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Abstract— In the last decade, commercial microwave
links (CMLs) have been treated as opportunistic near-ground
rain sensors, and successfully used for the retrieval of 2-D
near-ground rain fields in several countries. In spite of the
path integration of a CML, most studies represent the rainfall
measured by a CML as a single virtual rain gauge (VRG)
in the center of the path. Here, we study the performance
of spatial reconstruction of rain fields by an inverse distance
weighting (IDW) spatial interpolation method. We compare the
case where each CML is represented by a single VRG with
the case where it is represented by several VRGs along its
path. A synthetic rain field was produced, simplified to a single
rain cell, and sampled by a synthetic CML network that was
built according to statistics of actual CMLs. A Monte Carlo
simulation study yielded a quantitative and specific set of metrics
showing that the rain-retrieval results are scenario-dependent
and can be used to design a rain-retrieval system. In particular,
we show that if the rain-cell dimensions are in the order of
the average length of the CMLs, using several VRG with
the iterative algorithm can significantly improve the retrieval
performance, whereas the performance gain is small otherwise.

Index Terms— Commercial microwave links (CMLs), rainfall
monitoring, spatial interpolation.

I. INTRODUCTION

UNDERSTANDING the rain-field spatiotemporal behavior
has drawn considerable attention of various research

fields from physically based hydrometeorological forecasting
models to processing and analysis of observations. Utiliz-
ing the cellular communication microwave-based backhaul
infrastructure for rainfall monitoring was introduced over
a decade ago [1], [2]. Nowadays, the use of commercial
microwave links (CMLs) to regularly collect signal level
measurements for rain monitoring has been well studied,
appropriate algorithms were introduced (e.g., [3]–[6]), and
the technology is almost ready for applicable uses, e.g.,
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national/international meteorological/hydrological services [7]
as well as private weather forecasting and nowcasting
providers. As a consequence of their nature, CMLs provide
a near-ground-level representation of rain as a line projection
and not as a point sample, traditionally undertaken by rain
gauges (RGs). Nonetheless, most 2-D rain mapping methods
treat each CML as a single virtual RG (VRG), which is
commonly positioned in the center of the CML path [5], [8].
Representing a CML by a point measurement in space brings
both challenges and opportunities when it comes to 2-D rain
field reconstruction. On the one hand, the length allows a larger
coverage, which increases the potential detection probability.
On the other hand, when rain distribution along the CML
is not uniform, an inherent error is added. The performance
of the rainfall 2-D estimations is highly dependent on the
characteristics of the CML network. The latter varies for dif-
ferent population densities, in spatial density (number of links
per km2) and average length; the more (less) urbanized an area,
the higher (lower) the CMLs’ density and the smaller (larger)
their mean length [9].

Most studies employing CMLs for rain mapping imple-
ment well-established methodologies of field reconstruction
(e.g., [10]–[12]), such as inverse distance weighting (IDW)
interpolation [13], [14], or given sufficient knowledge regard-
ing rain statistics, the Kriging approach [15], [16]. Further-
more, it was suggested to use the dynamic information of rain,
derived from multiple snapshots, for the interpolation of the
rain field [17]. Relations between CMLs and RGs or other
weather-monitoring instruments were inspected in previous
studies [18]–[20], and it was suggested to treat the CML atten-
uation measurements as line-projection samples [21], [22].
Also, utilizing tomography [23], [24], implementing sparse
modeling with compressed sensing tools [25], [26], and using
object tracking techniques [27] have been studied. In addi-
tion, it has been suggested to set multiple VRGs by divid-
ing each CML into nonoverlapping subsections [28]. The
aforementioned study also proposed using neighboring links
in an IDW-based iterative algorithm (hereafter GMZ after
the authors’ initials) to adjust the values of the different
VRGs, when used for 2-D rain mapping. While long-term
studies conducted in the Netherlands demonstrated that rep-
resenting a link by a single VRG is sufficient for reliable
2-D rain reconstruction [10], the potential benefit, if any,
of considering more VRGs per link has not yet been
investigated.
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A given rain intensity 2-D field R(x, y) (in mm h−1),
attenuates microwave signals between a transmitter and a
receiver approximated by Power-Law relations [29]

A = a
∫ L

0
R(l)b dl (dB) (1)

where L is the length of the CML and a and b are empirical
parameters [30]. The discrete equivalent of (1) when a CML
is divided to i segments can be written as

A = a
∑

i

Rb
i �l (dB) (2)

where the values of Ri can naturally differ from one another.
Equation (2) is based on the assumption that �l is such that
the rain over the segment is approximately constant, and is
given by Ri . Thus, in the case of a single VRG in the center
of a CML, the approximation R(l) = R0 implies that �l is
the full CML length, and therefore, yields

A ≈ a Rb
0 L (dB). (3)

This case can also be written as (2) where Ri = R0 for all i
in order to exploit the length of the link

A = a Rb
0

∑
i

�l (dB). (4)

Alternatively, GMZ allows Ri along a single CML to differ,
and therefore, suggests a better approximation of (2).

When attempting to reconstruct rain fields, three funda-
mental aspects must be addressed upon which the perfor-
mance of the rain field reconstruction depends: 1) the given
CML network; 2) the nature of the rain field; and 3) the
desired reconstruction field scale. The aforementioned aspects
properties dictate the quality of the CML-based rain-field
reconstruction accuracy.

In this letter, we study the potential improvement in perfor-
mance, if any, of 2-D rain field reconstruction using spatial
interpolation by using more than a single VRG to represent
a link. To be able to present quantitative results, the ground
truth must be available. Therefore, we simulated a rain field
by a 2-D Gaussian-shape rain cell, where the intensity of the
rain and its spatial coverage can be controlled by a finite set of
parameters. It is common to use the Gaussian shape for spatial
representation in stochastic rainfall modeling, although there
are other shapes that better fit different rainfall patterns [31].
Since a real rain cell can be reasonably reconstructed by a
combination of a finite number of Gaussian shapes, a single
Gaussian constitutes a simplified case, so that we could
isolate the spatial variability challenges. A synthetic CML
network had been simulated as well, following the statistics of
operational networks [9]. Monte Carlo simulations, in which a
randomly chosen location of an increase in size “rain cell” was
generated, were applied. Regarding the characteristics of the
sampling CML network, we showed a significant reduction
of error can be achieved in reconstructing rain fields, for
a confined range of rain cell sizes, when multiple VRGs
represent the CML and GMZ is utilized.

The rest of this letter is organized as follows: In Section II,
we describe the compared interpolation methodologies,

present the steps taken in structuring the synthetic experiment,
and explain the performance grading method. In Section III,
we analyze the results of the Monte Carlo simulations per-
formed. Finally, Section IV concludes this letter.

II. METHODOLOGY

A. Methodologies Compared

The IDW weighting function (Shepard’s method) describing
the weight of the i th VRG, by which the spatial interpolation
is done, is given as

wi =
(
1 − di

D

)2( di
D

)2 , if
di

D
< 1 (5)

where di is the distance between VRGi and a target grid
point, and D is the distance beyond which VRGi ceases to
effect di , i.e., radius of influence (here 10 km). The IDW based
interpolation methodologies compared in this study were:

1) IDW1, IDW3, and IDW9; for M CMLs, each is rep-
resented by one, three, and nine VRGs resulting in M ,
3M , and 9M VRGs, respectively. The value measured
by each VRG is the averaged rain along the link R0 and
is the same for all VRGs. Rain field reconstruction is
done by IDW with all VRGs;

2) GMZ3, GMZ9, and GMZ13 are 3, 9, and 13 VRGs
per CML, respectively. After the convergence of GMZ,
the VRGs can have different values. IDW is subse-
quently executed utilizing all VRGs.

Parameters of GMZ algorithm used here were: 1) predefined
root mean square differences convergence tolerance threshold
(10−4 mm h−1), between VRGs values in a given iteration and
the previous to it and 2) a limitation of the maximum number
of iterations to 28.

B. Synthetic CML Network and Rainfall
Ground Truth Generation

Strong relations between the CML averaged length (here-
after Lm ) and the spatial density of the network have been
shown in a recent study [9], suggesting that long (short) Lm is
associated with the low (high) spatial density of CMLs. Based
on the existing properties of CMLs in suburban areas in Israel,
a synthetic net of links was generated with Lm = 2.5 km and
a spatial density of 0.53 km−2 as follows: First, the locations
of K centers of links were randomly selected within an area of
approx. 16 × 16 km2, and an additive independent and iden-
tically distributed (iid) Gaussian samples, ni

x ∼ N(0, 200 m),
ni

y ∼ N(0, 200 m); i ∈ {1, 2, · · · , K }, were generated and
used as an additive Gaussian noise to the locations. Thus, each
center i is located at: {xi + ni

x , yi + ni
y}. Then, the length of

each of the CML was randomly generated using an exponential
distribution1 with Lm as the scale parameter. The angular ori-
entations of each of the CMLs, αi , were uniformly generated:
αi ∼ U(0, π). The frequencies and polarization were assigned

1Please note that due to practical reasons, only lengths between 1 and 10
km were considered, making the CMLs’ lengths a truncated exponentially
distributed sample-set.
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according to their appearances in that specific region (one-
third of the CMLs were assigned horizontal polarization, and
two-thirds to vertical), considering practical use (longer links
were assigned with lower frequencies).

A dedicated Rain Simulator converting continuous spatial
simplified rain cells into path microwave attenuation was built.
In an attempt to isolate the effect of the intermittency of the
rain as much as possible, a single Gaussian-shape was used
to represent the 2-D spatial rain field as

R(x̄1, , x̄k) = Ar exp

(
−1

2
(x̄ − μ̄)T �−1(x̄ − μ̄)

)
(6)

where x̄ is a vector containing the spatial coordinates (x, y); μ̄
is the location vector (μX , μY ) of the center of the Gaussian;
Ar (given in mm h−1 or simply in depth units, e.g., mil-
limeter) is the amplitude, i.e., rain intensity in the center
of the Gaussian;

∑
is the covariance matrix diagonal with

σ = σX = σY for simplicity. Monte Carlo simulations were
performed as follows: μX and μY were randomly chosen N
times for each increasing σ (N = 10 except when noted
otherwise). The lower and higher 15% of each of the 2-D
plane dimensions were restricted for μX and μY in order to
avoid considerable truncation of the Gaussian shapes resulting
from (6).

The values of σ correspond with the radius of the effective
part of the rain cell. Therefore, in order to characterize its size,
the diameter (Drc) can be comparable to (μ̄ + σ) − (μ̄ − σ ),
i.e., to 2σ . The values of Drc begin with 400 m, inferring on a
very small cell, and gradually increase up to 20 km, a spatial
pattern closer to uniform in the given domain. Each simulated
rainfall was, in turn, gridded to the resolution of approx.
300 × 300 m2 and was used as ground truth for the assessment
of the performance analysis of the reconstructing algorithms.

During the operation of the Rain Simulator, the value of
the attenuation induced upon the i th CML was determined
by (1). For the sake of making the simulations closer to reality
measurements, these attenuation values undergo quantization
(0.1 dB) after having assigned additive Gaussian noise to
n ∼ N(0, (0.12/12)) [28]. When working with actual mea-
surements, one must account to “other than rain” attenuation
factors by applying methods of baseline determination. Here,
the “other than rain” factors did not exist, reducing a major
factor of uncertainty [32]–[34]. While for our focused research
question these uncertainties were not addressed, in future
studies we plan to include them. Once the Rain Simulator
induced the attenuation upon each of the links in the given
network, the different rain reconstruction algorithms were
applied to retrieve the simulated rain field.

After the rain fields from the different algorithms were
reconstructed, the root mean square error (RMSE) and the
correlation coefficient (r ) of each one with its ground truth
were calculated. The scores of RMSE for each Drc were
averaged over the N Monte Carlo runs as

RMSE = 1

N

N∑
n=1

√∑P
p=1(R̂p − Rp)2

P
(mm h−1) (7)

Fig. 1. Example of a simulated Gaussian-shape rain field (Drc=1400 m)
and the reconstructed image of the tested algorithms, presented on the
synthetic CML network. The rain intensity scale is given in mm h−1 and
can also refer to as rain depth. The horizontal and vertical axes are the
representative latitudes and longitudes of the area from which the CML
network characteristics were taken [9].

where P is the number of pixels in a reconstructed grid, and
R̂p and Rp are the estimated and the ground truth rain intensity
in pixel p, respectively. For presentation purposes, the score of
the aforementioned r was averaged in a similar manner. A rain-
intensity-normalized RMSE (RMSER) analysis was performed
similar to that of RMSE

RMSER = 1

N

N∑
n=1

1

RAVG

√∑P
p=1(R̂p − Rp)2

P
(−) (8)

where RAVG is derived from the ground truth for the nth
simulation as

RAVGn =
∑P

p=1 Rp

P
(mm h−1). (9)

A demonstration of one of the simulated rain fields, the syn-
thetic network and the reconstruction image of all methodolo-
gies tested, is shown in Fig. 1.

III. RESULTS

In Fig. 2, the rain field retrieval performances, namely,
the RMSE, RMSER , and r performance measures, are shown
where the maximum rain rate at point (μx , μy) is Ar =
100 mm h−1. All algorithms present poor performance for
extremely small rain cell and excellent performance for large
rain cells, where the rain over the links is practically constant.
This is indicated by reasonable values of r , first obtained
for rain cells with Drc ≥ 1000 m, suggesting a critical
size of rain cell which can be detected and/or reconstructed
by a given network. Interestingly, a division between the
GMZ and noniterative algorithms can be noticed, starting
at small rain cells, where a clear hierarchy is formed in a
descending order, from GMZ13 to GMZ3. A counter-hierarchy
is formed among the three noniterative spatial interpolation
cases, where the more VRGs per CML there are, the worse
the performance is. Shrinking of the differences between all
reconstruction methods occurs in large Gaussians, where all of
them perform well. Although one can anticipate this behavior
as the CML samples are more alike due to the closer-to-
uniform distribution of the rain field.
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Fig. 2. (Top to bottom) Performance measures: correlation (r), absolute
error (RMSE), and relative error (RMSER) with respect to rain cell diameters.
RMSE emphasizes the extent of the performance hierarchy. r and RMSER
infer on the validity of the reconstruction for the different rain cell sizes.
Enlargement of RMSER for small rain cells is also presented, in which differ-
ences between the tested algorithms are not noticeable. Results were averaged
over N = 10 Monte Carlo simulations, for all interpolation algorithms. Shaded
areas, marked for small rain cells, for which the correlations with the ground
truth were poor (r < 0.6).

Fig. 3. RMSE improvement rate (in percentage) of GMZ3, GMZ9, and
GMZ13 versus IDW1. Results are plotted against the rainfall cell size relative
to the spatial properties of the network. A simulation with N = 100 and
Ar = 25 solely for GMZ3, is displayed as well. The smoother line indicates
that the strong variations in GMZ9 and GMZ13 are expected to be more
moderate with a larger number of simulations. GMZ constantly improves
RMSE performance but has negligible additional contribution when more than
nine VRGs are used.

The improvement rate of RMSEs when GMZ is utilized over
the commonly used IDW1 is displayed in Fig. 3. In addition,
a Monte Carlo simulation with N = 100 was conducted
(only for GMZ3 due to computing resources limitations)
with Ar = 25, is displayed. The horizontal axis, Drc/Lm ,
represents the ratio between the size of the rain cell and
the average length of the links, which also characterizes the
density of the CML network [9]. It is inferred that a substantial
diminishing of the estimation error can be achieved in a range
of rain cell sizes, most of which are on the order of Lm .
Although in larger rain cells the improvement rate declines,
according to Fig. 3, worsening of the reconstruction accuracy
was not identified. Moreover, as expected, in the simulation

in which N = 100, Ar = 25 is smoother than in the N = 10
case, but the improvement rate in RMSE presents resembling
values, implying on close to complete independence of actual
rain intensities.

IV. DISCUSSION AND CONCLUSION

A comparative study addressing the challenge of spatial
interpolation and reconstruction of rain fields was conducted,
contrasting the accuracy of estimated 2-D rain maps created
from simulated CML attenuation measurements. Our main
focus was centered around the amount of VRGs needed to
adequately represent a CML by, and in which cases there
is an added value applying an iterative algorithm, utilizing
neighboring CMLs. By setting more VRGs per link, two
important benefits take place: 1) the length of the whole link
is better utilized and 2) there is more room for rain intensity
variations along the path.

It is noticeable that a substantial part of the rain cell
size spectrum, i.e., in large rain cell sizes, the differences
between the tested algorithms is rather small. However, for
cases in which Drc is in the order of Lm , exploiting an
iterative algorithm, rather than IDW1, can improve RMSE
by 20% (for GMZ13). After a peak associated with Drc/Lm

around 1, toward larger rain cells, the contribution of GMZ
is diminished, but so does the slope, inferring on GMZ
being slightly preferable even in larger rainfall coverage. This
can also be seen as even when Drc is greater than 6Lm ,
the potential improvement is around 5%. Notwithstanding,
stabilizing of the improvement rate, with the addition of
VRGs, can be noticed from Fig. 3. When six VRGs are
added from GMZ3 to form the GMZ9 case, the improvement
rate is not as significant as the one from IDW1 to GMZ3.
Between GMZ9 and GMZ13 the improvement rate is small to
negligible. Note, however, that overfitting can potentially take
place with a further increasing number of VRGs.

The fact that reconstructions of small Drcs cells are asso-
ciated with poor correlations alongside low RMSEs, is not
surprising. As in these cases, the majority of the pixels (both
in the ground truth and in the reconstructions) hold very
low values, the relative error is rather high, but the mean
absolute error is low. Looking at RMSER , (Fig. 2) solves this
by presenting high values for small cells. However, RMSER

should still be complementary to RMSE since it might create
a misleading effect with real data: dependence on the average
rain intensity, which can lead to wrong grading of different
types of spatially distributed rainfall patterns. It is possible that
the solution for real data, in cases where low rain intensities
are of lower interest, is setting a threshold of rain intensity,
below which pixels are discarded from the analysis.

It was also found that the division of a CML to more than
one VRG with identical measurements devalues the accuracy
of the reconstructed rain field when a noniterative IDW is
exploited. A possible explanation is that the division of a CML
into more evenly spaced VRGs is, de facto, an exploitation of
the length dimension, and since deciding that the center of the
CML represents the measured rain intensity holds an inherent
error, applying that error onto more locations along the CML
path should be expected to be more harmful than beneficial.
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That alone can explain the poor RMSEs performed by IDW3,
and even more poorly by IDW9, when small rain cells are
sampled. Since only synthetic data were used in this study,
it was highly controllable.

In this letter, we analyzed and compared the performance
of spatial reconstruction of rain fields, based on the IDW
algorithm for spatial interpolation, where the virtual measure-
ments points were extracted from the CMLs using different
methods. We based our analysis on simulated data, as an
accurate and controllable data set as a ground truth was
required. Indeed, our simulated data were generated based
on real-world statistics. However, actual real-world events
could have additional characteristics (different numbers of
rain cells, rain cells with various rain intensities, different
quantization levels, etc.). Thus, future research is required to
study the sensitivity of our results to real-world conditions.
Moreover, while this study was done for a specific spatial
interpolation method, the quantitative improvement of the 2-D
reconstruction may also be dependent on it. This is also an
issue for a future study.

To conclude, our study suggests that when reconstructing a
rain field from measurements taken by a CML network using
spatial interpolation methods, a major factor that influences
the accuracy is the ratio between the size of a typical rain
cell, and the density/average length of the links. If this ratio is
much smaller or much larger than one, then representing each
link by a single VRG is sufficiently good, and the tradeoff
decision between computing time and a potential improvement
lies in front of the user. If, however, the ratio is on the order
of one, it is possible to improve accuracy significantly by
applying GMZ [28] with more than a single VRG per link.
Note, however, that while GMZ always performs better than
IDW1, setting several VRGs (of identical rain values) per link
deteriorates the performance.
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