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Developing intuition about quantum information theory problems is difficult, as is
verifying or ruling-out of hypothesis. We present a Matlab package intended to pro-
vide the QIT community with a new and powerful tool-set for quantum information
theory calculations. The package covers most of the “QI textbook” and includes novel
parametrization of quantum objects and a robust optimization mechanism. New ways
of re-examining well-known results is demonstrated. QLib is designed to be further de-
veloped and enhanced by the community and is available for download at www.qlib.info

I. MOTIVATION

Advances in theory are often fore-shadowed by intu-
ition. But the mathematical structures governing mul-
tipartite and even bipartite states and unitary transfor-
mations are complex, which makes many problems dif-
ficult to explore and intuition hard to develop. Analyz-
ing problems analytically is often a time-consuming pro-
cess. Validation of hypothesis is laborious and searching
for counter-examples is a lengthy endeavor. The QIT
community will probably benefit from tools to accelerate
these processes.

The use of computers for theoretical mathematics is a
well established, with a specialized journal [2], textbooks
[3, 4, 5] and numerous papers. Wolfram research defines
experimental mathematics as ”a type of mathematical in-
vestigation in which computation is used to investigate
mathematical structures and identify their fundamental
properties and patterns” [6]. Bailey and Borwein|7] use
the term to mean the methodology of doing mathematics
that includes the use of computation for

e Gaining insight and intuition
e Discovering new patterns and relationships

e Using graphical displays to suggest underlying
mathematical principles

e Testing and especially falsifying conjectures

e Exploring a possible result to see if it is worth for-
mal proof

e Suggesting approaches for a formal proof

e Replacing lengthy hand derivations with computer-
based derivations

e Confirming analytically derived results

As the benefits of tools such as Mathematica, Matlab
and Maple are clear, there is strong indication that field-
specific software for experimental theoretical quantum in-
formation would be advantageous. QLib [1] is an attempt
to provide such a tool.

II. OVERVIEW OF CAPABILITIES

QLib provides the tools to manipulate density matri-
ces, separable states, pure states, classical probability
distributions (CPDs) as well as unitary and Hermitian
matrices. All of which are supported with any number of
particles, and any number of degrees of freedom per par-
ticle. The following functions are provided to manipulate
these objects:

e Entanglement calculations: pure state entan-
glement, concurrence, negativity, tangle, logarith-
mic negativity, entanglement of formation, rel-
ative entanglement, robustness, PT-test (Peres
Horodecki), Schmidt decomposition and singlet
fraction.

e Entropy: Shannon, Von Neumann, linear entropy,
relative entropy, participation ratio, purity

e Measurements: Orthogonal (to multiple col-
lapsed states or to a single mixture) , POVM, weak
measurements

e Object transformation:

— Reorder particles, partial trace, partial trans-
pose

— Transform objects to/from the regular repre-
sentation to a tensoric representation with one
index per particle if the original object was a
vector, or two indexes per particle if the object
was a matrix

— Convert to/from computational base to the
base of SU(n) generators

e Distance measures: Hilbert-Schmidt, trace dis-
tance, fidelity, Kullback-Leibler, Bures distance,
Bures Angle, Fubini-Study

e Miscellaneous: Majorization, mutual informa-
tion, spins in 3D, famous states, famous gates
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QLib provides parametrizations for all objects of
interest, density matrices, separable states, pure states,
CPDs, Hermitian matrices and unitary matrices. In
other words, these object are representable as points in
a parameter space. This allows, for example, to gener-
ate random separable states or random unitary matri-
ces. For details of each parametrization and its theoret-
ical background, please refer to the on-line help. As an
example, details of two unitary-matrix parametrizations
and of one separable density matrix parametrization are
presented in [Vl The robust optimization capabil-

ities provided with QLib, allows searching for extrema
of functions defined over these spaces. The optimization
is performed by alternating stages of hill-climbing and
simulated annealing while applying consistency require-
ments to the output of the stages. Current experience
with the optimization feature suggests that the search
succeeds in locating the global extrema in a surprising
majority of the cases [17].

Finally QLib provides a wide selection of general pur-
pose utilities which, while are not quantum-information
specific, go a long way towards making the use of QLib
productive and simple:

e Linear algebra: Gram Schmidt, spanning a matrix
using base matrices, checking for linear indepen-
dence, etc.

e Numerics: Approximately compare, heuristically
clean-up computation results from tiny non-integer
and/or tiny real/imaginary parts, etc.

e Graphics: Quickly plot out functions in 2 and 3d,
smoothing and interpolation techniques for noisy
or sparse data, etc.

III. GETTING STARTED

QLib, available at www.qlib.info, has been designed
for easy use. An Installation Guide and a Getting Started
Guide are available on the website, and over a dozen de-
mos are provided as part of QLib, to help you get started.

In addition, on-line help is available: simply type
help qlib at the Matlab prompt for an overview of
functionality or get function-specific help, e.g. help
partial_trace.

Finally, user forums are available to ask questions and
discuss QLib issues, and forms are provided to request
new features or report bugs.

IV. SAMPLE APPLICATIONS

Following are a number of QLib usage example which
were selected both for their ability to demonstrate QLib
capabilities and for their relatively simple structure and
simple theoretical background, so that they may be
quickly understood by a wide range of readers.
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Figure 1: (color on-line) Limits on entanglement of superposi-
tions of randomly selected states. Gour appears to match the
goal function for at both ends and when |a| = |3|. Generally
speaking, Gour is indeed tighter than LPS, but not always
(note the top-left sub-figure at |a|®> = 0.55). Also of note is
the complex behavior exhibited by the entanglement of su-
perposition and the relative un-tightness of existing bounds.

A. Entanglement of Superpositions

Recently, some work has been done regarding the en-
tanglement of superpositions

IT) = V) + 5[®) (1)

An upper limit to the entanglement of |T') has been
proposed by Linden, Popescu and Smolin [8]. Further
work by Gour [9] added a tighter upper bound and a
lower bound. Unfortunately, the analytical form of these
bounds make it difficult to get a good intuitive feel as to
whether they are relatively tight or whether there is still
significant room for improvement. QLib provides us with
convenient tools with which to explore the problem. See
figure 1.

To create the graphs above, QLib’s basic primitives
have been used (computation of entanglement for a pure
state, normalization of a pure state, etc), as was the
capability to generate random pure states. Finally the
optimization capabilities are also put to use, as Gour’s
bounds are defined in terms of maximizing a function
over a single degree of freedom for given ¥,®, o and g,
which requires that every point along the Gour limit lines
above be computed by an optimization process.

B. Maximally Entangled Mixed States

Over the years there has been keen interest in the
question of MEMS, Maximally Entangled Mixed States,
which cannot be made more entangled (as measured by



some measure) with any global unitary transformation
IB, 14, ] QLib can assist in exploration of this prob-
lem by searching for the most-entangling unitary trans-
formation. Parametrization of unitary transformations is
done either by generalized Euler angles M] or with the
more naive

U =¢ Zﬁil 0igi (2)
with g; being the U(n) generators.

In this particular example, we have explored the max-
imal entanglement possible for the separable diagonal

density matrix
p 0 qg 0
<Ol—p)®<0 1—q) (3)

QLib can help discover the dependency of the maximal
entanglement on p, ¢ by locating the MEMS associated
with the initial density matrix and visualizing various
options for p, ¢ dependence. See figure 2.

C. Bloch “Hyper-sphere”

It is well known that a single qubit may be represented
using the U(2) generators as

(1+7 - o) 4)

N~
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with a pure state iff |7|| = 1. This suggests a trivial
generalization to higher dimensions as follows

nZ-1

p(m) = %1 + Z Cii (5)
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with g; being the SU(n) generators, with the assump-
tion that if Ef‘:l_ 1ei)* = 1 then the density matrix rep-
resents a pure state.

Utilizing QLib’s parametrization capabilities, we shall
generate a large number of random pure states, separable
states and general density matrices and plot the 2d pro-
jections of the resulting Bloch “hyper-sphere”, i.e. scatter
plots of two components of ¢. It is evident from figure
3 that no such trivial generalization is possible, and that
the geometry of the problem is far more complex that
can be naively guessed.

D. Additivity of entanglement and entropy
measures

Another simple use of QLib is to experimentally test
the additivity of entropy and entanglement measures

2

E(p1 ® p2) = E(p1) + E(p2) (6)
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Figure 2: (color on-line) Maximal concurrence for eq. Bl The
(p,q) = [0..0.5,0..0.5] space was explored with a resolution
of 0.005, for a total of 10,000 points, for each of which an
optimization of the concurrence over the space of SU(4) uni-
taries has been performed. The maximal concurrence is shown
both as a function of p and ¢ (in 3d, above), and as a contour
plot (below) showing the dependence of the maximal concur-
rence on the trace distance between the single-particle initial
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By randomly generating multiple p;-s and p2-s and
checking the additivity attribute for each, we can form
a reliable hypothesis regarding the behavior of the mea-
sure in question. Moreover, by extremizing E(p1 ® p2) —
E(p1) — E(p2) over all possible p1,p2 one may reach an
even more well-founded conclusion. Of particular interest
is the relative entanglement measure [10]

Er= 1nf trp(logp —logo) (7)

which is a generalization of the classical relative entropy

S(plg) = tr p(logp — log q) (8)

It is known that Er is non-additive [11].
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(color on-line) 2d projections of the SU(3) and
SU(4) Bloch “hyper-spheres”. Blue dots indicate general den-
sity matrices. Green are separable states and red dots indicate
pure states.

Figure 3:
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which in turn requires parametrization of the separable
space. In QLib this is achieved using the observation
of P. Horodecki m], that the separable space is convex,
and thus each point within is constructable as a linear
interpolation of a finite number of extremal points of
that space, as per the Caratheodory theorem. There-
fore, to parametrize all separable density matrices of di-
mension d, one may parametrize d> separable pure states
of the same dimensionality |¢;) and a classic probability
distribution {p;} to specify the mixing, resulting in the

To compute Egr, one must be able to compute

parametrization

d2
pZZPi|¢i><¢i|- 9)
i—1

The numerical study of Er additivity clearly indicate
that the relative entanglement is super-additive, i.e.

hypothesis:  Egr(p1 ® p2) > Er(p1) + Er(p2) (10)

V. LOOKING FORWARD - A COMMUNITY
EFFORT

QLib is distributed as free software. The word "free"
does not only refer to price; primarily it refers to freedom:
You may run the program, for any purpose, study how
it works, adapt it to your needs, redistribute copies and
improve the program.

It is our hope is that QLib will evolve into a group
effort, maintained, nurtured and grown by the Quantum
Information community, for the benefit of us all. For that
purpose, we have licensed QLib under the GPL, or GNU
Public License, which sets-up both the freedom to use

06 04 -0z o o2 the software, and the requirement that any enhancements

made to QLib be released back to the community. Code
which uses QLib, but is not part of it, may, of course,
remain private. For more information regarding these
issues, see the licensing section of the QLib website.

Several tools are available on the website to facili-
tate joint development of future versions: Forums, a bug
tracking system, a feature request form and a mailing
list.

The direction future QLib development will take shall
be determined by you, its users.
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