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Abstract—Cellular backhaul networks usually consist of com-
mercial microwave links, known to be sensitive to weather
conditions. The management network systems usually provide
records of measurements of the transmitted and the received
signals levels from the different microwave links for monitoring
and analyzing the network performance. Many of them log
only the minimum and the maximum levels of the transmitted
and the received signals in pre-set intervals (usually 15-minute).
Moreover, only quantized version of these measurements are
logged. In the last decade it has been proposed to use these
existing measurements for rainfall monitoring. In this paper we
analyze the effects of the quantizer and the min/max operators
on commercial microwave links signals levels measurements. We
show that the quantization process, in combination with the
min/max operators, adds bias to the measurements which can
be significant. We then propose a method to calculate this bias,
and demonstrate our findings using measurements from actual
commercial microwave links.

Index Terms—Quantization Noise, Microwave Networks, Pre-
cipitation Attenuation

I. INTRODUCTION

Current cellular communication networks are based, at least
partly, on Commercial Microwave Links (CMLs). In order to
inspect and analyse the performance of these networks, current
Network Management Systems (NMS) constantly monitor the
CMLs Transmitted Signal Level (TSL) and Received Signal
Level (RSL).

The NMS help in monitoring the Link Budget (LB), as it is
critical that the LB will not breach the Fading Margin limits of
the CML. Thus, many NMS will log only the minimum and
the maximum values of the observed RSL and TSL values,
usually in 15-minute intervals, using a rough quantizer [5],
[16], as these relatively low-resolution datasets are sufficient
for the LB monitoring purposes [9].

Furthermore, since CMLs signals are known to be sensitive
to rain [11], it was suggested back in 2006 to use the TSL and
RSL available datasets for rain monitoring [17]. Since then, a
vast number of studies suggested different methods and tech-
niques which use the TSL and RSL available measurements
for rain monitoring [7], [14], [19], rainfall maps plotting [15],
[22], classification and estimation of snow and sleet [1], [18],
fog monitoring [4], the detection of dew [10], and recently,
the detection of air-pollution [3].

On the other hand, although sufficient for network moni-
toring, quantized min/max TSL and RSL values given at 15-
minute intervals have proven to be sub-optimal for environ-
mental monitoring purposes. Thus, it was suggested to deal
with the non-linear min/max operators either by performing

calibration of different model parameters [20], by implement-
ing weighted average of the minimum and the maximum val-
ues [21], or by bypassing this limitation by directly accessing
the CML hardware, and retrieve the instantaneous RSL/TSL
measurements themselves [2]. It is worth noting, that unlike
the min/max operators, the quantizer is usually a property of
the hardware itself, and thus, even accessing the CML directly
and retrieving the instantaneous measurements sill results in
quantized data [2].

The fact that the available RSL and TSL measurements pass
a quantizer was generally ignored. Indeed, Goldstein et. al. [6]
discussed the normalization of the quantization error in regard
to the CMLs length, and suggested to include the normalized
quantization error within the covariance matrix of the noise.
And, although it was shown that the quantization process
might introduce errors [13], these errors were considered to
be unavoidable and relatively small for the purpose of rain
monitoring using CMLs attenuation measurements [16], [23],
and thus, did not attract special interest.

In this paper we show that the combination of a quantizer
with a non-linear min/max operator induces a non-negligible
bias to the output value. We show that this bias, unless
compensated, may introduce a bias to the LB calculations,
and may cause an over-estimation of the rain. Furthermore,
we show that the expected value of this bias can be calcu-
lated using the available minimum and maximum RSL and
TSL measurements during dry periods. We demonstrate our
findings using actual measurements taken from CMLs.

The rest of the paper is organized as follows: Section
II presents the theory and establishes the bias calculation
methodology. Section III describes the experimental demon-
stration, and discusses the results. Lastly, Section IV concludes
this paper.

II. THEORY AND METHODOLOGY

The nearest-neighbour (or a ”round”) quantizer q(x) is
defined by:

y = q(x) = L · round
( x

L

)
(1)

where x is the input signal, y is the (quantized) output, and
0 < L ∈ R is the quantization interval. Note, that q(x) is said
to be both uniform and symmetric quantizer [8].

A. Combination of the Quantizer q(x) and the Min/Max Op-
erators

First, note that the specific order of the operations in regard
to the min or max operators, and the quantizer q(x), does
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not change the outcome, as described in Lemma 1:

Lemma 1. For any given {xi ∈ R} : i ∈ [1, 2, · · · , n],

max (q(x1), q(x2), · · · , q(xn)) = q (max(x1, x2, · · · , xn))
(2)

Proof.

max (q(x1), · · · , q(xn)) =

= L ·max
(
round

(x1

L

)
, · · · , round

(xn

L

))
=

= L · round
(
(max(x1, · · · , xn))

L

)
=

= q (max (x1, · · · , xn)) (3)

Similarly, Lemma 1 applies in regard to the min operator.
In order to inspect the combined effect of applying a min or

max operator in combination with a quantizer q(x), a simple
illustration is presented Fig. 1: C is a known signal which
lies between two consecutive quantization levels, marked by
Q0 and Q1. w(t) is an unbiased additive noise, such that the
sampled signal, x(t), equals to x(t) = Q0 + C + w(t). From
this illustration, it is obvious that given enough samples of
x(t), (i.e., {x(ti)} : i ∈ [1, 2, · · · , n] where n >> 1), the
followings hold:

q (min(x(t1), x(t2), · · · , x(tn))) = q(A) = Q0 (4a)
q (max(x(t1), x(t2), · · · , x(tn))) = q(B) = Q1 (4b)

t

x(t)
Q0

Q1

C

B

A

t1 t2 t3 tn−1 tn· · ·

Fig. 1. Illustration of x(t): The two consecutive quantization levels
are plotted in RED (marked by Q0 and Q1), and x(t) is plotted
in GREEN for C = Q0 + 0.5 · L, which is marked by a dotted
BLUE line. A represents min(x(t1), x(t2), · · · , x(tn)), and B represents
max(x(t1), x(t2), · · · , x(tn)).

We formalize the insights shown in Fig. 1 in the following
Proposition:

Proposition 1. C is a constant signal which value lies between
two quantization levels, defined by Q0 and Q1, such that Q0 =
k ·L, and Q1 = Q0+L (where k ∈ N). Given x(t), such that:

x(t) = Q0 + C + w(t) (5)

where 0 < C < L, and w(t) is an unbiased additive white

noise whose samples are bounded such that ∀i:

Q0− 0.5 · L < x(ti) < Q1 + 0.5 · L (6a)
0 < ϵ → 0 : Pr[x(ti) = Q0 + (0.5− ϵ) · L] > 0 (6b)
0 < ϵ → 0 : Pr[x(ti) = Q1− (0.5− ϵ) · L] > 0 (6c)

then the followings hold:

min (q(x(t1)), · · · , q(x(tn)))
w.p. 1−−−−→
n→∞

Q0 (7)

max (q(x(t1)), · · · , q(x(tn)))
w.p. 1−−−−→
n→∞

Q1 (8)

A proof of Proposition 1 is given in the APPENDIX.
Note, that Proposition 1 is presented for the case where the
noise samples are bounded (see eq. (6)), so that the output of
the quantizer is bounded between two consecutive quantization
levels. However, the same conclusions can be expanded for the
case where the noise samples follow the normal distribution
(∀i : w(ti) ∼ N (0, σ2)), by replacing the quantization
interval, L, in Proposition 1 and its proof with a quantization
gap (defined by g), where g/L ∈ N, such that g is large
enough so that the noise is practically bounded (g >> σ2). For
simplicity, in the sequel, we assume that the noise is bounded
such that −l ≤ w(t) ≤ l using the noise profile shown in the
APPENDIX. Furthermore, equations will be written using g.

B. Induced Bias
Based on the proof of Proposition 1, we show that the direct

quantization of x(ti), q(x(ti)), is a biased estimator of x(ti):

E [q(x(ti))− x(ti)] = E [q(x(ti))]−Q0− C =

= Q0

(
1

2
+

g

4l
− C

2l

)
+Q1

(
1

2
− g

4l
+

C

2l

)
−Q0− C =

=
g

2
− g2

4l
+

gC(1− 2l)

2l
(9)

Although the estimator q(x(ti)) is biased, without any prior
information regarding the value of C, it can be shown that this
estimator is unbiased on the average:

1

g

∫ g

0

(
g

2
− g2

4l
+

gC(1− 2l)

2l

)
dC = 0 (10)

This property of the quantizer justifies the fact that the
quantization error was usually ignored.

However, implementing a quantizer on the minimum
or maximum values of x(ti) induces bias to the estima-
tion process also on the average. Based on Proposition 1
and its proof, the bias of min (q(x(t1)), · · · , q(x(tn))) and
max (q(x(t1)), · · · , q(x(tn))) in regard to x(ti) can be di-
rectly calculated:

E [min (q(x(t1)), · · · , q(x(tn)))− x(ti)] =

= E [min (q(x(t1)), · · · , q(x(tn)))− x(ti)]−Q0− C =

= g(
1

2
− g

4l
+

C

2l
)n − C −−−−→

n→∞
−C (11)

E [max (q(x(t1)), · · · , q(x(tn)))− x(ti)] =

= E [max (q(x(t1)), · · · , q(x(tn)))− x(ti)]−Q0− C =

= g − C − g(
1

2
+

g

4l
− C

2l
)n − C −−−−→

n→∞
g − C (12)
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Unlike q(x(ti)), both min (q(x(t1)), · · · , q(x(tn))) and
max (q(x(t1)), · · · , q(x(tn))) are biased also on the average:

min(q(x(ti)) :
1

g

∫ g

0

(−C) dC = −g

2
n >> 1 (13)

max(q(x(ti)) :
1

g

∫ g

0

(g − C) dC =
g

2
n >> 1 (14)

From equations (13) and (14) two important conclusions arise:
First, a combination of a min/max operator and a quantizer
introduces bias to the original measurements of x(ti), which
may not be negligible. Second, this bias depends on the
quantization gap, g.

C. Maximum and Minimum TSL and RSL Measurements

NMS monitor the TSL and the RSL of the CMLs. The
specific sampling and logging protocols varies between the
hardware vendors. For instance, EricssonTM systems usually
sample the signal level at 10-seconds intervals, and save the
minimum and the maximum values every 15 minutes, using
a standard quantization intervals of 1[dB] for the TSL, and
0.3[dB] for the RSL [23].

During dry periods, the LB is considered to remain rel-
atively constant [12], meaning that the transmitted power
(defined by Tx) and the received power (defined by Rx)
fluctuations are also limited. Thus, under the assumption that
the minimum and the maximum TSL and RSL values are
extracted from large enough instantaneous samples series (i.e.,
n >> 1), Proposition 1 is valid, and can be used in order
to connect the CML path-loss (which equals to Tx − Rx)
with the minimum channel attenuation (defined by Amin) and
the maximum channel attenuation (defined by Amax), which
yields:

Amin = TSLmin −RSLmax =

= (Tx− gT
2
)− (Rx+

gR
2
) =

= (Tx−Rx)− (
gT
2

+
gR
2
) (15)

Amax = TSLmax −RSLmin =

= (Tx+
gT
2
)− (Rx− gR

2
) =

= (Tx−Rx) + (
gT
2

+
gR
2
) (16)

where gT is the quantization gap of the TSL values, and gR
is the quantization gap of the RSL values.

Next, subtracting eq. (15) from eq. (16), yields:

Adiff ≡ Amax −Amin = gT + gR (17)

which connects the extreme attenuation measurements with
the expected value of the bias.

And, although this calculation is made during dry periods,
it can be assumed that the same expected value of the bias
remains during rainy periods, as the rain does not affect the
quantization intervals and levels. Thus, on average, the same
bias occurs.

III. EXPERIMENTAL DEMONSTRATION

In order to demonstrate our findings, we gained access to a
chain of four CMLs provided by the Israeli cellular operator
CellcomTM. The four CMLs are located in the south of Israel,
near the Dead-Sea. A map of the experiment area is presented
in Fig. 2, and the specific CMLs properties are summarized
in TABLE I.

Fig. 2. Map of the experiment location (captured from Google Earth),
showing the four different CMLs (Colored in RED and BLUE). The sites
which hold the CMLs antennas are marked by A,B,C,D, where B is the city
of Arad near the Dead-Sea.

As the CMLs hardware was manufactured by EricssonTM ,
the minimum and the maximum values of both the TSL and
the RSL measurements, in 15-minute intervals, were logged.
The TSL values were logged with a quantization interval of
LT ≡ 1[dB], whereas the RSL values where logged using a
quantization interval of LR ≡ 0.3[dB]. The internal sampling
rate (from which the minimum and the maximum values were
obtained) was 10-seconds [23], which validates Proposition 1,
as n = 90 >> 1.

TABLE I
DETAILED PROPERTIES OF THE FOUR AVAILABLE CMLS: THE SPECIFIC

LOCATION (PATH), PATH-LENGTH (LENGTH), FREQUENCY (FREQ.) AND
POLARIZATION (POL.) ARE SUMMARIZED.

CML No. Path Length Freq. Pol.
# (km) (GHz)

1 A ↔ C 10.3 18.6 hor
2 A ↔ B 16.0 18.6 hor
3 A ↔ B 16.0 18.73 ver
4 B ↔ D 26.4 18.6 ver

A. Results

The four available CMLs were monitored during a dry
period of 24 hours, from November 5th 2015 at 00:00 until
November 6th 2015 at 00:00. During these 24 hours, each of
the CMLs produced the four relevant data series: TSLmin,
TSLmax, RSLmin, and RSLmax.

For each CML, these four data series were used to calculate
Amin and Amax, of eq. (15) and (16), which in turn were used
to calculate Adiff of eq. (17). The four series of Adiff for
the four CMLs are plotted in Fig. 3. In addition, the average
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and the median values of Adiff for each of the four CMLs
are summarized in TABLE II.

It is worth noting, that although no rain was detected
throughout the duration of the demonstration1, two unknown
environmental phenomena probably affected the LB of the
CMLs: Between 00:00 and 03:00 of November 5th, CML
1 suffered from increased attenuation (suggesting that the
phenomenon responsible is located near site C, as no other
CMLs were affected), wheras CMLs 2,3, and 4 suffered
from increased attenuation around 17:00 of the same day
(suggesting that the phenomenon responsible is located near
site B, as all CMLs connected to site B were affected).

Nonetheless, the results presented in Fig. 3 and TABLE
II are significant. Apart from these two unexplained phe-
nomenon, the Adiff series for all CMLs are consistently
”resting” at a value of 1.6[dB]. This ”resting point” of 1.6[dB]
suggests two important conclusions: First, it validates the fact
that a bias is indeed introduced to the measurements. Second,
by looking back at eq. (15) and (16), it can be concluded that
for every CML in this setup:

gT = LT = 1 (dB) (18)

gR = 2 · LR = 0.6 (dB) (19)

from which, it can be concluded (based on eq. (13) and (14))
that each measurement logged in this setup (regardless of the
specific CML) is subject to the following induced biases:

RSLmin : −0.3 (dB) (20a)
RSLmax : +0.3 (dB) (20b)
TSLmin : −0.5 (dB) (20c)
TSLmax : +0.5 (dB) (20d)

Fig. 3. Calculation of Adiff ≡ Amax −Amin based on the measurements
taken from CMLs 1,2,3 and 4, during November 5th 2015.

It is worth noting that we were able to extract additional
measurements from this setup intermediately during 2015,
which yielded similar results consistently.

1The fact that no rain was detected throughout the duration of the demon-
stration and that this duration was indeed ”dry”, was validated using two
rain-gauges operated and monitored by the Israeli Meteorological Services,
located near sites A and B.

TABLE II
AVERAGE (MEAN) AND MEDIAN VALUES OF Adiff ≡ Amax −Amin AS

MEASURED BY CMLS 1,2,3 AND 4, FROM 05-NOV-2015, 00:00 UNTIL
06-NOV-2015, 00:00.

CML No. mean(Adiff ) median(Adiff )
# (dB) (dB)

1 1.8187 1.6000
2 1.6729 1.6000
3 1.5365 1.6000
4 1.5750 1.6000

IV. CONCLUSION

This paper deals with CMLs TSL and RSL measurements
which are produced by current NMS. We show that the
measurements which are being produced by these systems,
which are generally logged after passing a rough quantizer
and a min or max operators, include an inherited bias. This
bias can cause an error in the LB monitoring procedures, as
well as in the estimation of rain, which may not be neglected.

This paper presents a theory which explains the origin of
this bias, and suggests a methodology which can be used
to calculate this induced bias using only the available mea-
surements themselves. We demonstrate our approach using
four CMLs, and show that a bias is indeed induced into
the measurements produced by these CMLs, and that our
suggested methodology is capable of determining its value.
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APPENDIX

For simplifying the proof, we define {w(ti)} : i ∈
[1, 2, · · · , n] to be identically and independent uniformly dis-
tributed between (−l,+l), where |C − L/2| < l < L− |C −
L/2|. However, the same proof can be easily repeated for
different noise profiles, as long as the conditions of eq. (6)
are met.

Proof. Subject to the definition of {w(ti)}, the probabilities
of a single quantized sample, q(x(ti)), is given by:

q(x(ti)) =

{
Q0 w.p. 1

2 + L
4l −

C
2l

Q1 w.p. 1
2 − L

4l +
C
2l

(21)

from which, the following probabilities emerge:

min (q(x(t1)), · · · , q(x(tn))) =

=

{
Q0 w.p. 1− ( 12 − L

4l +
C
2l )

n

Q1 w.p. ( 12 − L
4l +

C
2l )

n
(22)

max (q(x(t1)), · · · , q(x(tn))) =

=

{
Q0 w.p. ( 12 + L

4l −
C
2l )

n

Q1 w.p. 1− ( 12 + L
4l −

C
2l )

n
(23)

noting that ( 12 ± L
4l ∓

C
2l ) < 1 with the fact that n → ∞ (i.e.,

n >> 1), completes this proof.
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