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Abstract

This study examines the problematic impact of selecting a different base period

(colder 1961–1990 vs. warmer 1988–2017), on the trend magnitude of widely

used percentile-based extreme temperature indices (e.g., warm/cold spells,

warm/cold days and nights). The percentile-based indices are part of a core set

of indices (27 in total) that have become a common standard for monitoring

climate change, as recommended by the Expert Team on Climate Change

Detection and Indices (ETCCDI). The indices were designed to be comparable

across regions provided that similar analyses are employed. Unfortunately, the

use of different base periods and periods of interest to explore local and global

climate change undermines the comparability of findings across regions. When

utilizing “day-count” indices with fixed thresholds, the use of different base/

reference periods changes the intercept without influencing the slope (for a

given period length). However, this assertion does not hold with percentile-

based indices. Our analyses show that percentile-based temperature indices

(e.g., days with temperature below the 10th or above the 90th percentiles) are

particularly susceptible to the problematic use of different base periods. Hence,

using percentile-based indices may have adverse effects on researchers' conclu-

sions. The current paper reports the results of a comparative study that used

different base periods for the most commonly used percentile-based extreme

temperature indices. It was found that the (negative) trend magnitude of the

cold percentile-based indices (frequency of cold days and nights and cold

spells) is strongly amplified while the (positive) trend magnitude of the warm

indices (frequency of warm days and nights and warm spells) is dramatically

diminished when percentiles were derived from a base period that included

records from the last two decades (e.g., 1981–2010, 1988–2017). These features

are even more pronounced when the study period covers only the last 30–
40 years.
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1 | INTRODUCTION

The past two decades witnessed a steady increase in the
application of the Expert Team on Climate Change
Detection and Indices (ETCCDI) recommendations for
monitoring climate extremes (including by the Intergov-
ernmental Panel on Climate Change, IPCC; e.g., Frich
et al., 2002; Aguilar et al., 2005; Zhang et al., 2005a; Alex-
ander et al., 2006; Klein Tank et al., 2006; Vincent and
Mekis, 2006; Donat et al., 2013; Yosef et al., 2019). The
ETCCDI defined a total core set of 27 indices based on
daily temperature values or daily precipitation amount.
Some indices are based on fixed thresholds for all stations
(for instance, 25�C threshold as used in the summer days
index [SU25] or days below 0�C threshold to indicate
frost days [FD0]). In contrast, other indices are based on
thresholds that vary from location to location. In these
cases, thresholds are typically defined as a percentile of
the relevant data series. The ETCCDI day-count indices
that based on percentile thresholds are chosen so that
they will be exceeded at a fixed frequency, often 10%,
during the base period that is used to define the thresh-
olds. This refers to moderate extremes and climate
extremes with short return periods that typically occur
several times every year (Klein Tank et al., 2009; Zhang et
al., 2011). Since changes in percentile-based indices do
not necessarily translate to changes in absolute extremes
(Zhang et al., 2001), for rare extreme events that lie far in
the tails of the probability distribution, the two general
approaches: block-maxima and peak-over-threshold
(POT), are more suitable. The block-maxima method
requires a sample of extreme values obtained by selecting
the maximum (or the minimum) value observed in each
block. Blocks are typically annual (365 daily observations
per block) or seasonal. This can be modelled with gener-
alized extreme value (GEV) distribution. The POT
approach considers all sample values that exceed a high,
predefined threshold. The probability distribution of the
exceedances over the threshold can be modelled using
the generalized Pareto distribution (GPD).

The rationale underlying the introduction of the
ETCCDI core set of indices was to enable individuals,
countries, and regions to calculate the indices in exactly
the same way such that their analyses will fit seamlessly
into the global picture (Karl et al., 1999; Peterson et
al., 2001). The indices were published in the World Mete-
orological Organization (WMO) guidelines on the analy-
sis of extremes in a changing climate by Klein Tank et
al. (2009) and by Zhang et al. (2011), who applied a boo-
tstrapping procedure to determine climatological percen-
tile thresholds as a means to avoid discontinuities in the
indices time series at the beginning or end of the base
period (Zhang et al., 2005b).

Recently, Salameh et al. (2019) published a study of
the changes in climate extreme indices (utilizing the
ETCCDI indices) across Israel in the period 1987–2016.
Their database was homogenized by using absolute
homogenization methods. Yosef et al. (2019), who simi-
larly studied changes in climate extreme indices across
Israel, had analysed a longer period 1950–2017, com-
pared it to the 1988–2017 period, and applied a more
robust homogenization procedure using relative homoge-
nization methods in conjunction with metadata. A com-
parison of the spatial and the averaged regional trends of
the percentile-based indices (e.g., warm/cold spells dura-
tion, warm/cold days and nights) in the two studies (i.e.,
Salameh et al., 2019; Yosef et al., 2019) reveals different
results that cannot be attributed to the use of different
homogenization methods. For instance, Yosef et
al. (2019) reported a significant increasing trend of
8.03 days per decade in the WSDI (warm spell duration
index) over the period 1988–2017, whereas Salameh et
al. (2019) reported a much smaller increase of only
0.63 days per decade over the nearly identical period of
1987–2016. Since both studies used similar weather sta-
tions and almost the same period of interest, this large
discrepancy should be attributed mainly to the selected
base period. Whereas Yosef et al. (2019) derived the per-
centiles from the standard normal base period 1961–
1990, Salameh et al. (2019) used 1987–2016 as their base
period.

Previous studies that applied percentile-based indices
have generally overlooked the problematic impact of the
tendency to use different base periods across different
studies. Here, we highlight the negative impact of hetero-
geneity in the selection of base periods. Specifically, we
demonstrate how the selection of different base periods
can result in misleading conclusions when using percen-
tile-based extreme temperature indices.

2 | METHODOLOGY

2.1 | Database

The database contains 24 long-term station records from
various climatic regions across Israel. All the maximum
temperature (TX) and the minimum temperature (TN)
time series have undergone a quality control and a thor-
ough relative homogenization routine following the pro-
cedures employed by Yosef et al. (2019). We applied
state-of-the-art homogenization methods (e.g., HOMER,
ACMANT, CLIMATOL), taking into account metadata
(the historical information about the stations) in order to
validate the results (i.e., break-points detection). Missing
daily values of the adjusted database were completed by
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linear regression based on highly correlated stations.
Information about the stations' coordinates, heights and
periods of homogenous data appear in Table 1.

2.2 | Percentile-based extreme indices

The ETCCDI were actively coordinated by the Climate
Variability and Predictability (CLIVAR)/Commission for
Climatology (CCl)/Joint Technical Commission for
Oceanography and Marine Meteorology (JCOMM). Addi-
tionally, the WMO Commission for Climatology
established an Expert Team on Sector-specific Climate
Indices (ET-SCI), which consider agriculture, water, and
health sectors requirements alongside the ETCCDI indi-
ces (Alexander and Herold, 2015). In order to calculate
these extreme indices derived from daily data, we
employed a specially developed “R” software package
ClimPACTv2 package (Alexander and Herold, 2015), for
both ETCCDI and ET-SCI indices. This package includes
Zhang et al.'s (2005b) bootstrapping procedure.

As mentioned above, these climate extreme indices
are calculated based on daily observed minimum and
maximum temperatures or daily precipitation amount.
Some indices involve counting the number of days (in a
season or a year) that exceed specific thresholds defined
as percentiles; thus, their thresholds change from one site
to another. While the 95th and 99th percentiles of precipi-
tation on wet days are fixed thresholds in a given base
period n, the temperature percentile-based indices have
an annual cycle (i.e., for the same percentile each calen-
dar day has a different calculated threshold in a base
period n). The percentile-based thresholds of the temper-
ature base period were calculated from five-day windows
centered on each calendar day. When necessary, days
from adjacent years are taken (i.e., January first is repre-
sented by December 30th, 31st, 1st, 2nd and 3rd) to account
for the mean annual cycle. A five-day window is chosen
to yield a total sample size of 30 years (the base period
length) × 5 days = 150 (days) for each calendar day,
which results in a relatively smooth annual cycle of per-
centile thresholds. This procedure, defined by the

TABLE 1 List of weather stations and their periods of homogeneous data

Station name Latitude Longitude Altitude (m) Period

Dafna 33.22 35.63 135 1950–2017

Kefar-Blum 33.17 35.60 75 1950–2017

Zefat (Har-Kenaan) 32.97 35.50 936 1950–2017

Akko 32.93 35.10 8 1950–2017

Bet-Zayda 32.87 35.65 −200 1950–2017

Tavor (Kadoorie) 32.70 35.40 145 1950–2017

Zemah 32.72 35.58 −200 1950–2017

Kefar-Yehoshua 32.68 35.15 50 1950–2017

Afula 32.60 35.27 60 1950–2017

Galed 32.55 35.07 180 1950–2017

Sede-Eliyyahu 32.43 35.50 −185 1950–2017

En-Hahoresh 32.38 34.93 15 1950–2017

Tel-Aviv (coast) 32.05 34.75 10 1950–2017

Bet-Dagan 32.00 34.80 31 1950–2017

Qevuzat-Yavne 31.82 34.72 50 1950–2017

Jerusalem (center) 31.77 35.22 810 1950–2017

Beit-Jimal 31.72 34.98 355 1950–2017

Negba 31.65 34.67 95 1950–2017

Dorot 31.50 34.63 115 1950–2017

Besor farm 31.27 34.38 110 1950–2017

Beer-Sheva 31.25 34.80 279 1950–2017

Sedom 31.02 35.38 −388 1950–2017

Sede-Boqer 30.87 34.78 475 1950–2017

Elat 29.55 34.95 22 1950–2017
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ETCCDI, ensures that extreme temperature events, in
terms of crossings percentile thresholds, can occur with
equal probability throughout the year (Klein Tank et
al., 2009).

The percentiles of the current study were derived
from two different base periods for comparison. The first
base period was the standard normal period 1961–1990
(WMO, 2017). The second base period was 1988–2017.
The first base period captures a relatively cold period
whereas the second base period captures a much warmer
period.

The selected percentile-based indices were: WSDI and
WSDI3 (warm spell duration index with at least 6 or 3
consecutive days when TX > 90th percentile, respec-
tively), CSDI3 (cold spell with at least 3 consecutive days
when TN < 10th percentile), TX10p (cold days), TX90p
(warm days), TN10 (cold nights) and TN90p (warm
nights). Table 2 presents a list of these indices with their
acronyms and short definitions. The CSDI3 index (based
on 3 days sequences) was chosen rather than the more
common CSDI (based on 6 days sequences) since the lat-
ter is very rare in the Israeli region and as consequence
its statistics are less robust.

2.3 | Area average

To summarize the long-term changes observed in Israel
(1950–2017), regional averages for every index were com-
puted. The regional averaged temperature indices were
computed as an unweighted mean of the indices at indi-
vidual stations relative to their climatological averages.
This was done twice, once with the percentiles derived
from the colder base period 1961–1990 and a second time
with the percentiles derived from the warmer base period

1988–2017. The anomalies in this study were calculated
relative to 1961–1990 mean values.

2.4 | Trend calculations

Trends for the various indices time series were calculated
for different periods of interest since 1950, focusing on
the recent 30 years, that is, 1988–2017. The robust non-
parametric Mann-Kendall test (Mann, 1945; Ken-
dall, 1955) with Sen's slope estimator (Sen, 1968) was
applied to the time series, since it is not affected by the
distribution of the data, nor is it sensitive to outliers. All
the time series were pre-whitened in order to correct the
Mann-Kendall test for serial autocorrelation (Zhang et
al., 2000; Wang and Swail, 2001). We consider a trend to
be significant if it is statistically significant at the 5%
level. This trend analysis was conducted using the R
package “zyp” (Bronaugh and Werner, 2013).

3 | RESULTS

Figure 1 shows the changes in the percentile thresholds
when they are derived from the two base periods, 1961–
1990 (colder) versus 1988–2017 (warmer). The analysis
was done for Jerusalem and Bet-Dagan stations, which
are located in different climatic zones. Jerusalem is
located inland in a mountainous region (altitude 815 m),
whereas Bet-Dagan is located in the coastal plain (alti-
tude 33 m). It can be noticed that the daily thresholds for
the recent period (1988–2017) are much warmer than in
the past (1961–1990) for both the 10th and 90th percen-
tiles. The differences between the two base periods were
calculated by subtracting the threshold of each day of the

TABLE 2 Percentile-based extreme indices recommended by the expert teams (ET)

Index Indicator name Definitions ET Unit

TX10p Cool days Percentage of days when TX < 10th percentile ETCCDI %

TX90p Warm days Percentage of days when TX > 90th percentile ETCCDI %

TN10p Cool nights Percentage of days when TN < 10th percentile ETCCDI %

TN90p Warm nights Percentage of days when TN > 90th percentile ETCCDI %

WSDI Warm spell duration indicator Annual count of days with at least 6 consecutive days
when TX > 90th percentile

ETCCDI Days

WSDI3 Warm spell duration indicator Annual count of days with at least 3 consecutive days
when TX > 90th percentile

ET-SCI Days

CSDI Cold spell duration indicator Annual count of days with at least 6 consecutive days
when TN < 10th percentile

ETCCDI Days

CSDI3 Cold spell duration indicator Annual count of days with at least 3 consecutive days
when TN < 10th percentile

ET-SCI Days
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warmer period 1988–2017 from the cooler period 1961–
1990. The distributions of these differences are presented
in Figure 2. Analysing these distributions revealed a simi-
lar positive deviation for both stations for the different
thresholds (quantiles). The total average difference is
�0.8�C for each station. The averaged interquartile
ranges (IQR) are also similar and equal to 0.99�C and
1.09�C at Bet-Dagan and Jerusalem, respectively. More-
over, the deviations fluctuated (i.e., they are non-

constant) throughout the annual cycle for both thresh-
olds (10th and 90th percentiles). The warmer months
showed the largest deviations whereas the cold months
(mainly November until February) exhibited smaller
deviations. These large, fluctuating deviations for both
TX and TN are noteworthy; they lead to higher thresh-
olds in the later (1988–2017, warmer) period that the
observations need to exceed to qualify as extreme, which
ultimately may have an impact on the trends ratio.

Figure 3 presents the spatial and regional average trends
of WSDI and CSDI3 indices. Here, the maps show only the
trends for the last 30 years (1988–2017) when percentiles
were derived from different base periods (b.period 1961–
1990 and b.period 1988–2017). For exactly the same period
of interest, a significant dissimilarity between the two ana-
lyses was found. For the WSDI, when percentiles were
derived from the warmer base period (1988–2017), null spa-
tial trends were detected. This is in contrast to the highly
significant and substantial changes when a colder base
period was used (1961–1990). The opposite pattern emerged
with the CSDI3 trends: Whereas significant negative trends
were found when the warmer base period was applied
(1988–2017), only mild changes (mostly non-significant sta-
tistically) were found when a colder base period (1961–
1990) was used.

The averaged regional time series anomalies (relative
to 1961–1990), shown on the bottom of Figure 3, depict
the long and short-term changes when different base

FIGURE 1 The percentile-based

thresholds of the maximum (TX) and

minimum (TN) temperature, derived

from two base periods, 1961–1990
(black) and 1988–2017 (red and blue).

In each panel, the upper curves

denote the 90th percentile and the

lower curves denote the 10th

percentiles. The thresholds for

Jerusalem and bet-Dagan stations

appear on the left and right panels,

respectively [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 2 The distribution of the differences when

subtracting the threshold of each day in the warm period 1988–
2017 from the cooler period 1961–1990, at the 10th and the 90th

percentiles. Jerusalem appears in orange and bet-Dagan appears in

blue [Colour figure can be viewed at wileyonlinelibrary.com]
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periods are used, for both indices. The warm index
(WSDI), exhibits a sharp increase that starts at the begin-
ning of the 1990s, whereas the cold index (CSDI3)
exhibits a mild decrease at the same time (red lines). This
is when the percentiles were derived from a colder base
period, 1961–1990.

The opposite occurred when a warmer base period
was used to derive the percentiles, which led to almost
no change in the WSDI, and on the other hand, to a steep
decrease in the trend of CSDI3 index (red lines, Figure 3,
bottom right). The regional averaged WSDI trend for the
period of interest 1988–2017 is 8.03 days per decade ver-
sus 1.5 days per decade when colder (1961–1990) and

warmer (1988–2017) base periods were used, respectively
(denoted by the linear trend lines in Figure 3, bottom
left). Furthermore, the CSDI3 trends are three times
lower, with −2.04 days per decade versus −6.76 days per
decade, when colder versus warmer base periods were
applied, respectively. For the WSDI3 index, which is
more frequent in our region, the trends are three times
higher in this period of interest with 14.92 days per
decade (when colder base period, 1961–1990, was used)
versus 4.59 days per decade (when warmer base period,
1988–2017, was used). Tables 3 and 4 summarize the
annual and the seasonal trends over 1988–2017, using
both base periods.

FIGURE 3 The maps display the trends in the WSDI and CSDI3 indices for the period 1988–2017 when percentiles derived from

different base periods (b.period 1961–1990 vs. b.period 1988–2017). Upward facing red triangles represent increasing trends and downward

facing blue triangles represent decreasing trends. Different sizes of triangles indicate different magnitudes of trends. Filled triangles mark

significant changes (p ≤ .05; units: days per decade). Circle denote no trend. The graphs display regional averaged anomaly series (1950–
2017) relative to 1961–1990 mean values. Solid (red) and dashed (blue) lines represent the different base periods of which the percentiles

were derived, 1988–2017 (warmer) and 1961–1990 (colder) respectively. Solid blue and red lines denote the linear trends of the period 1988–
2017 for both base periods [Colour figure can be viewed at wileyonlinelibrary.com]
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The same principle holds for the common percentile-
based indices TX10p (cold days), TX90p (warm days),
TN10p (cold nights) and TN90p (warm nights), which
describe the left and the right tails of the temperature dis-
tribution. Figure 4 shows the four indices of long and
short term trends for the annual regional averages anom-
alies (relative to 1961–1990). When a warmer base period
was used (1988–2017), the cold indices (TX10p and
TN10p) exhibited a strong decrease (around two times
greater), whereas the warm indices (TX90p and TN90p)
exhibited a mild increase (about two times smaller,
Table 4). Additionally, large discrepancies emerged for all
seasons except winter (Table 4). Table 5 shows the differ-
ence between the outcomes (i.e., the indices slopes calcu-
lated using the warmer base period minus the colder base
period). The differences in the annual trends, for the
warm as well as the cold indices, were found to be signifi-
cant. These deviations are even more pronounced in the
summer; this season was characterized by the largest sig-
nificant dissimilarity as compared with the other seasons
(Table 5).

Figure 5 illustrates this point by showing the spatial
distribution trends on maps. The upper and the lower
panels display the trends for the same period of interest
(1988–2017). The upper panels present the trends when
the colder base period was used whereas the lower panels
show the trends when the warmer base period was
applied. As in Figure 3, the trends in the upper and lower
panels should in principle be the same regardless of the
selected base period (e.g., in a day-count indices exceed-
ing a certain fixed thresholds or as in absolute tempera-
ture anomalies). However, we found large discrepancies
between the upper and the lower maps.

We subsequently calculated trend matrices to exam-
ine the effects of using different period lengths on percen-
tile-based indices. Figure 6 displays the annual trends
and their statistical significance (p ≤ .05, black “+”) for
all the possible combinations of starting (x-axis) and end-
ing years (y-axis), with 30 or more years of observations.
The diagonal displays trend results of a 30-year time
period, beginning in the lower left corner with the period
1950–1979, progressing with one-year steps and ending
in the upper right corner with the period 1988–2017. In

the upper left corner the result of the entire series (1950–
2017) can be found. The right column of Figure 6 shows
the difference between the periods when percentiles were
derived from 1988–2017 (warmer period, middle column)
to percentiles that were derived from 1961–1990 (colder
period, left column). As the beginning year (x-axis) is pro-
gressing towards current day, the magnitude of the nega-
tive difference between the trends obtained from the two
inspected base periods is increasing (most pronounced
for warm nights index, TN90p, Figure 6l). It is clear that
the tendency towards amplifying or diminishing trends is
a function of the chosen base period.

4 | DISCUSSION

The global temperature has been changing vigorously in
the last 30 years. The Earth's surface temperature has
been successively warmer than in any preceding decade
since 1850 (Donat et al., 2013; IPCC, 2014). Figures 1 and
2 clearly demonstrate these typical changes that occurred
in the last three decades compared to the common stan-
dard normal base period 1961–1990. In addition, on a
global scale, it is very likely that a decline in the number
of cold days and nights has taken place, while the fre-
quency of warm days and nights have increased. More-
over, heat waves have become more frequent in many
parts of Europe, Asia and Australia (IPCC, 2014). To esti-
mate these changes properly, the use of a relatively colder
base period, such as 1961–1990, is needed.

Klein Tank et al. (2009) stipulated that the choice of
another normal period (e.g., 1971–2000) has only a small
impact on the results when estimating the changes in the
indices over time. This assertion accords with Yosef et
al. (2019), which showed that percentiles from the base
period 1961–1990 and 1971–2000 have a similar impact
on trend magnitude of order. However, this assertion
does not hold in a rapidly changing (non-stationary cli-
mate) world that exhibits a clear and continued warming
trend. The results of the current study indicate that the
choice of a base period has a marked impact on the mag-
nitude of the slope, especially when a warmer base period
(e.g., 1981–2010, 1988–2017) is used. Specifically, it was

TABLE 3 Annual trends (days per decade) for the period 1988–2017, using two base periods, 1961–1990 and 1988–2017

WSDI base
period 1961–
1990 [days per
decade]

WSDI base
period 1988–
2017 [days per
decade]

WSDI3 base
period 1961–1990
[days per
decade]

WSDI3 base
period 1988–2017
[days per
decade]

CSDI3 base
period 1961–
1990 [days per
decade]

CSDI3 base
period 1988–
2017 [days per
decade]

Annual 8.03 1.5 14.92 4.59 −2.04 −6.76

Note: Bold values denote statistical significance at the p ≤ .05 level.
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TABLE 4 Annual and seasonal trends (% per decade) for the period 1988–2017, using two base periods, 1961–1990 and 1988–2017. The
change in the annual number of the days per decade are displayed in parentheses (the seasonal percentages are quite similar to the actual

number of days in a season)

TX10p base
period
1961–1990
(% per
decade)

TX10p base
period
1988–2017
(% per
decade)

TX90p base
period
1961–1990
(% per
decade)

TX90p base
period
1988–2017
(% per
decade)

TN10p base
period
1961–1990
(% per
decade)

TN10p base
period
1988–2017
(% per
decade)

TN90p base
period
1961–1990
(% per
decade)

TN90p base
period
1988–2017
(% per
decade)

Spring −3.82 −5.43 2.09 1.41 −2.84 −5.68 2.76 2.00

Summer −1.38 −6.28 10.41 5.12 −1.27 −7.55 14.55 5.67

Autumn −2.65 −5.5 2.00 0.2 −2.00 −4.88 4.33 1.4

Winter −0.9 −1.04 5.49 4.24 −0.6 −0.77 4.55 3.64

Annual −2.36 (−9) −4.58 (−17) 5.11 (19) 2.76 (10) −1.77 (−6) −4.76 (−17) 6.9 (25) 3.33 (12)

Note: Bold values denote statistical significance at the p ≤ .05 level.

FIGURE 4 Regional averaged

anomaly series (1950–2017) relative
to 1961–1990 mean values of four

percentile-based indices: TX10p,

TX90p, TN10p, and TN90p. Solid

(red) and dashed (blue) lines

represent the two base periods from

which the percentiles were derived,

1988–2017 (warmer) and 1961–1990
(colder) respectively. Solid blue and

red lines denote the linear trends of

the period 1988–2017 for both base

periods [Colour figure can be viewed

at wileyonlinelibrary.com]

TABLE 5 The difference in the trends magnitude per decade when selecting different base periods

ΔWSDI ΔWSDI3 ΔCSDI3 ΔTX10p ΔTX90p ΔTN10p ΔTN90p

Spring — — — −1.61 −0.68 −2.84 −0.76

Summer — — — −4.9 −5.29 −6.28 −8.88

Autumn — — — −2.85 −1.8 −2.88 −2.93

Winter — — — −0.14 −1.25 −0.17 −0.91

Annual −6.53 −10.33 −4.72 −2.22 −2.35 −2.99 −3.57

Note: Bold values denote statistical significance at the p ≤ .05 level.
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http://wileyonlinelibrary.com


found that the trend magnitude of the cold percentile-
based indices (CSDI3, TX10p, TN10p) is amplified while
the trend magnitude of the warm indices (WSDI, WSDI3,
TX90p, TN90p) is diminished when a warmer base period

is used. These features emerge for the long-term trends
and are more pronounced during the last 30 years. This
result may be explained by the fact that, under conditions
of continuous global warming, deriving percentiles from

FIGURE 5 Trends in cold days (TX10p), warm days (TX90p), cold nights (TN10p) and warm nights (TN90p) for the period 1988–2017.
The upper and lower panels present the trends when using 1961–1990 and 1988–2017 as the base period, respectively. Symbols as Figure 4

(units: % per decade) [Colour figure can be viewed at wileyonlinelibrary.com]
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a distribution shifted to the right results in higher thresh-
olds that need to be exceeded. Therefore, when the 10th

percentile is derived from a recent warmer (e.g., 1988–

2017) base period, the threshold (absolute) values are
higher than when the 10th percentile is derived from the
colder (1961–1990) base period, increasing their

FIGURE 6 Annual trend matrix of the regional percentile-based indices: TX10p (a,b), TX90p (d,e), TN10p (g,h), and TN90p (j,k).

Panels on the left-hand side use percentiles derived from the cooler base period 1961–1990. Panels on the middle use percentiles derived

from the warmer base period 1988–2017. Positive (negative) trends are coloured in red (blue). “+” denotes significant trends (p ≤ .05). Panels

on the right hand shows the difference between the period when percentiles were derived from 1988–2017 (middle column) versus from

1961–1990 (left column). Units for all the panels are (% per decade) [Colour figure can be viewed at wileyonlinelibrary.com]
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exceedance rate mainly in the past, thereby leading to a
stronger (steeper) trend magnitude. This is unlike when
the 10th percentiles were derived from 1961–1990 base
period. Exceeding the thresholds derived from that distri-
bution became quite a rare event in the past two decades.
Hence, in this case the slope is much more moderate.

The opposite is true for the 90th percentile, which
was derived from a warmer base period. In this case, the
threshold (absolute) values again are higher than in the
cooler past, thus reducing the frequency with which
these high thresholds are exceeded in the past as well as
these days. Hence, using a recent warmer base period
may lead to the erroneous conclusion that there is only a
slight increasing trend in the warm indices, which mis-
represents the actual changes to global climate (unlike
when using the colder base periods of 1961–1990 or even
1971–2000).

Another important finding was that estimates for the
summer months (June–August) were impacted by the
choice of base period much more than the winter months
(December–February). This is unsurprising given that the
summer in the east Mediterranean region has undergone
a highly significant and substantial change (Kostopoulou
and Jones, 2005; Ziv et al., 2005; Shohami et al., 2011;
Tanarhte et al., 2012; Yosef et al., 2018; Yosef et al., 2019).
Consequently, the changes in the annual cycle of the 10th

and the 90th percentiles are more pronounced in the sum-
mer than in the winter. Thus, we observed a differential
change in the annual cycle, with a marked increase in
summer temperatures (TX and TN) coupled with a
milder increase in winter temperatures. This differential
change emerged when we compared a cold base period
versus a warm base period.

5 | CONCLUSIONS

The present study examined the effect of using different
base periods (1961–1990 colder versus 1988–2017
warmer) on the trends calculated from the common
ETCCDI percentile-based extreme temperature indices.
One of the major strengths of the ETCCDI is that it
enables comparisons of agreed-upon indices from compa-
rable analyses (i.e., from analyses that use the same for-
mulas) conducted across different parts of the world. The
use of such indices, in turn, presumably facilitates seam-
less integration of observations obtained from different
regions (calculated independently, for example, Alexan-
der et al., 2006) to produce a global picture. Although
trends of “day-count” indices with fixed thresholds are
impacted by the length of the period of interest, the per-
centile-based indices trends are susceptible to both the
length of the period of interest as well as the chosen base

period in the time series. Percentile-based indices are
much more sensitive to the selected base period com-
pared to alternative indices, especially in a world charac-
terized by continuous climate change. When different
base periods are used, the magnitude of the trends may
change, depending on whether percentiles are derived
from a relatively colder or warmer base period, given the
underlying warming trend. The highest discrepancy
emerges at the end of the analysed period (i.e., the warm-
est years). Therefore, it is important to bear in mind a
striking difference in the trends calculated (two to three
times or even greater) when contrasting base periods
which include the last two decades versus those which do
not use the normal base period 1961–1990 (e.g., Donat et
al., 2014; Shrestha et al., 2017; Barry et al., 2018; Salameh
et al., 2019). This is an important methodological issue
for future research as well, especially in a continuously
changing climate that is expected to get much warmer in
coming years according to global and regional climate
models.

To properly compare or integrate data from studies
that use percentile-based indices either across regions or
within the same region, the base period should be the
same, especially in this era characterized by accelerated
warming. As the current research shows, the use of
different base periods when utilizing percentile-based
indices runs the risk of causing researchers and
policymakers alike to misestimate the magnitude of cli-
mate change.
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