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ABSTRACT

The continuous wavelet transform (CWT) is a frequently used tool to study periodicity in climate and other

time series. Periodicity plays a significant role in climate reconstruction and prediction. In numerous studies,

the use of CWT revealed dominant periodicity (DP) in climatic time series. Several studies suggested that

these ‘‘natural oscillations’’ would even reverse global warming. It is shown here that the results of wavelet

analysis for detecting DPs can be misinterpreted in the presence of local singularities that are manifested in

lower frequencies. This may lead to false DP detection. CWT analysis of synthetic and real-data climatic time

series, with local singularities, indicates a low-frequency DP even if there is no true periodicity in the time

series. Therefore, it is argued that this is an inherent general property of CWT. Hence, applying CWT to

climatic time series should be reevaluated, and more careful analysis of the entire wavelet power spectrum is

required, with a focus on high frequencies as well. A conelike shape in the wavelet power spectrummost likely

indicates the presence of a local singularity in the time series rather than a DP, even if the local singularity has

an observational or a physical basis. It is shown that analyzing the derivatives of the time series may be helpful

in interpreting the wavelet power spectrum. Nevertheless, these tests are only a partial remedy that does not

completely neutralize the effects caused by the presence of local singularities.

1. Introduction

Spectral methods such as the continuous wavelet

transform (CWT; frequently named wavelet analysis)

and the fast Fourier transform have a special appeal for

climate and paleoclimate research because they can be

used to detect periodicities in time series. Many other

applications of CWT were presented in the literature,

including, for example, in the research fields of medi-

cine, engineering, and finance (Addison 2017). CWT has

therefore become a common tool for the study of signals

within climate time series, with the capability to analyze

them at different time scales, which is imperative in

climate reconstruction and prediction (Torrence and

Compo 1998). Moreover, an appealing feature of CWT

is its ability to analyze nonstationary time series, which

is vital in climate research (Lau and Weng 1995).

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JAMC-D-18-

0331.s1.

Corresponding author: Assaf Hochman, assafhochman@

yahoo.com

SEPTEMBER 2019 HOCHMAN ET AL . 2077

DOI: 10.1175/JAMC-D-18-0331.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://doi.org/10.1175/JAMC-D-18-0331.s1
https://doi.org/10.1175/JAMC-D-18-0331.s1
mailto:assafhochman@yahoo.com
mailto:assafhochman@yahoo.com
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Recently, CWT was used in a plethora of climate

and geophysical studies (e.g., Gray et al. 2004; Knight

et al. 2005; Li et al. 2011; DeLong et al. 2012; McCabe-

Glynn et al. 2013; Pike et al. 2013; Cox et al. 2014;

Duan et al. 2014; Kreppel et al. 2014; Magee et al. 2014;

Soon et al. 2014; Xu et al. 2014; Burn and Palmer 2015;

Lee et al. 2015; Wright et al. 2015; Novello et al. 2016;

Sharma et al. 2016). These studies have incorporated

CWT as a primary tool, chosen from a variety of other

signal analysis tools within the frequency domain. All of

the above studies highlighted dominant periodicities

(DPs) in climatic, paleoclimatic, and geophysical time

series, attributing them to natural origins, such as the

NAO, ENSO, and Pacific decadal oscillation (PDO);

solar cycles; solar irradiance; thermohaline circulation;

and others. They stressed that low-frequency DPs may

suggest a long-term climatic process as opposed to local

high-frequency features. Thus, low-frequency DPs were

appealing in improving predictability of the climate

system. However, conelike shapes that express low-

frequency DPs in the wavelet power spectrum that

emerged in the aforementioned studies have motivated

the present work.

In most studies, DPs were typically detected by a

pointwise significance testing procedure applied to

the wavelet spectrum (Torrence and Compo 1998).

DPs are regarded herein as a statistically significant

region of the wavelet spectrum within a band of

lower frequencies/periodicities (e.g., Fig. 1), where it

was assumed that such higher-power regions ex-

tending in time are not related to local features. As

such, many climatic studies assigned DPs to natural

cycles of the climate system, as mentioned above.

However, applying pointwise testing procedures to

simultaneous testing of a large number of wave-

let coefficients ignores the severe multiple testing

problem. Thus, it does not control the overall signif-

icance at the required level (e.g., 5%) and, therefore,

typically leads to detection of spurious patches in

the wavelet power spectrum (e.g., Abramovich and

Benjamini 1995; Maraun and Kurths 2004; Maraun

et al. 2007). Nevertheless, pointwise significance testing

is still the most commonly used significance test in cli-

mate studies.

Several improved significance testing procedures

were considered in the literature. Maraun et al. (2007)

proposed an areawise significance test. However, the

main disadvantage of this test is the complexity of the

significance level calculation, which involves a root-

finding algorithm. Liu et al. (2007) have addressed

the bias problem in the estimate of the wavelet spectra

in atmospheric and oceanic datasets. They have sug-

gested a rectification procedure, which is the transform

coefficient squared divided by the scale with which it

associates. Schulte et al. (2015) developed a geometric

method for significance testing in the wavelet domain.

They found that this method produces results similar to

the areawise significance test while being more compu-

tationally flexible and efficient. In a most recent study,

the geometric method was improved by a cumulative

areawise significance testing procedure (Schulte 2016).

It was shown that the latter test implies higher statistical

power in most cases, especially when the signal-to-noise

ratio is high.

The purpose of this paper is to show that the CWT,

even after applying the aforementioned state-of-the-art

methods, still often identifies artificial lower-frequency

DPs, caused by local singularities in a time series, which

can lead to misinterpretation of the wavelet power

spectrum. This observation is particularly important

because of the enormous increase in the number of

publications that are using wavelet analysis in climate

research, from 15 publications per year in 1998 to about

550 in 2018, as revealed by a search of ScienceDirect

(https://www.sciencedirect.com/).

2. Data and methods

To demonstrate the detection of artificial DPs in the

wavelet power spectrum we applied the state-of-the-art

cumulative areawise (Schulte 2016) and the geo-

metric (Schulte et al. 2015) significance testing pro-

cedures (https://www.mathworks.com/matlabcentral/

fileexchange/) to six synthetic and four real climate

time series, as follows:

1) a sine time series with an about 200-time-step low-

frequency period (Fig. 1),

2) the sunspot number time series (SILSO World

Data Center 2019; Fig. 2),

3) a local abrupt change (step) time series that was

generated manually (Fig. 3),

4) the stratospheric aerosol optical depth time series

(Bourassa et al. 2012; Fig. 4),

5) a red-noise time series (Fig. 5),

6) the local abrupt change time series added to the

red-noise time series (Fig. 6),

7) the sine time series added to the red-noise time

series (Fig. 7),

8) the PDO reconstruction (Mann et al. 2009; Fig. 8),

9) the daily Niño-3.4 index for 12 July 2015–6 April

2018 (Reynolds et al. 2007; Fig. 9), and

10) a time series that contains a few local abrupt

changes added to the red-noise time series (Fig. 10).

For all of these examples, we applied the advanced

significance testing procedures of Schulte et al. (2015)
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and Schulte (2016), in which we used the Morlet 6

‘‘mother’’ wavelet, which is the most commonly used

wavelet in geophysics. All time series were padded with

zeros at the edges as typically recommended in geo-

physics. We modeled the background noise by a first

order autoregressive process (red noise), which is typical

in geophysics (Torrence and Compo 1998; Maraun et al.

2007; Schulte et al. 2015; Schulte 2016). The autocorre-

lation coefficient was estimated by the standard method

of Allen and Smith (1996). To perform the significance

FIG. 2. As in Fig. 1, but for the sunspot number time series (SILSO World Data Center 2019).

FIG. 1. (a)A sine time series and (b) the derivative of the sine time series (b) CWTappliedwith (c),(d) cumulative

areawise (Schulte 2016) and (e),(f) geometric (Schulte et al. 2015) significance testing procedures using a Morlet 6

mother wavelet. The wavelet power spectrum is shown for both significance testing methods. The black contours

are regions found to be significant at the 5% level with respect to a red-noise background using 1000 realizations

from a Monte Carlo experiment. The shaded regions mark the cone of influence in which boundary conditions

become important. The dominant periodicities (label DP) are marked by arrows. DPs are a statistically significant

region of the wavelet spectrum within a band of lower frequencies/periodicities. It is emphasized that these higher-

power regions extend in time and are not very local features in the power spectrum.
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testing procedures, we generated 1000 realizations of

red-noise series, using Monte Carlo techniques, to esti-

mate the threshold that guarantees the required 5%

significance level. Note that the null distribution of the

normalized area of a significance patch depends on the

choice of null hypothesis (the time series is similar to a

red noise background). For red-noise processes, the

normalized area increases with increasing lag-1 auto-

correlation coefficients (Schulte et al. 2015).

For the sake of comparison, the fast Fourier transform

and pointwise wavelet significance testing (Torrence

and Compo 1998) were also applied to the time series

described above (Figs. S1 and S2, respectively, in the

online supplemental material). A bias rectification

procedure (Liu et al. 2007) was further applied to the

synthetic time series before using the cumulative area-

wise significance test (Schulte 2016; online supplemental

Fig. S3).

FIG. 3. As in Fig. 1, but for a local abrupt change time series. Local abrupt changes (label LAC) are marked

by arrows.

FIG. 4. As in Fig. 3, but for the stratospheric aerosol optical depth time series (Bourassa et al. 2012).
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Various boundary corrections may introduce an ad-

ditional source of uncertainty in wavelet analysis of cli-

mate and other time series. Several options have been

presented in the literature. For example, Lin and Franzke

(2015) andGallegati (2018) used symmetric/antisymmetric

extensions of the original time series. However, no

clear recommendation has yet been given for climate

time series. Figure S4 presents the effect of using zero

padding for the synthetic time series. In addition, the

abovementioned time series were analyzed using other

mother wavelets—for example, the Paul (Fig. S5 from

the online supplemental material) and ‘‘Dog’’ (‘‘de-

rivative of Gaussian’’; supplemental Fig. S6) mother

wavelets.

To better distinguish between real DPs and DPs

arising from local abrupt changes, wavelet-based tests

were applied to the derivative (the rate of change at

each time step) of the original time series. Taking the

FIG. 5. As in Fig. 3, but for a red-noise time series.

FIG. 6. As in Fig. 3, but for the red-noise time series added to the LAC time series.
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derivative does not affect periodicity. On the other

hand, it reduces regularity of a signal, and a local sin-

gularity would be more strongly manifested at higher

frequencies of the wavelet spectrum. See Mallat (2008,

section 6) for rigorous mathematical analysis.

3. Results

CWT should only detect periodicities in the sine time

series (Fig. 1), the sunspot number time series (Fig. 2;

SILSO World Data Center 2019), and the sine time se-

ries with red noise (Fig. 7) as shown in the fast Fourier

transform analysis (supplemental Fig. S1). However, the

wavelet power spectrum indicates the presence of DPs

in all considered time series (Figs. 1–10). The detected

periodicities in the wavelet power spectrum in Figs. 3–6

and 8–10 are artificial and are caused by local abrupt

changes in the time series. However, we stress that local

abrupt changes may represent a real physical change

in the system as, for example, in the time series of

FIG. 7. As in Fig. 1, but for the sine time series added to the red-noise time series.

FIG. 8. As in Fig. 3, but for the reconstructed PDO (Mann et al. 2009).
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stratospheric aerosol optical depth attributed to volca-

nic eruptions (Bourassa et al. 2012). Two major local

abrupt changes that coincide with the large volcanic

eruptions of Krakatoa in 1883 and of El Chichón and

Mount Pinatubo in 1982 and 1991, respectively, produce

DPs at the 10–12 yr periods (Fig. 4). The CWT accu-

rately detects the local abrupt change location on high-

frequency scales (panels c and e in Figs. 3–10). However,

in the lower frequencies, it is seen that the patch expands

in time and results in a lower-frequency band in the

wavelet power spectrum that may be erroneously in-

terpreted as indication of a DP in the time series.

Furthermore, it seems that the cumulative areawise test

is more susceptible to the emergence of lower-frequency

DPs than is the geometric test.

Following the remarks at the end of section 2 with

regard to the derivatives of the original time series, we

analyzed also the wavelet spectrum of the derivatives.

Figures 1d,f and 2d,f show that the derivative of the sine

time series and the sunspot number time series, re-

spectively, indeed leave the low-frequency periodicity

intact. On the other hand, when there are local abrupt

changes in the time series (e.g., Figs. 6 and 10), using the

derivative emphasizes the power at higher frequencies

FIG. 9. As in Fig. 3, but for the Niño-3.4 index for 12 Jul 2015–6 Apr 2018.

FIG. 10. As in Fig. 3, but for a time series with a few LACs added to red noise.

SEPTEMBER 2019 HOCHMAN ET AL . 2083



in the wavelet power spectrum and reduces the power

in the lower-frequency patches (Figs. 6d,f and 10d,f).

However, it still does not completely prevent detection

of false DPs. This is further demonstrated in real re-

constructed PDO and Niño-3.4 time series (Figs. 8d,f

and 9d,f, respectively). Thus, using the derivatives is a

partial remedy that does not completely neutralize the

effects caused by the presence of local singularities.

The pointwise significance testing procedure (Torrence

and Compo 1998) displays significant artificial low-

frequency DPs in the aforementioned time series

(supplemental Fig. S2). This test does not find the high-

frequency scales to be significant, in contrast to the

area-based tests (Schulte et al. 2015; Schulte 2016).

Therefore, the interpretation of the wavelet power

spectrum using pointwise significance testing may be

more misleading then the area-based tests.

Rectifying (scaling) the wavelet power spectrum may

allow the comparison of spectral peaks across scales (Liu

et al. 2007). However, for time series containing local

abrupt changes, the cumulative areawise significance

test (Schulte 2016), performed after rectifying the time

series, finds the high-frequency scales to be significant

but not the real DPs (supplemental Fig. S3). This is

because the high- and low-frequency periods are divided

by small and large numbers, respectively.

Figure S4 from the online supplemental material dis-

plays the effect of using zero padding on the synthetic

time series used in this study. It shows that zero padding

procedure (Fig. S4, left column) reduces edge effects in all

aforementioned time series with respect to no padding

(Fig. S4, right column). Therefore, it is stressed that zero

padding is helpful wherever it smooths the time series at

its edges, thus reducing the effect of local singularities.

For example, the improvement in the boundary condi-

tions is higher in the left side of the sine time series than in

its right side (Figs. S4a,b, respectively). Accordingly, no

clear recommendation can be given for climate time se-

ries since edge effects depend on the edges of the ana-

lyzed time series. It is recommended to analyze time

series with different extension procedures to give a better

evaluation of edge effects.

We found that the Morlet 6 mother wavelet is the

most robust to the effect of local singularities on lower

frequencies (Figs. 1–10), with respect to the Paul (sup-

plemental Fig. S5) and the Dog (supplemental Fig. S6)

mother wavelets. Thus, we recommend using Morlet 6

for climate time series following previous recommen-

dations (Torrence and Compo 1998; Maraun et al. 2007;

Schulte et al. 2015; Schulte 2016).

To summarize, we argue that local singularities, com-

monly present in climatic time series (e.g., Yosef et al.

2018) can induce low-frequency power that may be

interpreted as DPs. We have demonstrated this prob-

lematic feature on synthetic time series and on real-data

climatic series. However, note that any series containing

local singularities would necessarily produce a DP at

lower frequencies, as this is inherent to wavelet analysis

(Holschneider 1995;Abramovich et al. 2000;Mallat 2008).

4. Discussion and conclusions

The results of using CWT for detecting periodicities

in noisy climate time series might be misleading, as

demonstrated here on different synthetic as well as real

climatic time series. It is shown that the presence of a

lower-frequency band in the wavelet power spectrum

does not necessarily indicate on the presence of a true

periodicity, but is often caused by local singularities in

the time series (as shown in Figs. 3–6 and 8–10). Note

that one can think of CWT as a series of localized

bandpass filters, where low frequencies correspond to

large windows in the time domain. Therefore, local

singularities would be necessarily manifested in the

lower frequencies domain of the wavelet power spec-

trum (Holschneider 1995; Abramovich et al. 2000;

Mallat 2008). A finer analysis of the geometry of patch

shapes is required to distinguish between a true DP and

an abrupt change in a time series. The latter typically

yields local maxima within a cone around its location

that propagate along high frequencies in the wavelet

spectrum (e.g., Mallat 2008, sections 6.1 and 6.2),

whereas DPs are characterized by temporally long

bands in the low-frequency domain. In this case, one

could think of some length test for a patch. The prob-

lem, however, is more challenging, because there is

occasionally a series of local singularities with in-

terfering cones that might look similar to a long band

in the low-frequency domain (Figs. 8–10). Here, we

suggest using the derivative of a time series as an ad-

ditional test to distinguish between real periodicity

and low-frequency bands in the wavelet power spectrum

emerging from local singularities. However, it still does

not completely prevent detection of false DPs.

To summarize, in order to distinguish among various

possible scenarios, a topological analysis of the entire

wavelet power spectrum is required that will focus on

high frequency as well. Accordingly, whenever a lower-

frequency dominant periodicity appears in the wavelet

power spectrum, one should also analyze the higher

frequency to distinguish between a real periodicity

and an artificial one, produced by local singularities.

Conelike shapes in the wavelet power spectrum,

propagating from the higher to the lower frequencies,

most likely indicate an artificial DP. The rigorous theory

for such an analysis is a topic for further research.
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