Hard evidence on the growing scale of task trade is hard to come by
 - Trade data are collected and reported as gross flows rather than as foreign value added (NRC, 2006)
 - Some of this trade leaves no paper trail
- But hints of the global disintegration of the production process abound:
 - Share of imported inputs in total inputs used by goods-producing sectors in the US rose from 7% in 1972 to 18% in 2000
 - Intra-firm trade accounted for 47% of U.S. total imports in 2005
 - In the US, imports of Business, Professional and Technical (BPT) services have increased by more than 66% in real terms from 1997 to 2004
Imported Inputs
Source: OECD Input-Output Matrices

- Share of Imported Inputs in Total Inputs in Goods Producing Sectors, US
- Share of Imported Inputs in Gross Output in Goods Producing Sectors, US
Related Party Trade as a Share of U.S. Imports

Source: BEA

<table>
<thead>
<tr>
<th>Year</th>
<th>CHINA</th>
<th>KOREA</th>
<th>MEXICO</th>
<th>TAIWAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grossman and Rossi-Hansberg
But world is not (yet) flat

- Trade in tasks is still costly and varies widely across different tasks
 - “Routine” tasks vs. “Nonroutine” tasks (Autor, Levy and Murnane (ALM), 2003)
 - ALM document an increase in the number of “Nonroutine” tasks relative to “Routine” tasks in the US
 - Tasks that require “Codifiable” information and those that require “Tacit” information (Leamer and Storper, 2001)
 - Tasks that require physical contact and geographic proximity and those that generate outputs that can be delivered impersonally and from a distance (Blinder, 2006)

- There is a less than perfect relationship between the suitability of a task for offshoring and the level of skill required to perform the job
But world is not (yet) flat

- Trade in tasks is still costly and varies widely across different tasks
 - “Routine” tasks vs. “Nonroutine” tasks (Autor, Levy and Murnane (ALM), 2003)
 - ALM document an increase in the number of “Nonroutine” tasks relative to “Routine” tasks in the US
 - Tasks that require “Codifiable” information and those that require “Tacit” information (Leamer and Storper, 2001)
 - Tasks that require physical contact and geographic proximity and those that generate outputs that can be delivered impersonally and from a distance (Blinder, 2006)

- There is a less than perfect relationship between the suitability of a task for offshoring and the level of skill required to perform the job
But world is not (yet) flat

- Trade in tasks is still costly and varies widely across different tasks
 - “Routine” tasks vs. “Nonroutine” tasks (Autor, Levy and Murnane (ALM), 2003)
 - ALM document an increase in the number of “Nonroutine” tasks relative to “Routine” tasks in the US
 - Tasks that require “Codifiable” information and those that require “Tacit” information (Leamer and Storper, 2001)
 - Tasks that require physical contact and geographic proximity and those that generate outputs that can be delivered impersonally and from a distance (Blinder, 2006)

- There is a less than perfect relationship between the suitability of a task for offshoring and the level of skill required to perform the job
But world is not (yet) flat

- Trade in tasks is still costly and varies widely across different tasks
 - “Routine” tasks vs. “Nonroutine” tasks (Autor, Levy and Murnane (ALM), 2003)
 - ALM document an increase in the number of “Nonroutine” tasks relative to “Routine” tasks in the US
 - Tasks that require “Codifiable” information and those that require “Tacit” information (Leamer and Storper, 2001)
 - Tasks that require physical contact and geographic proximity and those that generate outputs that can be delivered impersonally and from a distance (Blinder, 2006)

- There is a less than perfect relationship between the suitability of a task for offshoring and the level of skill required to perform the job
But world is not (yet) flat

- Trade in tasks is still costly and varies widely across different tasks
 - “Routine” tasks vs. “Nonroutine” tasks (Autor, Levy and Murnane (ALM), 2003)
 - ALM document an increase in the number of “Nonroutine” tasks relative to “Routine” tasks in the US
 - Tasks that require “Codifiable” information and those that require “Tacit” information (Leamer and Storper, 2001)
 - Tasks that require physical contact and geographic proximity and those that generate outputs that can be delivered impersonally and from a distance (Blinder, 2006)
- There is a less than perfect relationship between the suitability of a task for offshoring and the level of skill required to perform the job
But world is not (yet) flat

- Trade in tasks is still costly and varies widely across different tasks
 - “Routine” tasks vs. “Nonroutine” tasks (Autor, Levy and Murnane (ALM), 2003)
 - ALM document an increase in the number of “Nonroutine” tasks relative to “Routine” tasks in the US
 - Tasks that require “Codifiable” information and those that require “Tacit” information (Leamer and Storper, 2001)
 - Tasks that require physical contact and geographic proximity and those that generate outputs that can be delivered impersonally and from a distance (Blinder, 2006)

- There is a less than perfect relationship between the suitability of a task for offshoring and the level of skill required to perform the job
Trends in Nonroutine and Routine Tasks
Source: Autor, Levy and Murnane (2003)

Year
Mean Task Input in Percentiles of 1960 Task Distribution
Nonroutine Tasks
Routine Tasks

Grossman and Rossi-Hansberg
Trading Tasks
Towards a New Paradigm

- Our approach begins with a different conceptualization of the production process
 - Production of every good requires the performance of a continuum of tasks by each of the factors of production
 - Tasks might be performed in different locations
 - Firms are motivated to offshore tasks by factor-cost savings, but trading tasks is costly
- More general, but here we develop a model with two industries, perfect competition, and an arbitrary number of factors greater than one
- We then study how decreases in offshoring costs affect the wages of different types of labor
- Perhaps surprisingly, we find that low-skilled workers may benefit from the production of low-skilled tasks abroad
Towards a New Paradigm

- Our approach begins with a different conceptualization of the production process
 - Production of every good requires the performance of a continuum of tasks by each of the factors of production
 - Tasks might be performed in different locations
 - Firms are motivated to offshore tasks by factor-cost savings, but trading tasks is costly

- More general, but here we develop a model with two industries, perfect competition, and an arbitrary number of factors greater than one

- We then study how decreases in offshoring costs affect the wages of different types of labor

- Perhaps surprisingly, we find that low-skilled workers may benefit from the production of low-skilled tasks abroad
Towards a New Paradigm

- Our approach begins with a different conceptualization of the production process
 - Production of every good requires the performance of a continuum of tasks by each of the factors of production
 - Tasks might be performed in different locations
 - Firms are motivated to offshore tasks by factor-cost savings, but trading tasks is costly
- More general, but here we develop a model with two industries, perfect competition, and an arbitrary number of factors greater than one
- We then study how decreases in offshoring costs affect the wages of different types of labor
- Perhaps surprisingly, we find that low-skilled workers may benefit from the production of low-skilled tasks abroad
Towards a New Paradigm

- Our approach begins with a different conceptualization of the production process
 - Production of every good requires the performance of a continuum of tasks by each of the factors of production
 - Tasks might be performed in different locations
 - Firms are motivated to offshore tasks by factor-cost savings, but trading tasks is costly
- More general, but here we develop a model with two industries, perfect competition, and an arbitrary number of factors greater than one
- We then study how decreases in offshoring costs affect the wages of different types of labor
- Perhaps surprisingly, we find that low-skilled workers may benefit from the production of low-skilled tasks abroad
Our approach begins with a different conceptualization of the production process:

- Production of every good requires the performance of a continuum of tasks by each of the factors of production.
- Tasks might be performed in different locations.
- Firms are motivated to offshore tasks by factor-cost savings, but trading tasks is costly.

More general, but here we develop a model with two industries, perfect competition, and an arbitrary number of factors greater than one.

We then study how decreases in offshoring costs affect the wages of different types of labor.

Perhaps surprisingly, we find that low-skilled workers may benefit from the production of low-skilled tasks abroad.
Towards a New Paradigm

- Our approach begins with a different conceptualization of the production process
 - Production of every good requires the performance of a continuum of tasks by each of the factors of production
 - Tasks might be performed in different locations
 - Firms are motivated to offshore tasks by factor-cost savings, but trading tasks is costly
- More general, but here we develop a model with two industries, perfect competition, and an arbitrary number of factors greater than one
- We then study how decreases in offshoring costs affect the wages of different types of labor
- Perhaps surprisingly, we find that low-skilled workers may benefit from the production of low-skilled tasks abroad
Towards a New Paradigm

- Our approach begins with a different conceptualization of the production process
 - Production of every good requires the performance of a continuum of tasks by each of the factors of production
 - Tasks might be performed in different locations
 - Firms are motivated to offshore tasks by factor-cost savings, but trading tasks is costly

- More general, but here we develop a model with two industries, perfect competition, and an arbitrary number of factors greater than one

- We then study how decreases in offshoring costs affect the wages of different types of labor

- Perhaps surprisingly, we find that low-skilled workers may benefit from the production of low-skilled tasks abroad
Previous Literature

 - GE structure in these analyses has been kept to a bare minimum
 - Hard to study GE implications of offshoring

 - No marginal decisions about how to organize production
 - Many different configurations could characterize an equilibrium

 - Uniform costs of trading intermediate goods
 - Intermediate good produced in only one location

- GE structure in these analyses has been kept to a bare minimum
- Hard to study GE implications of offshoring

- No marginal decisions about how to organize production
- Many different configurations could characterize an equilibrium

- Uniform costs of trading intermediate goods
- Intermediate good produced in only one location

- GE structure in these analyses has been kept to a bare minimum
- Hard to study GE implications of offshoring

- No marginal decisions about how to organize production
- Many different configurations could characterize an equilibrium

- Uniform costs of trading intermediate goods
- Intermediate good produced in only one location

- GE structure in these analyses has been kept to a bare minimum
- Hard to study GE implications of offshoring

- No marginal decisions about how to organize production
- Many different configurations could characterize an equilibrium

- Uniform costs of trading intermediate goods
- Intermediate good produced in only one location

- GE structure in these analyses has been kept to a bare minimum
- Hard to study GE implications of offshoring

- No marginal decisions about how to organize production
- Many different configurations could characterize an equilibrium

- Uniform costs of trading intermediate goods
- Intermediate good produced in only one location
Previous Literature

 - GE structure in these analyses has been kept to a bare minimum
 - Hard to study GE implications of offshoring

 - No marginal decisions about how to organize production
 - Many different configurations could characterize an equilibrium

 - Uniform costs of trading intermediate goods
 - Intermediate good produced in only one location
Previous Literature

 - GE structure in these analyses has been kept to a bare minimum
 - Hard to study GE implications of offshoring

 - No marginal decisions about how to organize production
 - Many different configurations could characterize an equilibrium

 - Uniform costs of trading intermediate goods
 - Intermediate good produced in only one location
Previous Literature

 - GE structure in these analyses has been kept to a bare minimum
 - Hard to study GE implications of offshoring

 - No marginal decisions about how to organize production
 - Many different configurations could characterize an equilibrium

 - Uniform costs of trading intermediate goods
 - Intermediate good produced in only one location

- GE structure in these analyses has been kept to a bare minimum
- Hard to study GE implications of offshoring

- No marginal decisions about how to organize production
- Many different configurations could characterize an equilibrium

- Uniform costs of trading intermediate goods
- Intermediate good produced in only one location
The Model

- Model allows trade in tasks, as well as trade in goods
- Production involves a continuum of L tasks, continuum of H tasks, etc., possibly with substitution
- Industries differ in factor intensity, as usual
- Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task
 - Equivalently: different measures of tasks, with one unit of factor per task
- Cost of offshoring task i is given by $\beta t(i) \geq 1$
- Order tasks so $t'(i) \geq 0$ and assume $t(i)$ continuously differentiable
- For the moment only L-tasks can be offshored and same $t(i)$ schedule in each industry
Model allows trade in tasks, as well as trade in goods

Production involves a continuum of L tasks, continuum of H tasks, etc., possibly with substitution

Industries differ in factor intensity, as usual

Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task

Equivalently: different measures of tasks, with one unit of factor per task

Cost of offshoring task i is given by $\beta t(i) \geq 1$

Order tasks so $t'(i) \geq 0$ and assume $t(i)$ continuously differentiable

For the moment only L-tasks can be offshored and same $t(i)$ schedule in each industry
The Model

- Model allows trade in tasks, as well as trade in goods
- Production involves a continuum of L tasks, continuum of H tasks, etc., possibly with substitution
- Industries differ in factor intensity, as usual
- Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task
 - Equivalently: different measures of tasks, with one unit of factor per task
- Cost of offshoring task i is given by $\beta t(i) \geq 1$
- Order tasks so $t'(i) \geq 0$ and assume $t(i)$ continuously differentiable
- For the moment only L-tasks can be offshored and same $t(i)$ schedule in each industry
The Model

- Model allows trade in tasks, as well as trade in goods
- Production involves a continuum of L tasks, continuum of H tasks, etc., possibly with substitution
- Industries differ in factor intensity, as usual
- Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task
 - Equivalently: different measures of tasks, with one unit of factor per task
- Cost of offshoring task i is given by $\beta t(i) \geq 1$
- Order tasks so $t'(i) \geq 0$ and assume $t(i)$ continuously differentiable
- For the moment only L-tasks can be offshored and same $t(i)$ schedule in each industry
Model allows trade in tasks, as well as trade in goods

Production involves a continuum of \(L \) tasks, continuum of \(H \) tasks, etc., possibly with substitution

Industries differ in factor intensity, as usual

Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task

- Equivalently: different measures of tasks, with one unit of factor per task

Cost of offshoring task \(i \) is given by \(\beta t(i) \geq 1 \)

Order tasks so \(t'(i) \geq 0 \) and assume \(t(i) \) continuously differentiable

For the moment only \(L \)-tasks can be offshored and same \(t(i) \) schedule in each industry
The Model

- Model allows trade in tasks, as well as trade in goods
- Production involves a continuum of L tasks, continuum of H tasks, etc., possibly with substitution
- Industries differ in factor intensity, as usual
- Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task
 - Equivalently: different measures of tasks, with one unit of factor per task
- Cost of offshoring task i is given by $\beta t(i) \geq 1$
- Order tasks so $t'(i) \geq 0$ and assume $t(i)$ continuously differentiable
- For the moment only L-tasks can be offshored and same $t(i)$ schedule in each industry
The Model

- Model allows trade in tasks, as well as trade in goods
- Production involves a continuum of L tasks, continuum of H tasks, etc., possibly with substitution
- Industries differ in factor intensity, as usual
- Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task
 - Equivalently: different measures of tasks, with one unit of factor per task
- Cost of offshoring task i is given by $\beta t(i) \geq 1$
- Order tasks so $t'(i) \geq 0$ and assume $t(i)$ continuously differentiable
- For the moment only L-tasks can be offshored and same $t(i)$ schedule in each industry
The Model

- Model allows trade in tasks, as well as trade in goods
- Production involves a continuum of L tasks, continuum of H tasks, etc., possibly with substitution
- Industries differ in factor intensity, as usual
- Normalize measure of tasks of each type to one, and model factor intensity differences as different required amounts of factors per task
 - Equivalently: different measures of tasks, with one unit of factor per task
- Cost of offshoring task i is given by $\beta t(i) \geq 1$
- Order tasks so $t'(i) \geq 0$ and assume $t(i)$ continuously differentiable
- For the moment only L-tasks can be offshored and same $t(i)$ schedule in each industry
Firm’s Problem

- Consider production in sector j
- Assume firms, or industry, produces using a Constant Returns to Scale technology
- Firms maximize profits

$$\max_{Y_j, I_j} p_j Y_j - c_j Y_j$$

where

$$c_j = wa_{Lj}(\cdot)(1 - I) + w^* a_{Lj}(\cdot) \int_{0}^{I} \beta t(i) di + sa_{Hj}(\cdot) + \ldots$$

- Firm will offshore tasks $[0, I]$ where

$$w = \beta t(I) w^*,$$

and if the firm produces a positive amount

$$p_j = c_j$$
Consider production in sector j

Assume firms, or industry, produces using a Constant Returns to Scale technology

Firms maximize profits

$$\max_{Y_j, I_j} p_j Y_j - c_j Y_j$$

where

$$c_j = w a_{Lj} (\cdot) (1 - I) + w^* a_{Lj} (\cdot) \int_0^I \beta t(i) di + sa_{Hj} (\cdot) + \ldots$$

Firm will offshore tasks $[0, I]$ where

$$w = \beta t(I) w^*,$$

and if the firm produces a positive amount

$$p_j = c_j$$
Firm’s Problem

- Consider production in sector j
- Assume firms, or industry, produces using a Constant Returns to Scale technology
- Firms maximize profits

$$\max \limits_{Y_j, I_j} p_j Y_j - c_j Y_j$$

where

$$c_j = w a_{Lj} (\cdot) (1 - I) + w^* a_{Lj} (\cdot) \int_0^I \beta t(i) di + s a_{Hj} (\cdot) + \ldots$$

- Firm will offshore tasks $[0, I]$ where

$$w = \beta t(I) w^*,$$

and if the firm produces a positive amount

$$p_j = c_j$$
Firm’s Problem

- Consider production in sector \(j \)
- Assume firms, or industry, produces using a Constant Returns to Scale technology
- Firms maximize profits

\[
\max_{Y_j, I_j} Y_j - c_j Y_j
\]

where

\[
c_j = w a_L (\cdot) (1 - I) + w^* a_L (\cdot) \int_0^I \beta t(i) di + s a_H (\cdot) + \ldots
\]

- Firm will offshore tasks \([0, I]\) where

\[
w = \beta t(I) w^*,
\]

and if the firm produces a positive amount

\[
p_j = c_j
\]
Marginal Costs

Cost of producing good j using home technology are given by

$$
c_j = w a_{Lj} (\cdot) (1 - I) + w^* a_{Lj} (\cdot) \int_0^l \beta t(i) di + s a_{Hj} (\cdot) + \ldots
$$

$$
= w a_{Lj} (\cdot) (1 - I) + w a_{Lj} (\cdot) \frac{\int_0^l t(i) di}{t(l)} + s a_{Hj} (\cdot) + \ldots
$$

$$
= w a_{Lj} (\cdot) \Omega(I) + s a_{Hj} (\cdot) + \ldots
$$

where

$$
\Omega(I) = 1 - I + \frac{\int_0^l t(i) di}{t(l)}
$$

$$
\Omega'(I) = -\frac{\int_0^l t(i) di}{t^2(l)} t'(I) \leq 0
$$

So possibility of offshoring affects costs exactly as labor-augmenting technological change
Cost of producing good j using home technology are given by

$$c_j = w_{1j} (\cdot) (1 - I) + w^* a_{Lj} (\cdot) \int_0^l \beta t(i) di + sa_{Hj} (\cdot) + \ldots$$

$$= w_{Lj} (\cdot) (1 - I) + w_{Lj} (\cdot) \frac{\int_0^l t(i) di}{t(l)} + sa_{Hj} (\cdot) + \ldots$$

$$= w_{Lj} (\cdot) \Omega(I) + sa_{Hj} (\cdot) + \ldots$$

where

$$\Omega(I) = 1 - I + \frac{\int_0^l t(i) di}{t(l)} \quad \text{and} \quad \Omega'(I) = - \frac{\int_0^l t(i) di}{t^2(l)} t'(l) \leq 0$$

So possibility of offshoring affects costs exactly as labor-augmenting technological change.
The Three Effects of Offshoring

- To allow for all the potential effects of offshoring, we need a model with (at least) three factors and (at least) two goods.

- Price less or equal than unit cost implies

\[
1 = w\Omega a_{Lx}(s/w\Omega, \cdot) + sa_{Hx}(s/w\Omega, \cdot) + \ldots
\]

\[
p \leq w\Omega a_{Ly}(s/w\Omega, \cdot) + sa_{Hy}(s/w\Omega, \cdot) + \ldots
\]

- Factor market clearing implies

\[
a_{Lx}x(1-I) + a_{Ly}y(1-I) = L
\]

\[
\iff a_{Lx}x + a_{Ly}y = \frac{L}{1-I}
\]

\[
a_{Fx}x + a_{Fy}y = F \text{ for } F = H, \ldots
\]

- These \(2 + \nu\) equations determine \(x, y, \Omega w, s\) as functions of \(p, I\) and \(L, H, \ldots\)
The Three Effects of Offshoring

- To allow for all the potential effects of offshoring, we need a model with (at least) three factors and (at least) two goods.

- Price less or equal than unit cost implies

 \[1 = w\Omega a_{Lx} (s/w\Omega, \cdot) + sa_{Hx} (s/w\Omega, \cdot) + \ldots \]

 \[p \leq w\Omega a_{Ly} (s/w\Omega, \cdot) + sa_{Hy} (s/w\Omega, \cdot) + \ldots \]

- Factor market clearing implies

 \[a_{Lx}x(1 - I) + a_{Ly}y(1 - I) = L \]

 \[\iff a_{Lx}x + a_{Ly}y = \frac{L}{1 - I} \]

 \[a_{Fx}x + a_{Fy}y = F \text{ for } F = H, \ldots \]

- These 2 + v equations determine \(x, y, \Omega w, s\) as functions of \(p, I\) and \(L, H, \ldots\)
The Three Effects of Offshoring

- To allow for all the potential effects of offshoring, we need a model with (at least) three factors and (at least) two goods.

- Price less or equal than unit cost implies

 \[1 = w\Omega a_{Lx} (s/w\Omega, \cdot) + sa_{Hx} (s/w\Omega, \cdot) + \ldots \]

 \[p \leq w\Omega a_{Ly} (s/w\Omega, \cdot) + sa_{Hy} (s/w\Omega, \cdot) + \ldots \]

- Factor market clearing implies

 \[a_{Lx} x(1 - I) + a_{Ly} y(1 - I) = L \]

 \[\iff a_{Lx} x + a_{Ly} y = \frac{L}{1 - I} \]

 \[a_{Fx} x + a_{Fy} y = F \text{ for } F = H, \ldots \]

- These 2 + v equations determine \(x, y, \Omega w, s \) as functions of \(p, I \) and \(L, H, \ldots \).
The Three Effects of Offshoring

- To allow for all the potential effects of offshoring, we need a model with (at least) three factors and (at least) two goods.

- Price less or equal than unit cost implies

\[
1 = w\Omega a_{Lx} (s/w\Omega, \cdot) + sa_{Hx} (s/w\Omega, \cdot) + \ldots
\]

\[
p \leq w\Omega a_{Ly} (s/w\Omega, \cdot) + sa_{Hy} (s/w\Omega, \cdot) + \ldots
\]

- Factor market clearing implies

\[
a_{Lx} x(1 - I) + a_{Ly} y(1 - I) = L
\]

\[
\iff a_{Lx} x + a_{Ly} y = \frac{L}{1 - I}
\]

\[
a_{Fx} x + a_{Fy} y = F \text{ for } F = H, \ldots
\]

- These \(2 + v\) equations determine \(x, y, \Omega w, s\) as functions of \(p, I\) and \(L, H, \ldots\)
The Three Effects of Offshoring

- p and I are endogenous—determined in world equilibrium
- To close the model, we need to specify the foreign country’s equilibrium conditions and the world market clearing conditions, which will allow us to determine I and p
- But instructive to treat I and p as exogenous for the moment
- Differentiating totally the $2 + v$-equation system on the previous slide we obtain

$$
\hat{w} = -\hat{\Omega} + \mu_1 \hat{p} - \mu_2 \frac{dl}{1 - I}
$$

$$
\hat{s} = -\mu_3 \hat{p} + \mu_4 \frac{dl}{1 - I}
$$

- Three effects: Productivity, Relative Price and Labor Supply
The Three Effects of Offshoring

- \(p \) and \(I \) are endogenous—determined in world equilibrium.
- To close the model, we need to specify the foreign country’s equilibrium conditions and the world market clearing conditions, which will allow us to determine \(I \) and \(p \).
- But instructive to treat \(I \) and \(p \) as exogenous for the moment.
- Differentiating totally the \(2 + \nu \)-equation system on the previous slide we obtain:

\[
\hat{w} = -\hat{\Omega} + \mu_1 \hat{p} - \mu_2 \frac{dl}{1-l}
\]

\[
\hat{s} = -\mu_3 \hat{p} + \mu_4 \frac{dl}{1-l}
\]

The Three Effects of Offshoring

- p and I are endogenous—determined in world equilibrium
- To close the model, we need to specify the foreign country’s equilibrium conditions and the world market clearing conditions, which will allow us to determine I and p
- But instructive to treat I and p as exogenous for the moment
- Differentiating totally the $2 + n$-equation system on the previous slide we obtain

$$
\hat{w} = -\hat{\Omega} + \mu_1 \hat{p} - \mu_2 \frac{dl}{1 - l}
$$

$$
\hat{s} = -\mu_3 \hat{p} + \mu_4 \frac{dl}{1 - l}
$$

- Three effects: Productivity, Relative Price and Labor Supply
The Three Effects of Offshoring

- p and l are endogenous—determined in world equilibrium
- To close the model, we need to specify the foreign country’s equilibrium conditions and the world market clearing conditions, which will allow us to determine l and p
- But instructive to treat l and p as exogenous for the moment
- Differentiating totally the $2 + \nu$-equation system on the previous slide we obtain

\[
\hat{w} = -\hat{\Omega} + \mu_1 \hat{p} - \mu_2 \frac{dl}{1-l}
\]

\[
\hat{s} = -\mu_3 \hat{p} + \mu_4 \frac{dl}{1-l}
\]

- Three effects: Productivity, Relative Price and Labor Supply
The Three Effects of Offshoring

- p and l are endogenous—determined in world equilibrium
- To close the model, we need to specify the foreign country’s equilibrium conditions and the world market clearing conditions, which will allow us to determine l and p
- But instructive to treat l and p as exogenous for the moment
- Differentiating totally the $2 + v$-equation system on the previous slide we obtain

\[
\hat{w} = -\hat{\Omega} + \mu_1 \hat{p} - \mu_2 \frac{dl}{1 - l}
\]
\[
\hat{s} = -\mu_3 \hat{p} + \mu_4 \frac{dl}{1 - l}
\]

- Three effects: Productivity, Relative Price and Labor Supply
Small Heckscher-Ohlin Economy

- Consider a small economy (p and w^* fixed) with two factors, L and H and two goods. Then

$$\theta_{Lx} (\hat{w} + \hat{\Omega}) + \theta_{Hx} \hat{s} = 0$$
$$\theta_{Ly} (\hat{w} + \hat{\Omega}) + \theta_{Hy} \hat{s} = \hat{p} = 0$$

which implies that

$$\hat{w} = -\hat{\Omega} \quad \text{and} \quad \hat{s} = 0$$

- Since $w = \beta t(I) w^*$ and w^* is fixed, $\hat{w} = \hat{\beta} + \hat{t}(I)$, so

$$\frac{dl}{d\beta} = - \frac{(1 - I) t(I) + \int_0^I t(i) di}{\beta t'(I)(1 - I)} < 0$$

and so $\hat{\Omega} \leq 0$, which implies $\hat{w} \geq 0$
Consider a small economy (p and w^* fixed) with two factors, L and H and two goods. Then

\[
\theta_L x \hat{w} + \hat{\Omega} + \theta_H x \hat{s} = 0 \\
\theta_L y \hat{w} + \hat{\Omega} + \theta_H y \hat{s} = \hat{p} = 0
\]

which implies that

\[
\hat{w} = -\hat{\Omega} \quad \text{and} \quad \hat{s} = 0
\]

Since $w = \beta t(I) w^*$ and w^* is fixed, $\hat{w} = \hat{\beta} + \hat{t}(l)$, so

\[
\frac{dl}{d\beta} = -\frac{(1 - l) t(l) + \int_0^l t(i) di}{\beta t'(l) (1 - l)} < 0
\]

and so $\hat{\Omega} \leq 0$, which implies $\hat{w} \geq 0$
Offshoring increases productivity of workers that remain employed at home

- Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
- Benefits from improved offshoring in proportion to the share of low-skilled labor

Compare: Offshoring vs. Immigration

- For marginal immigrant, $w = w^* \beta \tau(I)$
- But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

Why no Labor-Supply Effect?

- This is a feature of HO model: equal number of produced tradable goods and factors
Why Does Unskilled Labor Benefit?

- Offshoring increases productivity of workers that remain employed at home
 - Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
 - Benefits from improved offshoring in proportion to the share of low-skilled labor

- Compare: Offshoring vs. Immigration
 - For marginal immigrant, $w = w^* \beta \tau(I)$
 - But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

- Why no Labor-Supply Effect?
 - This is a feature of HO model: equal number of produced tradable goods and factors
Why Does Unskilled Labor Benefit?

- Offshoring increases productivity of workers that remain employed at home
 - Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
 - Benefits from improved offshoring in proportion to the share of low-skilled labor

- Compare: Offshoring vs. Immigration
 - For marginal immigrant, $w = w^* \beta \tau(I)$
 - But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

- Why no Labor-Supply Effect?
 - This is a feature of HO model: equal number of produced tradable goods and factors

Grossman and Rossi-Hansberg
Why Does Unskilled Labor Benefit?

- Offshoring increases productivity of workers that remain employed at home
 - Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
 - Benefits from improved offshoring in proportion to the share of low-skilled labor

- Compare: Offshoring vs. Immigration
 - For marginal immigrant, $w = w^*\beta\tau(I)$
 - But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

- Why no Labor-Supply Effect?
 - This is a feature of HO model: equal number of produced tradable goods and factors
Why Does Unskilled Labor Benefit?

- Offshoring increases productivity of workers that remain employed at home
 - Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
 - Benefits from improved offshoring in proportion to the share of low-skilled labor

- Compare: Offshoring vs. Immigration
 - For marginal immigrant, $w = w^* \beta \tau(I)$
 - But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

- Why no Labor-Supply Effect?
 - This is a feature of HO model: equal number of produced tradable goods and factors
Why Does Unskilled Labor Benefit?

- Offshoring increases productivity of workers that remain employed at home
 - Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
 - Benefits from improved offshoring in proportion to the share of low-skilled labor

- Compare: Offshoring vs. Immigration
 - For marginal immigrant, $w = w^* \beta \tau(I)$
 - But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

- Why no Labor-Supply Effect?
 - This is a feature of HO model: equal number of produced tradable goods and factors
Why Does Unskilled Labor Benefit?

- Offshoring increases productivity of workers that remain employed at home
 - Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
 - Benefits from improved offshoring in proportion to the share of low-skilled labor

- Compare: Offshoring vs. Immigration
 - For marginal immigrant, $w = w^* \beta \tau(I)$
 - But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

- Why no Labor-Supply Effect?
 - This is a feature of HO model: equal number of produced tradable goods and factors
Why Does Unskilled Labor Benefit?

- Offshoring increases productivity of workers that remain employed at home
 - Lower β implies a lower cost of offshoring the marginal tasks and lower cost of offshoring all the infra-marginal tasks
 - Benefits from improved offshoring in proportion to the share of low-skilled labor

- Compare: Offshoring vs. Immigration
 - For marginal immigrant, $w = w^* \beta \tau(I)$
 - But domestic firms may pay w to all immigrants, unless they can price discriminate. Then rents may go to immigrants

- Why no Labor-Supply Effect?
 - This is a feature of HO model: equal number of produced tradable goods and factors
The effect of changes in β on wages is given by

$$\hat{w} = -\hat{\Omega} = -\hat{\beta} \frac{1}{(1 - I)} \int_0^I \frac{t(i)}{t(I)} di$$

- If $I = 0$, $\hat{w} = -\hat{\Omega} = 0$, and so there is no productivity effect.
- If $I > 0$, $\hat{w} = -\hat{\Omega} > 0$. Moreover, if $\eta(i) = t'(i) (1 - i) / t(i)$ constant or $\eta(i) < 1$ for all i, the productivity effect increases with I everywhere.

What if easier to offshore in L-intensive industry relative to H-intensive industry?

- This strengthens effect. If offshoring only possible in L-intensive industry y,

$$\hat{w} = -\hat{\Omega} \left(\frac{\theta_{Hx} \theta_{Ly}}{\theta_{Hx} \theta_{Ly} - \theta_{Lx} \theta_{Hy}} \right) > -\hat{\Omega} > 0 \quad \text{and} \quad \hat{s} = -\frac{\theta_{Lx}}{\theta_{Hx}} \hat{w} < 0$$
Characterization

- The effect of changes in β on wages is given by

$$\hat{w} = -\hat{\Omega} = -\hat{\beta} \frac{1}{(1 - I)} \int_0^I \frac{t(i)}{t(I)} di$$

- If $I = 0$, $\hat{w} = -\hat{\Omega} = 0$, and so there is no productivity effect
- If $I > 0$, $\hat{w} = -\hat{\Omega} > 0$. Moreover, if $\eta(i) = t'(i) (1 - i) / t(i)$ constant or $\eta(i) < 1$ for all i, the productivity effect increases with I everywhere

- What if easier to offshore in L-intensive industry relative to H-intensive industry?
 - This strengthens effect. If offshoring only possible in L-intensive industry y,

$$\hat{w} = -\hat{\Omega} \left(\frac{\theta_{Hx} \theta_{Ly}}{\theta_{Hx} \theta_{Ly} - \theta_{Lx} \theta_{Hy}} \right) > -\hat{\Omega} > 0 \quad \text{and} \quad \hat{s} = -\frac{\theta_{Lx}}{\theta_{Hx}} \hat{w} < 0$$

Grossman and Rossi-Hansberg
Characterization

- The effect of changes in β on wages is given by

$$\hat{w} = -\hat{\Omega} = -\hat{\beta} \frac{1}{1-I} \int_0^I \frac{t(i)}{t(I)} di$$

- If $I = 0$, $\hat{w} = -\hat{\Omega} = 0$, and so there is no productivity effect.
- If $I > 0$, $\hat{w} = -\hat{\Omega} > 0$. Moreover, if $\eta(i) = t'(i) (1 - i) / t(i)$ is constant or $\eta(i) < 1$ for all i, the productivity effect increases with I everywhere.

- What if easier to offshore in L-intensive industry relative to H-intensive industry?
 - This strengthens effect. If offshoring only possible in L-intensive industry y,

$$\hat{w} = -\hat{\Omega} \left(\frac{\theta_Hx \theta_Ly}{\theta_Hx \theta_Ly - \theta_Lx \theta_Hy} \right) > -\hat{\Omega} > 0 \quad \text{and} \quad \hat{s} = -\frac{\theta_Lx}{\theta_Hx} \hat{w} < 0$$
Characterization

- The effect of changes in β on wages is given by

$$\hat{w} = -\hat{\Omega} = -\hat{\beta} \frac{1}{(1 - I)} \int_0^I \frac{t(i)}{t(I)} di$$

- If $I = 0$, $\hat{w} = -\hat{\Omega} = 0$, and so there is no productivity effect
- If $I > 0$, $\hat{w} = -\hat{\Omega} > 0$. Moreover, if $\eta(i) = t'(i) (1 - i) / t(i)$ constant or $\eta(i) < 1$ for all i, the productivity effect increases with I everywhere

- What if easier to offshore in L-intensive industry relative to H-intensive industry?

 - This strengthens effect. If offshoring only possible in L-intensive industry y,

$$\hat{w} = -\hat{\Omega} \left(\frac{\theta_{Hy}}{\theta_{Hy} \theta_{Ly} - \theta_{Lx} \theta_{Hy}} \right) > -\hat{\Omega} > 0 \quad \text{and} \quad \hat{s} = -\frac{\theta_{Lx}}{\theta_{Hx}} \hat{w} < 0$$
The effect of changes in β on wages is given by

$$\hat{w} = -\hat{\Omega} = -\hat{\beta} \frac{1}{(1 - I)} \int_0^I \frac{t(i)}{t(I)} di$$

- If $I = 0$, $\hat{w} = -\hat{\Omega} = 0$, and so there is no productivity effect.
- If $I > 0$, $\hat{w} = -\hat{\Omega} > 0$. Moreover, if $\eta(i) = t'(i) (1 - i) / t(i)$ constant or $\eta(i) < 1$ for all i, the productivity effect increases with I everywhere.

What if easier to offshore in L-intensive industry relative to H-intensive industry?

- This strengthens effect. If offshoring only possible in L-intensive industry y,

$$\hat{w} = -\hat{\Omega} \left(\frac{\theta_{Hx} \theta_{Ly}}{\theta_{Hx} \theta_{Ly} - \theta_{Lx} \theta_{Hy}} \right) > -\hat{\Omega} > 0 \quad \text{and} \quad \hat{s} = -\frac{\theta_{Lx}}{\theta_{Hx}} \hat{w} < 0$$
Characterization

• In general

\[
\hat{w} = \frac{\frac{\theta_{Hx}}{\theta_{Lx}} (\hat{\Omega}_y) - \frac{\theta_{Hy}}{\theta_{Ly}} (\hat{\Omega}_x)}{\frac{\theta_{Hx}}{\theta_{Lx}} - \frac{\theta_{Hy}}{\theta_{Ly}}}
\]

\[
\hat{s} = \frac{\theta_{Ly}\theta_{Lx}}{\theta_{Ly} - \theta_{Lx}} \left[(\hat{\Omega}_x) - (\hat{\Omega}_y) \right]
\]

where \(\Omega_x\) is defined analogously to \(\Omega_y\).

• The factor-share ratios are such that \(\theta_{Hx}/\theta_{Lx} > \theta_{Hy}/\theta_{Ly}\) so \(\hat{w} > 0\) and \(\hat{s} < 0\) if \(-\hat{\Omega}_y > -\hat{\Omega}_x\).

• Take, for example, the case in which \(t_x(i) = \alpha t_y(i)\) with common factor \(\beta\).
 • Define \(\eta_j(i) \equiv t'_j(i) (1 - i) / t_j(i)\) for \(i = x, y\)
 • Then, if \(\eta_x\) and \(\eta_y\) are constants, or if \(\eta_x(l_x) < 1\) and \(\eta_y(l_y) < 1\), \(\alpha < 1\) implies \(l_x > l_y\) and \(-\hat{\Omega}_y > -\hat{\Omega}_x\)
In general

\[\hat{w} = \frac{\theta_{Hx}}{\theta_{Lx}} (-\hat{\Omega}_y) - \frac{\theta_{Hy}}{\theta_{Ly}} (-\hat{\Omega}_x) \]

\[\hat{s} = \frac{\theta_{Ly} \theta_{Lx}}{\theta_{Ly} - \theta_{Lx}} \left[(-\hat{\Omega}_x) - (-\hat{\Omega}_y) \right] \]

where \(\Omega_x \) is defined analogously to \(\Omega_y \).

The factor-share ratios are such that \(\theta_{Hx}/\theta_{Lx} > \theta_{Hy}/\theta_{Ly} \) so \(\hat{w} > 0 \)
and \(\hat{s} < 0 \) if \(-\hat{\Omega}_y > -\hat{\Omega}_x \).

Take, for example, the case in which \(t_x(i) = \alpha t_y(i) \) with common
factor \(\beta \).

- Define \(\eta_j(i) \equiv t'_j(i) (1 - i) / t_j(i) \) for \(i = x, y \)
- Then, if \(\eta_x \) and \(\eta_y \) are constants, or if \(\eta_x(l_x) < 1 \) and \(\eta_y(l_y) < 1 \),
 \(\alpha < 1 \) implies \(l_x > l_y \) and \(-\hat{\Omega}_y > -\hat{\Omega}_x \)
Characterization

- In general

\[\hat{w} = \frac{\frac{\theta_{Hx}}{\theta_{Lx}} (-\hat{\Omega}_y) - \frac{\theta_{Hy}}{\theta_{Ly}} (-\hat{\Omega}_x)}{\frac{\theta_{Hx}}{\theta_{Lx}} - \frac{\theta_{Hy}}{\theta_{Ly}}} \]

\[\hat{s} = \frac{\theta_{Ly}\theta_{Lx}}{\theta_{Ly} - \theta_{Lx}} \left[(-\hat{\Omega}_x) - (-\hat{\Omega}_y) \right] \]

where \(\Omega_x \) is defined analogously to \(\Omega_y \).

- The factor-share ratios are such that \(\frac{\theta_{Hx}}{\theta_{Lx}} > \frac{\theta_{Hy}}{\theta_{Ly}} \) so \(\hat{w} > 0 \) and \(\hat{s} < 0 \) if \(-\hat{\Omega}_y > -\hat{\Omega}_x \).

- Take, for example, the case in which \(t_x(i) = \alpha t_y(i) \) with common factor \(\beta \).

 - Define \(\eta_j(i) \equiv t'_j(i) (1 - i) / t_j(i) \) for \(i = x, y \)
 - Then, if \(\eta_x \) and \(\eta_y \) are constants, or if \(\eta_x(l_x) < 1 \) and \(\eta_y(l_y) < 1 \), \(\alpha < 1 \) implies \(l_x > l_y \) and \(-\hat{\Omega}_y > -\hat{\Omega}_x \).
Characterization

In general

\[\hat{w} = \frac{\theta_{Hx}}{\theta_{Lx}} (-\hat{\Omega}_y) - \frac{\theta_{Hy}}{\theta_{Ly}} (-\hat{\Omega}_x) \]

\[\hat{s} = \frac{\theta_{Ly}\theta_{Lx}}{\theta_{Ly} - \theta_{Lx}} \left[(-\hat{\Omega}_x) - (-\hat{\Omega}_y) \right] \]

where \(\Omega_x \) is defined analogously to \(\Omega_y \).

The factor-share ratios are such that \(\theta_{Hx}/\theta_{Lx} > \theta_{Hy}/\theta_{Ly} \) so \(\hat{w} > 0 \) and \(\hat{s} < 0 \) if \(-\hat{\Omega}_y > -\hat{\Omega}_x \).

Take, for example, the case in which \(t_x(i) = \alpha t_y(i) \) with common factor \(\beta \).

- Define \(\eta_j(i) \equiv t'_j(i) (1 - i) / t_j(i) \) for \(i = x, y \)
- Then, if \(\eta_x \) and \(\eta_y \) are constants, or if \(\eta_x(l_x) < 1 \) and \(\eta_y(l_y) < 1 \), \(\alpha < 1 \) implies \(l_x > l_y \) and \(-\hat{\Omega}_y > -\hat{\Omega}_x \)
Characterization

- In general

\[
\hat{W} = \frac{\theta_{Hx}}{\theta_{Lx}} (-\hat{\Omega}_y) - \frac{\theta_{Hy}}{\theta_{Ly}} (-\hat{\Omega}_x)
\]

\[
\hat{s} = \frac{\theta_{Ly}\theta_{Lx}}{\theta_{Ly} - \theta_{Lx}} \left[(-\hat{\Omega}_x) - (-\hat{\Omega}_y) \right]
\]

where \(\Omega_x\) is defined analogously to \(\Omega_y\).

- The factor-share ratios are such that \(\theta_{Hx}/\theta_{Lx} > \theta_{Hy}/\theta_{Ly}\) so \(\hat{W} > 0\) and \(\hat{s} < 0\) if \(-\hat{\Omega}_y > -\hat{\Omega}_x\).

- Take, for example, the case in which \(t_x(i) = \alpha t_y(i)\) with common factor \(\beta\).
 - Define \(\eta_j(i) \equiv t'_j(i)(1 - i)/t_j(i)\) for \(i = x, y\)
 - Then, if \(\eta_x\) and \(\eta_y\) are constants, or if \(\eta_x(l_x) < 1\) and \(\eta_y(l_y) < 1\), \(\alpha < 1\) implies \(l_x > l_y\) and \(-\hat{\Omega}_y > -\hat{\Omega}_x\)
Large Heckscher-Ohlin Economy

- Need a reason for differences in factor prices across countries
 - Assume foreign country has inferior technology so that offshoring flows in one direction (with $\beta_t(i) \geq 1$ all i)
 - Let A^* measure Hicks-neutral technological inferiority in both industries, then with incomplete specialization
 \[
 A^*a^*_L w^* + A^*a^*_H s^* = 1
 \]
 \[
 A^*a^*_L w^* + A^*a^*_H s^* = p
 \]
- Incomplete specialization implies that in equilibrium there is adjusted Factor Price Equalization:
 \[
 w \Omega = w^* A^*
 \]
 \[
 s = s^* A^*
 \]
Large Heckscher-Ohlin Economy

- Need a reason for differences in factor prices across countries
 - Assume foreign country has inferior technology so that offshoring flows in one direction (with $\beta_t(i) \geq 1$ all i)
 - Let A^* measure Hicks-neutral technological inferiority in both industries, then with incomplete specialization
 \[
 A^* a^*_L w^* + A^* a^*_H s^* = 1
 \]
 \[
 A^* a^*_L w^* + A^* a^*_H s^* = p
 \]

- Incomplete specialization implies that in equilibrium there is adjusted Factor Price Equalization:
 \[
 w \Omega = w^* A^*
 \]
 \[
 s = s^* A^*
 \]
Need a reason for differences in factor prices across countries

- Assume foreign country has inferior technology so that offshoring flows in one direction (with $\beta t (i) \geq 1$ all i)

- Let A^* measure Hicks-neutral technological inferiority in both industries, then with incomplete specialization

$$A^* a^*_L w^* + A^* a^*_H s^* = 1$$

$$A^* a^*_L w^* + A^* a^*_H s^* = p$$

Incomplete specialization implies that in equilibrium there is adjusted Factor Price Equalization:

$$w \Omega = w^* A^*$$

$$s = s^* A^*$$
Need a reason for differences in factor prices across countries

- Assume foreign country has inferior technology so that offshoring flows in one direction (with $\beta t(i) \geq 1$ all i)
- Let A^* measure Hicks-neutral technological inferiority in both industries, then with incomplete specialization

$$A^* a_{Lx}^* w^* + A^* a_{Hx}^* s^* = 1$$
$$A^* a_{Ly}^* w^* + A^* a_{Hy}^* s^* = p$$

Incomplete specialization implies that in equilibrium there is adjusted Factor Price Equalization:

$$w \Omega = w^* A^*$$
$$s = s^* A^*$$
This implies that both countries have similar a_{Fj}'s, so factor clearing conditions are given by

$$A^*a_{Lx}x^* + A^*a_{Ly}y^* + \beta \int_0^l t(i)di (a_{Lx}x + a_{Ly}y) = L^*$$

$$A^*a_{Hx}x^* + A^*a_{Hy}y^* = H^*$$

or

$$a_{Lx}x^* + a_{Ly}y^* = \frac{L^*}{A^*} - \frac{\beta}{(1 - l)A^*} \left[\int_0^l t(i)di \right] L$$

$$a_{Hx}x^* + a_{Hy}y^* = \frac{H^*}{A^*}$$
After some algebra we obtain

\[x + x^* = \frac{a_{Ly} \left(H + \frac{H^*}{A^*} \right) - a_{Hy} \left(\frac{L^*}{A^*} + \frac{L}{\Omega} \right)}{\Delta_a} \]

\[y + y^* = \frac{a_{Hx} \left(\frac{L^*}{A^*} + \frac{L}{\Omega} \right) - a_{Lx} \left(H + \frac{H^*}{A^*} \right)}{\Delta_a} \]

where

\[\Delta_a = a_{Hx}a_{Ly} - a_{Lx}a_{Hy} > 0 \]

So \(\beta \downarrow \Rightarrow I \uparrow \Rightarrow \Omega \downarrow \Rightarrow \frac{x + x^*}{y + y^*} \downarrow \Rightarrow p \downarrow \) (with standard preferences)

Terms of Trade Gain for home country (c.f. Samuelson, 2004)
After some algebra we obtain

\[
x + x^* = \frac{a_{Ly} \left(H + \frac{H^*}{A^*}\right) - a_{Hy} \left(\frac{L^*}{A^*} + \frac{L}{\Omega}\right)}{\Delta_a}
\]

\[
y + y^* = \frac{a_{Hx} \left(\frac{L^*}{A^*} + \frac{L}{\Omega}\right) - a_{Lx} \left(H + \frac{H^*}{A^*}\right)}{\Delta_a}
\]

where

\[
\Delta_a = a_{Hx} a_{Ly} - a_{Lx} a_{Hy} > 0
\]

So \(\beta \downarrow \Rightarrow I \uparrow \Rightarrow \Omega \downarrow \Rightarrow \frac{x + x^*}{y + y^*} \downarrow \Rightarrow p \downarrow\) (with standard preferences)

- Terms of Trade Gain for home country (c.f. Samuelson, 2004)
After some algebra we obtain

\[x + x^* = \frac{a_{Ly} \left(H + \frac{H^*}{A^*} \right) - a_{Hy} \left(\frac{L^*}{A^*} + \frac{L}{\Omega} \right)}{\Delta_a} \]

\[y + y^* = \frac{a_{Hx} \left(\frac{L^*}{A^*} + \frac{L}{\Omega} \right) - a_{Lx} \left(H + \frac{H^*}{A^*} \right)}{\Delta_a} \]

where

\[\Delta_a = a_{Hx} a_{Ly} - a_{Lx} a_{Hy} > 0 \]

So \(\beta \downarrow \Rightarrow I \uparrow \Rightarrow \Omega \downarrow \Rightarrow \frac{x + x^*}{y + y^*} \downarrow \Rightarrow p \downarrow \) (with standard preferences)

- Terms of Trade Gain for home country (c.f. Samuelson, 2004)
Hence, $\hat{p} \downarrow$ implies Relative Price Effect favors H and harms L

Overall:

$$\hat{w} = -\hat{\Omega} + \mu_1 \hat{p}$$

and

$$\hat{s} = -\mu_3 \hat{p}$$

H must gain, L may gain or lose

Possible Pareto gains for home country if productivity effect large enough

Note complete analogy with labor-augmenting technological progress in home country
Hence, \(p \downarrow \) implies Relative Price Effect favors \(H \) and harms \(L \)

Overall:

\[
\hat{w} = -\hat{\Omega} + \mu_1 \hat{p}
\]

and

\[
\hat{s} = -\mu_3 \hat{p}
\]

- \(H \) must gain, \(L \) may gain or lose
- Possible Pareto gains for home country if productivity effect large enough
- Note complete analogy with labor-augmenting technological progress in home country
Hence, $p \downarrow$ implies Relative Price Effect favors H and harms L

Overall:

$$\hat{w} = -\hat{\Omega} + \mu_1 \hat{p}$$

and

$$\hat{s} = -\mu_3 \hat{p}$$

- H must gain, L may gain or lose
- Possible Pareto gains for home country if productivity effect large enough

Note complete analogy with labor-augmenting technological progress in home country
Hence, $p \downarrow$ implies Relative Price Effect favors H and harms L

Overall:

$$\hat{w} = -\hat{\Omega} + \mu_1 \hat{p}$$

and

$$\hat{s} = -\mu_3 \hat{p}$$

- H must gain, L may gain or lose
- Possible Pareto gains for home country if productivity effect large enough

- Note complete analogy with labor-augmenting technological progress in home country
Hence, $p \downarrow$ implies Relative Price Effect favors H and harms L

Overall:

$$\hat{w} = -\hat{\Omega} + \mu_1 \hat{p}$$

and

$$\hat{s} = -\mu_3 \hat{p}$$

- H must gain, L may gain or lose
- Possible Pareto gains for home country if productivity effect large enough

- Note complete analogy with labor-augmenting technological progress in home country
The Labor-Supply Effect

- Present as long as there are more factors than goods
 - Short term effect if factors are specific because of frictions on factor mobility across industries
- Simplest setting to illustrate the effect is small country specialized in producing one good with two factors
- Then, if price of good normalized to one, equilibrium is given by

\[\Omega w a_L + s a_H = 1 \]

\[a_L x = \frac{L}{1 - I} \]

\[a_H x = H \]
The Labor-Supply Effect

- Present as long as there are more factors than goods
 - Short term effect if factors are specific because of frictions on factor mobility across industries
- Simplest setting to illustrate the effect is small country specialized in producing one good with two factors
- Then, if price of good normalized to one, equilibrium is given by

$$\Omega wa_L + sa_H = 1$$

$$a_L x = \frac{L}{1 - I}$$

$$a_H x = H$$
The Labor-Supply Effect

- Present as long as there are more factors than goods
 - Short term effect if factors are specific because of frictions on factor mobility across industries
- Simplest setting to illustrate the effect is small country specialized in producing one good with two factors
- Then, if price of good normalized to one, equilibrium is given by

\[\Omega w a_L + s a_H = 1 \]

\[a_L x = \frac{L}{1 - L} \]

\[a_H x = H \]

Grossman and Rossi-Hansberg
The Labor-Supply Effect

- Present as long as there are more factors than goods
 - Short term effect if factors are specific because of frictions on factor mobility across industries
- Simplest setting to illustrate the effect is small country specialized in producing one good with two factors
- Then, if price of good normalized to one, equilibrium is given by

\[
\Omega \omega a_L + s a_H = 1
\]

\[
a_L x = \frac{L}{1 - l}
\]

\[
a_H x = H
\]
Differentiate to obtain

\[\theta_L (\hat{w} + \hat{\Omega}) + (1 - \theta_L) \hat{s} = 0 \]

and since

\[\frac{a_L}{a_H} \frac{H}{L} = \frac{L}{1-l} \]

if \(\sigma \) is the elasticity of substitution between low and high-skilled labor

\[\sigma(\hat{s} - \hat{w} - \hat{\Omega}) = \frac{dl}{1-l} \]

So

\[\hat{w} = -\hat{\Omega} - \frac{1 - \theta_L}{\sigma} \frac{dl}{1-l} \]
\[\hat{s} = \frac{1 - \theta_L}{\sigma} \frac{dl}{1-l} > 0 \]
The Labor-Supply Effect

- Differentiate to obtain

\[\theta_L (\hat{w} + \hat{\Omega}) + (1 - \theta_L) \hat{s} = 0 \]

and since

\[\frac{a_L}{a_H} H = \frac{L}{1 - l} \]

if \(\sigma \) is the elasticity of substitution between low and high-skilled labor

\[\sigma(\hat{s} - \hat{w} - \hat{\Omega}) = \frac{dl}{1 - l} \]

- So

\[\hat{w} = -\hat{\Omega} - \frac{1 - \theta_L}{\sigma} \frac{dl}{1 - l} \]

\[\hat{s} = \frac{1 - \theta_L}{\sigma} \frac{dl}{1 - l} > 0 \]
The Labor-Supply Effect

- From the definition of \(\Omega = 1 - l + \int_0^l t(i) / t(l) \, di \) we know that

\[
\hat{\Omega} = -\eta \gamma \frac{dl}{1 - l}
\]

where

\[
\eta(l) = \frac{t'(l)(1 - l)}{t(l)},
\]

\[
\gamma(l) = \frac{\int_0^l t(i) \, di}{(1 - l)t(l) + \int_0^l t(i) \, di} \in [0, 1]
\]

- Then

\[
\hat{w} = \left(\eta \gamma - \frac{1 - \theta_L}{\sigma} \right) \frac{dl}{1 - l}
\]
The Labor-Supply Effect

- From the definition of \(\Omega = 1 - \int_0^l \frac{t(i)}{t(l)} \, di \) we know that
 \[
 \hat{\Omega} = -\eta \gamma \frac{dl}{1 - l}
 \]
 where
 \[
 \eta(l) = \frac{t'(l)(1 - l)}{t(l)},
 \]
 \[
 \gamma(l) = \frac{\int_0^l t(i) \, di}{(1 - l)t(l) + \int_0^l t(i) \, di} \in [0, 1]
 \]
 - Then
 \[
 \hat{\nu} = \left(\eta \gamma - \frac{1 - \theta_L}{\sigma} \right) \frac{dl}{1 - l}
 \]
The Labor-Supply Effect

- Labor-supply effect is given by

\[
\left(\frac{1 - \theta_L}{\sigma} \right) \frac{dl}{1 - l}
\]

- Large when \(\sigma \) small or labor share, \(\theta_L \), small

- At \(I = 0 \),

\[
\hat{w} = \frac{1 - \theta_L}{\sigma} \frac{dl}{1 - l} < 0
\]

- At \(I > 0 \), \(\hat{w} > 0 \) iff

\[
\sigma \gamma \eta > 1 - \theta_L
\]

- Can also handle Specific-Factors model, which has all three effects
The Labor-Supply Effect

- Labor-supply effect is given by
 \[
 \left(\frac{1 - \theta_L}{\sigma} \right) \frac{dl}{1 - l}
 \]

 - Large when \(\sigma \) small or labor share, \(\theta_L \), small

- At \(l = 0 \),
 \[
 \hat{w} = \frac{1 - \theta_L}{\sigma} \frac{dl}{1 - l} < 0
 \]

- At \(l > 0 \), \(\hat{w} > 0 \) iff
 \[
 \sigma \gamma \eta > 1 - \theta_L
 \]

- Can also handle Specific-Factors model, which has all three effects
The Labor-Supply Effect

- Labor-supply effect is given by

\[\left(\frac{1 - \theta_L}{\sigma} \right) \frac{dl}{1 - l} \]

- Large when \(\sigma \) small or labor share, \(\theta_L \), small

- At \(l = 0 \),

\[\hat{w} = \frac{1 - \theta_L}{\sigma} \frac{dl}{1 - l} < 0 \]

- At \(l > 0 \), \(\hat{w} > 0 \) iff

\[\sigma \gamma \eta > 1 - \theta_L \]

- Can also handle Specific-Factors model, which has all three effects
The Labor-Supply Effect

- Labor-supply effect is given by
 \[\left(\frac{1 - \theta_L}{\sigma} \right) \frac{dl}{1 - I} \]
 - Large when \(\sigma \) small or labor share, \(\theta_L \), small

- At \(I = 0 \),
 \[\hat{w} = \frac{1 - \theta_L}{\sigma} \frac{dl}{1 - I} < 0 \]

- At \(I > 0 \), \(\hat{w} > 0 \) iff
 \[\sigma \gamma \eta > 1 - \theta_L \]

- Can also handle Specific-Factors model, which has all three effects
The Labor-Supply Effect

- Labor-supply effect is given by

\[\left(\frac{1 - \theta_L}{\sigma} \right) \frac{dI}{1 - I} \]

- Large when \(\sigma \) small or labor share, \(\theta_L \), small

- At \(I = 0 \),

\[\hat{w} = \frac{1 - \theta_L}{\sigma} \frac{dI}{1 - I} < 0 \]

- At \(I > 0 \), \(\hat{w} > 0 \) iff

\[\sigma \gamma \eta > 1 - \theta_L \]

- Can also handle Specific-Factors model, which has all three effects
Offshoring Skill-Intensive Tasks

- Recent policy debate has focused on offshoring of white collar jobs
- May interpret this as offshoring of H-tasks
- Offshoring of H-tasks can be easily incorporated, for example, in small HO economy. Then

$$w = w^* \beta_L t_L(l_L) \quad \text{and} \quad s = s^* \beta_H t_H(l_H)$$

and

$$a_{Lx} w \Omega_L + a_{Hx} s \Omega_H = 1$$
$$a_{Ly} w \Omega_L + a_{Hy} s \Omega_H = p$$

determine $l_L(\beta_L)$ and $l_H(\beta_H)$ and

$$\hat{w} = -\hat{\Omega}_L \quad \text{and} \quad \hat{s} = -\hat{\Omega}_H$$

- Thus, $\beta_H \downarrow$ implies $s \uparrow$, w unchanged
Offshoring Skill-Intensive Tasks

- Recent policy debate has focused on offshoring of white collar jobs
- May interpret this as offshoring of H-tasks
- Offshoring of H-tasks can be easily incorporated, for example, in small HO economy. Then

\[w = w^* \beta_L t_L (l_L) \quad \text{and} \quad s = s^* \beta_H t_H (l_H) \]

and

\[a_L x w \Omega_L + a_H x s \Omega_H = 1 \]
\[a_L y w \Omega_L + a_H y s \Omega_H = p \]

determine $l_L(\beta_L)$ and $l_H(\beta_H)$ and

\[\hat{w} = -\hat{\Omega}_L \quad \text{and} \quad \hat{s} = -\hat{\Omega}_H \]

- Thus, $\beta_H \downarrow$ implies $s \uparrow$, w unchanged
Offshoring Skill-Intensive Tasks

- Recent policy debate has focused on offshoring of white collar jobs
- May interpret this as offshoring of H-tasks
- Offshoring of H-tasks can be easily incorporated, for example, in small HO economy. Then

$$w = w^* \beta_L t_L(I_L) \quad \text{and} \quad s = s^* \beta_H t_H(I_H)$$

and

$$a_{Lx} w \Omega_L + a_{Hx} s \Omega_H = 1$$
$$a_{Ly} w \Omega_L + a_{Hy} s \Omega_H = \rho$$

determine $l_L(\beta_L)$ and $l_H(\beta_H)$ and

$$\hat{w} = -\hat{\Omega}_L \quad \text{and} \quad \hat{s} = -\hat{\Omega}_H$$

- Thus, $\beta_H \downarrow$ implies $s \uparrow$, w unchanged
Recent policy debate has focused on offshoring of white collar jobs
May interpret this as offshoring of H-tasks
Offshoring of H-tasks can be easily incorporated, for example, in small HO economy. Then

$$w = w^* \beta_L t_L(l_L) \quad \text{and} \quad s = s^* \beta_H t_H(l_H)$$

and

$$a_{Lx} w \Omega_L + a_{Hx} s \Omega_H = 1$$
$$a_{Ly} w \Omega_L + a_{Hy} s \Omega_H = p$$

determine $l_L(\beta_L)$ and $l_H(\beta_H)$ and

$$\hat{w} = -\hat{\Omega}_L \quad \text{and} \quad \hat{s} = -\hat{\Omega}_H$$

Thus, $\beta_H \downarrow$ implies $s \uparrow$, w unchanged
US wages for blue collar workers roughly flat over last 10 years

Assume A has been rising in US at rate of TFP growth

Look at TOT in manufactured goods vis-a-vis non-industrialized countries

- TOT have been improving dramatically for US

Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement

Thus, positive residual

- A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring

- But, at least data leaves room for this interpretation
US wages for blue collar workers roughly flat over last 10 years

Assume A has been rising in US at rate of TFP growth

Look at TOT in manufactured goods vis-a-vis non-industrialized countries

- TOT have been improving dramatically for US

Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement

Thus, positive residual

- A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring

- But, at least data leaves room for this interpretation
Back-of-the-Envelope Calculation

- US wages for blue collar workers roughly flat over last 10 years
- Assume A has been rising in US at rate of TFP growth
- Look at TOT in manufactured goods vis-a-vis non-industrialized countries
 - TOT have been improving dramatically for US
- Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement
- Thus, positive residual
 - A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring
 - But, at least data leaves room for this interpretation
US wages for blue collar workers roughly flat over last 10 years

Assume A has been rising in US at rate of TFP growth

Look at TOT in manufactured goods vis-a-vis non-industrialized countries

- TOT have been improving dramatically for US

Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement

Thus, positive residual

- A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring
- But, at least data leaves room for this interpretation
Back-of-the-Envelope Calculation

- US wages for blue collar workers roughly flat over last 10 years
- Assume A has been rising in US at rate of TFP growth
- Look at TOT in manufactured goods vis-a-vis non-industrialized countries
 - TOT have been improving dramatically for US
- Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement
- Thus, positive residual
 - A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring
 - But, at least data leaves room for this interpretation
Back-of-the-Envelope Calculation

- US wages for blue collar workers roughly flat over last 10 years
- Assume A has been rising in US at rate of TFP growth
- Look at TOT in manufactured goods vis-a-vis non-industrialized countries
 - TOT have been improving dramatically for US
- Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement
- **Thus, positive residual**
 - A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring
 - But, at least data leaves room for this interpretation
US wages for blue collar workers roughly flat over last 10 years

Assume A has been rising in US at rate of TFP growth

Look at TOT in manufactured goods vis-a-vis non-industrialized countries

- TOT have been improving dramatically for US

Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement

Thus, positive residual

- A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring

- But, at least data leaves room for this interpretation
Back-of-the-Envelope Calculation

- US wages for blue collar workers roughly flat over last 10 years
- Assume A has been rising in US at rate of TFP growth
- Look at TOT in manufactured goods vis-a-vis non-industrialized countries
 - TOT have been improving dramatically for US
- Take plausible values for Stolper-Samuelson coefficient, using labor shares in various import and export industries. These imply that low-skill wages should be falling, despite TFP improvement
- Thus, positive residual
 - A bit heroic to associate this with net positive productivity plus labor supply effects of offshoring
 - But, at least data leaves room for this interpretation
Average Blue Collar Wage Decomposition

Nominal Wage
Wage 97 + TFP
Real Wage
Wage 97 + TFP + SS

Year
Wage
$12.00 $12.50 $13.00 $13.50 $14.00 $14.50 $15.00 $15.50

Conclusion

- **In the past:**
 - Countries produced mostly complete products that they consumed and traded with other nations
 - Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

- **Today:**
 - Drastic reductions in transport and communication costs have facilitated direct trade in tasks
 - Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

- Proposed a new paradigm where task trade takes center stage and:

 Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress

- Offshoring may lead to Pareto gains for source country
Conclusion

- In the past:
 - Countries produced mostly complete products that they consumed and traded with other nations
 - Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

- Today:
 - Drastic reductions in transport and communication costs have facilitated direct trade in tasks
 - Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

- Proposed a new paradigm where task trade takes center stage and:

 * **Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress**

 - Offshoring may lead to Pareto gains for source country
Conclusion

- In the past:
 - Countries produced mostly complete products that they consumed and traded with other nations
 - Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

- Today:
 - Drastic reductions in transport and communication costs have facilitated direct trade in tasks
 - Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

- Proposed a new paradigm where task trade takes center stage and:

 Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress

- Offshoring may lead to Pareto gains for source country
In the past:

- Countries produced mostly complete products that they consumed and traded with other nations
- Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

Today:

- Drastic reductions in transport and communication costs have facilitated direct trade in tasks
- Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

Proposed a new paradigm where task trade takes center stage and:

Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress

- Offshoring may lead to Pareto gains for source country
Conclusion

- In the past:
 - Countries produced mostly complete products that they consumed and traded with other nations
 - Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

- Today:
 - Drastic reductions in transport and communication costs have facilitated direct trade in tasks
 - Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

- Proposed a new paradigm where task trade takes center stage and:

 Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress

- Offshoring may lead to Pareto gains for source country
In the past:

- Countries produced mostly complete products that they consumed and traded with other nations
- Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

Today:

- Drastic reductions in transport and communication costs have facilitated direct trade in tasks
- Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

Proposed a new paradigm where task trade takes center stage and:

Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress

- Offshoring may lead to Pareto gains for source country
In the past:

- Countries produced mostly complete products that they consumed and traded with other nations
- Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

Today:

- Drastic reductions in transport and communication costs have facilitated direct trade in tasks
- Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

Proposed a new paradigm where task trade takes center stage and:

Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress

- Offshoring may lead to Pareto gains for source country
In the past:

- Countries produced mostly complete products that they consumed and traded with other nations
- Gains from worker specialization by dividing the production process into a variety of tasks required proximity: Industrial factory

Today:

- Drastic reductions in transport and communication costs have facilitated direct trade in tasks
- Traditional benefits from worker specialization plus gains generated when tasks are performed at the lowest cost location

Proposed a new paradigm where task trade takes center stage and:

Offshoring of a particular factor’s tasks is equivalent to factor-augmenting technological progress

- Offshoring may lead to Pareto gains for source country