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 17 

Abstract: A stepwise multi regression-based statistics was employed for prioritizing  18 

the influence of several factors, anthropogenic and/or natural, on the ERA15 temperature 19 

increments. The 5 factors that are defined as predictors are: topography, aerosol index 20 

(TOMS-AI), tropospheric vertical velocity along with two anthropogenic factors, population 21 

density and land use changes (Land Use Change Index (LUCI) and Normalized Difference 22 

Vegetation Index (NDVI) trends). The seismic hazard assessment factor was also chosen as 23 

the “dummy variable” for validity. Special focus was given to the land use change factor, 24 

which was based on two different data sets; Human Impacts on Terrestrial Ecosystems 25 

(HITE) data of historical land use/land cover data and of NDVI trends during 1982 and 26 

1991. The increment analysis updates of temperature, increments analysis update 27 

(IAU) (T), the predicted variable, was obtained from the ERA15 (1979–1993) reanalysis. 28 

The research consists of both spatial and vertical analyses, as well as the potential 29 

synergies of selected variables. The spatial geographic analysis is divided into three 30 

categories; (1) coarse region; (2) subregion analysis; and (c) a “small cell” of 4° × 4° analysis 31 

covering the global domain. It is shown that the following three factors, topography,  32 

TOMS-AI and NDVI, are statistically significant (at the p < 0.05 level) in the relationship 33 

with the IAU (T), which means that they are the most effective predictors of IAU (T), 34 

especially at the 700-hPa level during March–June. The 850-hPa level presents the weakest 35 

contribution to IAU (T), probably due to the contradicting influences of the various 36 

variables at this level. It was found that the land use effect, as expressed by the NDVI 37 

trends factor, shows a strong decrease with height and is one of the most influential  38 
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near-surface factors over the East Mediterranean (EM), which explains up to 20% of 39 

the temperature increments in January at 700 hPa. Moreover, its influence is significant  40 

(p < 0.05) through all of the different stages of the multiple regression runs, a major 41 

finding not quantified earlier. The choice of monthly means was found to be not optimal, 42 

particularly for the tropospheric vertical velocity, due to the averaging of the synoptic 43 

systems within a month. 44 

Keywords: model errors; temperature increments analysis; ERA15 reanalysis; land use 45 

change; NDVI; TOMS-AI; stepwise multi-regression 46 

 47 

1. Introduction 48 

The investigation and analyses of the sources for NWP (numerical weather prediction) errors 49 

constitute a major component in accurately simulating and predicting the weather and climate conditions. 50 

In recent years, analyses of different factors that are being considered as responsible for NWP 51 

errors were comprehensively employed on each specific factor, such as topography [1], aerosols [2,3], 52 

land use changes [4] and others. However, there is not any comprehensive investigation of the 53 

importance of a set of factors that are known to contribute much to the model errors. It is the primary 54 

goal of the present study to perform such a first multi-factor investigation. Moreover, the research 55 

combines both physical and natural factors, among them topography, atmospheric aerosols through 56 

TOMS-AI, tropospheric vertical velocity, along with two more dominantly anthropogenic factors: the 57 

population density and land use (LU) changes. The LU changes here consist of two datasets, the Land 58 

Use Change Index (LUCI) [5] and the Normalized Difference Vegetation Index (NDVI) trends [6]. 59 

The mid-tropospheric vertical velocity was chosen in order to estimate the potential contribution of the 60 

synoptic systems intensity to the NWP errors. Another chosen factor is the seismic hazard assessment 61 

factor, which served as a “dummy variable” in this study for validation. It is important to note that in 62 

order to partially avoid the complex non-linear interaction in each model, which quickly transports the 63 

model errors through the whole model domain within a relatively short time of a few hours, the current 64 

research analyzes the reanalysis increments. These increments are based on the European Centre for 65 

Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA15), which is a validated data set 66 

assimilated for 15 years, 1979–1993. The ERA15 employs the “first guess” determined by a short-term 67 

forecast, together with the observation as the input data for the analysis. The increments analysis 68 

update (IAU) is defined as the 6-h “first guess” forecast values subtracted from the analysis values [7]. 69 

The 15-year monthly means of temperature increments IAU (T) are employed in the current study. Our 70 

focus on the temperature increments at the first stage is due to the fact that temperature is considered 71 

as a relatively “stable” and more predictable variable in NWP models and, therefore, reduces the 72 

numerical “noise”, which may obstruct the relationships that are being sought [2]. The main goal is to 73 

quantify the influence of various factors, physical and anthropogenic, on the NWP errors. Moreover, 74 

the calculated ranking of these factors in the context of temperature increments will serve as 75 

representative of the NWP errors. It should be noticed that since the present analysis is based on 76 
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monthly means data rather than daily predictions, the reference to NWP everywhere here is with an 77 

emphasis on climate model predictions and less on shorter range weather predictions. 78 

2. Research Area and Data 79 

2.1. Research Area 80 

First, a “large-scale” analysis is preformed and then focused over the Eastern Mediterranean (EM) 81 

region, with a more detailed study of the land use change variable, which was analyzed as an index 82 

(LUCI) and as a trend (NDVI) (Section 2.2). The research consists of both spatial and vertical 83 

analyses, as well as the synergy of selected variables in order to investigate the potential contributions 84 

of the interactions among these factors. The spatial analysis consists of three categories; (1) full region 85 

(in brevity, GLOBal region, GLOB)—an analysis of the full research domain, which encompasses 86 

the range of 40°W–140°E longitude and 20°N–50°N latitude. This area consists of Asia, Europe, 87 

North Africa, the Mediterranean and the eastern part of the Atlantic Ocean (Figure 1). This GLOB 88 

region was chosen, because it contains all of the specific subregions we were interested in, as well as 89 

those investigated earlier for specific factors ([2], Eastern Atlantic; [3], Sahara). (2) The subregion 90 

analysis (Figure 1)—the division of the full domain into six subregions based on the factor that was 91 

estimated to be dominant at the specific subregion. At this stage, the EM region was explored in detail. 92 

(3) The “small cell” analysis—a division of the GLOB domain into relatively small cells of 4° × 4°. 93 

The vertical analysis investigates the following pressure levels; 1000, 850, 700 and 500 hPa. Further 94 

vertical investigation was achieved by employing vertical cross-section analysis with zooming on 95 

selected points for the vertical profiles. The third part of the research analyzes the synergies 96 

among the factors, which enable one to study potential interactions among the different factors 97 

on the temperature increments. The selected factors’ combination effect includes: the (population 98 

density/NDVI) trends for enhancing the anthropogenic effect and the (topography/seismic) hazard 99 

synergy for enhancing the terrain effect. 100 

2.2. Land Use Change Data 101 

The land use change was estimated by the data of NDVI trends, the ranges being 1982–1991 MAM 102 

(March, April and May) and JJA (June, July and August), with 1° × 1° spatial resolution.  103 

Angert et al. [6], found that for 1982–1991, the summer (JJA) NDVI trend is significant (r > 0.8) over 104 

the large land areas that showed pronounced greening and was associated with warming. The extra 105 

tropical spring (MAM) NDVI shows an increasing trend (r = 0.79) in the 1982–1991 time period, in 106 

parallel with the spring temperature trend (r = 0.80).The spatial analysis shows spring greening over 107 

broad areas in the period 1982–1991. This greening is probably at least partly related to  108 

the broad-scale warming that took place for this period over most of the Northern Hemisphere. Similar 109 

to the summer trends, the statistical analysis of the spring trends found significant trends (r > 0.8) in 110 

the areas that showed pronounced greening or browning. Although the period that was chosen is short 111 

for climatic analysis, the main scope is to demonstrate the unique and pioneering research method. 112 
  113 
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Figure 1. The research area (GLOB, 180° × 30°) and subregions. AC, Asian continental 114 

(80° × 10°), AHT; Asian high terrain (45° × 25°); EM, Eastern Mediterranean (12° × 4°); 115 

EWA, Europe and West Asia (60° × 10°); IS, Israel (8° × 4°) and the vicinity; SH, Sahara 116 

Desert (40° × 20°)*. 117 

 118 
* The sensitivity to the exact definition of the boundaries of each subdomain was not tested, because most of 119 
the subdomains include a very large number of points, and it was assumed to be insensitive to their exact 120 
boundary locations. 121 

2.3. ERA15 and the Temperature Increments 122 

In 1994, The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) 123 

project had produced 15 years of validated data sets of assimilated data for the period 1979–1993. 124 

The data assimilation (DA) scheme of ERA15 makes use of a numerical forecast model to propagate 125 

the atmospheric information from data-rich to data-sparse areas [8]. Results from the analysis, 126 

following initialization, are consequently used as initial conditions for the next forecast and are 127 

repeated in a cyclic fashion every 6 h. Therefore, ERA15 is basically relying on a continuous DA over 128 

a long period, which is equivalent to running a Global Circulation Model (GCM) forecast model and 129 

relaxing towards the observations and forcing the atmospheric fields at six hourly intervals. 130 

For each variable of the observed data, which is processed by the ECMWF analysis, a comprehensive 131 

set of difference information is computed. These include the differences between the initialized analysis 132 

based on all observations available and the model’s first guess values. This information, together with 133 

all observations, is employed as input for the analysis and is called “analysis feedback” [8]. This 134 

process result is the source data for the present study. A further statistic extensively used for 135 

monitoring purposes is the set of increments added to the first guess in order to produce the final 136 

reanalysis. The analysis increments (INC) are defined as, 137 

INC = AN − FG  (1)

where AN stands for the analysis values and FG are the first-guess forecast values. The FG values are 138 

being determined by the GCM, which basically has ignored the land use changes/trends by using 139 

a constant value for each grid-point through the years. This update process is on the basis of a 6-h 140 

cyclic routine and is called the “incremental analysis update” (IAU) [8]. 141 

The current research employs these ERA15 temperature increments. The basic idea of this research 142 

is that the temperature increments, IAU (T), may be considered as “model errors”, since they would 143 
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become zero if the model first-guess was completely correct. The 18 UTC temperature increments 144 

were averaged monthly at four pressure levels, 1000, 850, 700 and 500 hPa. Previous  145 

studies [2,3,9–11], have demonstrated a strong connection between dust and temperature increments at 146 

12 UTC. Therefore, the 18 UTC values were chosen in order to somewhat decrease the well-studied 147 

and dominant dust effect on the increments at noon time and, thus, emphasize the effects of 148 

the other variables. 149 

2.4. Other Independent Factors 150 

The TOMS Aerosol Index represents a vertically-integrated measure of the aerosols or the dust  151 

load [12]. The data of TOMS AI, which is employed in the current study, are monthly means for 152 

the period of 1979–1992. The TOMS-AI data were obtained on-line [13]. It should be pointed out that 153 

TOMS-AI is only sensitive to absorbing aerosols, such as smoke and dust, not to non-absorbing 154 

aerosols, such as industrial pollution. 155 

The gridded population density data was obtained from the Center for International Earth Science 156 

Information Network (CIESIN), Columbia University [14], in order to estimate the potential local 157 

anthropogenic impacts on atmospheric temperatures. The anthropogenic effect could be of different 158 

sources (land use change, urban heat, emissions, etc.), but their incorporation in prediction models is 159 

still lacking. The CIESIN gridded population density data was also mentioned in a previous study by 160 

Mitchell et al. [15] as a good comparable source for research examining the vulnerability of human 161 

and natural systems to present climate variability and future climate change. Population density was 162 

also found as a good proxy to urban effects on solar insolation dimming [16–18]. 163 

Omega is the vertical velocity in pressure coordinates (ω = dp/dt) and can be estimated according to 164 

the omega equation. The omega data employed here are monthly means obtained from the atmospheric 165 

reanalysis project of NCEP [19]. 166 

The omega was chosen as a representative variable for the intensity of the synoptic system. 167 

Therefore, it will help in estimating the importance of the synoptic state on the temperature increments. 168 

The assumption is that deep synoptic systems, which are being characterized by steeper gradients, may 169 

yield larger temperature increments due to the inaccurate forecast of the synoptic state. 170 

The terrain data employed here is the Terrain Base global digital terrain model, which contains 171 

a complete matrix of land elevation and ocean depth values for the entire world gridded at  172 

5-minute intervals [20]. 173 

The seismic hazard assessment data of The Global Seismic Hazard Assessment Program [21]  174 

was chosen to serve as a dummy variable, assumed to have no connection to tropospheric temperature 175 

increments, in order to examine the goodness of the multi-regression equation and its ability to simulate 176 

and to quantify the real factors contributing to the model errors. In fact, the seismic hazard data was 177 

eventually found to be highly correlated with topography and, thus, cannot really serve as a good 178 

“dummy variable”. The full factor list is shown in Table 1. 179 
  180 
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Table 1. The different factors employed in the different regression models. Factors 1–7 181 

serve as predictors (independent), while 8, the IAU (T), serves as the predicted  182 

variable (dependent). MAM, March, April and May; JJA, June, July and August. 183 

Description (units) Factor No. 

Land Use Change Index (index) LUCI 1 
Where x is a seasonal average of MAM and JJA (NDVI/day) NDVI x 2 
TOMS-AI (index) TOMS 3 
Vertical-p velocity omega (OMEGA) at 500 hPa (hPa·d−1) OMEGA 4 
Topography (m) TOPO 5 
Population density with natural log transformation (person/km2) POPU 6 
The seismic hazard assessment (%) SEIS 7 
Increment analysis update of temperature (K/day) IAU(T) 8 

3. Main Research Goals 184 

The main goal of the current study is to examine and quantify several potential contributors to 185 

the temperature forecast errors in numerical weather prediction (NWP) models. It should be noted that 186 

the choice of monthly means, may not be so representative, because of the averaging of several 187 

synoptic systems within a month. This point will be later discussed; Also, our goal is to demonstrate 188 

a statistical technique of partitioning and quantifying the numerical models temperature potential 189 

sources of error into model deficiency components and to estimate the contributions to the model 190 

temperature error from each of the factors. In particular, the IAU (T) is employed in order to estimate 191 

the potential contribution of land use changes (LUC) to the climatic trends in the past decades. 192 

4. Methodology 193 

A stepwise multi regression-based statistics was employed for prioritizing the influence of the 194 

aforementioned selected factors, i.e., anthropogenic and physical, on the ERA15 temperature increments 195 

(e.g., Draper and Smith, 1998 [22]). This statistical procedure consists of different stepwise multiple 196 

regression runs with varying ensembles of factors, which enables the prioritizing and the evaluation  197 

of the contribution of each factor to the temperature increments or “errors” of the model. A weakness 198 

of this procedure is the assumption of linear relationships. However, no linearity was assumed when 199 

employing the factor separation approach in which synergies among factors were also analyzed (e.g., 200 

Section 8 for the EM subregion). 201 

Different Multi-Regression Runs 202 

For creating the ultimate combination of factors, which enters the regression process, and, thus, to 203 

enable the optimal model error explanation, different sensitivity runs were done as follows: 204 

(1) Dummy variable run (the basic run, as shown at Table 2 for the seismic hazard factor) 205 

This run employs the seismic hazard assessment, a parameter that has no apparent relationship with 206 

temperature increments. This step will test the goodness of the regression results in the case of 207 

negligible or lack of effect of the dummy variable in the regression equation, as expected. Moreover, it 208 
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can pinpoint a weakness of the regression if this parameter has a major influence on the regression 209 

equation by frequently entering the equation. This regression run serves as the basic run of this 210 

research, which encompasses all of the factors that are considered important. 211 

Table 2. Summary of multiple regression results of the dummy variable run, the “basic 212 

run” for the different research regions (full and subdomains) predicting Incremental 213 

Analysis Updates for the month of May (MAY-IAU) (T) (y). +: positive association; –: 214 

negative association. The variable abbreviations are described in Table 1. Predictors are 215 

given as a regression model equation in order of importance. All coefficients are 216 

significant at p < 0.05. All abbreviations are defined in Table 1. 217 

Model + Variables Entered (x1, x2, x3, x4, …, xn) R2 N 
Regression 

Run 

Pressure 

Level 

y = 0.55TOPO + 0.21POPU + 0.08SEIS + 0.02TOMS + 0.01NDVI·MAM 0.4 22,021 Basic-GLOB 500 

y = 0.68TOPO + 0.05SEIS − 0.06NDVI·MAM + 0.03POPU − 0.02TOMS 0.53 22,021 Basic-GLOB 700 

y = 0.37TOPO + 0.29TOMS + 0.11SEIS + 0.04NDVI·MAM − 0.04OMEGA + 

0.03POPU 
0.28  22,021 Basic-GLOB 850 

y = 0.66TOMS + 0.18NDVI·MAM +0.09POPU − 0.03OMEGA + 0.02TOPO − 

0.02SEIS 
0.43 22,021 Basic-GLOB 1000 

y = 0.305SEIS − 0.156OMEGA + 0.112POPU + 0.038TOMS + 

0.026NDVI·MAM 
 22,021 Omitting Topo 500 

y = 0.340SEIS − 0.183OMEGA − 0.101POPU − 0.044NDVI·MAM  22,021 Omitting Topo 700 

y = 0.259SEIS + 0.303TOMS − 0.141OMEGA + 0.045NDVI·MAM − 

0.034POPU 
 22,021 Omitting Topo 850 

y = 0.664TOMS + 0.178NDVI·MAM + 0.087POPU − 0.029OMEGA  22,021 Omitting Topo 1000 

y = 0.18TOPO + 0.19TOMS + 0.13OMEGA + 0.07SEIS + 0.06NDVI·MAM − 

0.05POPU 
0.19 3381 Basic-AC 500 

y = 0.71TOPO − 0.13NDVI·MAM + 0.19TOMS − 0.12POPU + 0.06 SEIS + 

0.07OMEGA 
0.51 3381 Basic-AC 700 

y = 0.74TOPO + 0.71TOMS + 0.43OMEGA − 0.31POPU + 0.06NDVI·MAM 0.47 3381 Basic-AC 850 

y = −0.39POPU + 0.72TOMS + 0.51OMEGA + 0.08TOPO + 0.03SEIS 0.43 3381 Basic-AC 1000 

y = 0.61TOPO + 0.32TOMS + 0.13POPU − 0.06OMEGA + 0.03SEIS 0.33 6681 Basic-AHT 500 

y = 0.65TOPO − 0.29POPU + 0.22TOMS − 0.08OMEGA 0.49 6681 Basic-AHT 700 

y = −0.50POPU − 0.17TOPO + 0.18OMEGA − 0.14NDVI·MAM + 0.14TOMS + 

0.07SEIS 
0.29 6681 Basic-AHT 850 

y = 0.37TOMS − 0.28TOPO − 0.19POPU + 0.13OMEGA − 0.10NDVI·MAM − 

0.03SEIS 
0.67 6681 Basic-AHT 1000 

y = −0.20OMEGA − 0.13 SEIS + 0.11TOPO + 0.01NDVI·MAM 0.23 2541 Basic-EWA 500 

y = −0.16TOPO − 0.02NDVI·MAM − 0.10OMEGA + 0.09TOMS − 0.02POPU 0.15 2541 Basic-EWA 700 

y = 0.73TOPO − 0.26OMEGA + 0.22TOMS − 0.04POPU 0.48 2541 Basic-EWA 850 

y = 0.19NDVI·MAM + 0.76TOMS − 0.13SEIS + 0.20TOPO + 0.07POPU + 

0.09OMEGA 
0.27 2541 Basic-EWA 1000 

y = 0.14POPU − 0.06NDVI·MAM + 0.06TOMS − 0.08TOPO + 0.14SEIS + 

0.04OMEGA 
0.12 3321 Basic-SH 500 

y = −0.21NDVI·MAM − 0.06TOMS − 0.06OMEGA + 0.14SEIS 0.14 3321 Basic-SH 700 

y = 2.54TOPO + 0.29NDVI·MAM − 0.32SEIS − 0.08OMEGA 0.7 3321 Basic-SH 850 
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Table 2. Cont. 218 

Model + Variables Entered (x1, x2, x3, x4, …, xn) R2 N Regression Run 
Pressure 

Level 

y = 0.76TOPO + 0.54TOMS + 0.34NDVI·MAM − 0.29OMEGA + 0.19POPU 0.63 3321 Basic-SH 1000 

y = −0.32TOMS − 0.17OMEGA + 0.16NDVI·MAM 0.52 225 Basic-EM 500 

y = −0.63TOMS + 0.05 SEIS 0.51 225 Basic-EM 700 

y = −0.33TOMS + 0.12OMEGA + 0.16NDVI·MAM 0.4 225 Basic-EM 850 

y = 1.14TOMS + 0.20SEIS − 0.39OMEGA + 0.33NDVI·MAM 0.7 225 Basic-EM 1000 

y = 0.11SEIS − 0.18TOMS + 0.10OMEGA + 0.22TOPO + 0.06POPU − 

0.08NDVI·MAM 
0.53 153 Basic-IS 500 

y = 0.16NDVI·MAM − 0.27TOMS − 0.45TOPO − 0.07OMEGA + 0.10POPU 

− 0.11SEIS 
0.6 153 Basic-IS 700 

y = −0.33OMEGA + 0.98TOPO − 0.31TOMS − 0.11SEIS 0.75 153 Basic-IS 850 

y = 1.73TOPO + 0.83TOMS − 0.24OMEGA + 0.33SEIS 0.8 153 Basic-IS 1000 

 (2) The “Longitude and Latitude run” 219 

Longitude and latitude were also introduced to the current regression run in order to examine 220 

the potential effect of the geographic position. The main finding was that moving eastward with 221 

longitude in the research area is strongly influenced by the sea-land transition, which has a significant 222 

effect on the IAU (T). 223 

(3) The ”No-Topography run” 224 

The no-topography run removes the influence of one of the most influential factors. This yields 225 

the artificial strengthening of the secondary or even less influential factors in the regression, which are 226 

highly correlated with the topography, such as the seismic hazard dummy variable. In the no-topography 227 

run, the statistical F ratio threshold to enter the regression equation was set to p < 0.05 and the F to 228 

remove it set as p > 0.1. The last step allows the entrance of more factors, although less significant, but 229 

to enable a better control run. This run has particularly emphasized the high correlation between 230 

the topography and the seismic hazard assessment and, hence, demonstrated the important fact that 231 

elimination of a strong factor results in the reflection of its influence through a less influential factor, 232 

even with weak influence, like the current research’s dummy variable, which has a relation with 233 

the strong factor. Similar results were found by Alpert et al. [23] and Alpert and Sholokhman [24] in 234 

the analysis of synergic terms when an important factor is omitted. 235 

All of the different regression runs will be employed at the first step only to the coarse region 236 

(GLOB) and to the 850 hPa level. This level was chosen as being an intermediate level, which absorbs 237 

and is being strongly influenced by both ground and high altitude processes (largely anthropogenic and 238 

synoptic). Furthermore, the 850-hPa level can “host” several model errors. In the next step, the optimal 239 

run was employed on all levels and subregions. Then, the multi-regression was expanded to the rest of 240 

the levels. Figure 2 presents a flow chart of the multi-regression procedure. 241 
  242 
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Figure 2. Flow chart of the multi-regression procedure; Y is the dependent variable 243 

(ERA15 increments), which can be expressed in terms of a constant (a) and slopes (b) 244 

times each of the independent X variables (TOMS, omega, topography, seismic hazard 245 

(marked with orange for being the dummy variable), population density and land use data). 246 

The constant is also referred to as the intercept, and the slope as the regression coefficient 247 

or b coefficient. 248 

 249 

5. Analysis of the Regression Model Results: Preliminary Results 250 

The results of the spatial analysis of the subregions (as summarized in Table 3) have justified 251 

the division of the full domain (GLOB) into subregions according to the analyzed factors and highlight 252 

the influence of each factor in each subregion, as well as at each vertical level. The leading factors  253 

for each region in the determination of the model errors are as follow (in parenthesis is the number of 254 

pixels at each domain); 255 

• GLOB full domain: topography at 700 hPa and TOMS-AI at 1000 hPa (22,021). 256 
• Eastern Mediterranean: 257 

East Mediterranean (EM): TOMS-AI and weak effect of NDVI JJA at 1000 hPa (225). 258 

Israel (IS): TOMS-AI at 700 hPa and NDVI JJA at 1000 hPa (153). 259 

• Asia Continental (AC): topography at 700 hPa and TOMS-AI at 1000 hPa (3381). 260 

• Asia High Terrain (AHT): topography and TOMS-AI at 700 hPa (6681). 261 

• Europe West Asia (EWA): TOMS-AI at 1000 and 850 hPa, topography at 850 hPa and NDVI in 262 

the JJA months at 1000 hPa (2541). 263 

• Sahara (SH): topography at 850 and 1000 hPa (3321). 264 

Following these analyses, the AHT subregion may be considered as an optimal region to explain 265 

the IAU (T), due to its demonstration of the highest multiple regression coefficients of determination 266 

and also the variable regression coefficients for the participating factors. Similar results were obtained 267 

at the subregion “characteristic” analysis and at the “small cell” analysis, which will be explained next. 268 

Figure 3 shows the annual course of the multi-regression values of R2 at 500 and 850 hPa for 269 

the GLOB (A) and for all the sub-regions; EM (B), IS (C), SH (D), AC (E), AHT (F) and EWA (G). 270 

Multi-
Regression

Synoptic 
state 

Aerosols Land use 
Population 

density 
Terrain 

ERA15 

Increments 

Seismic 

hazard 

Lat/Lon 

Y = a + b1 × X1 + b2 × X2 + ...

+ bp × Xp 
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Table 3. Qualitative summary of the multi-regression results for the different research regions. Bold: absolute dominant variable in the annual 271 

course. The yellow marking indicates a negative coefficient value. 272 

Level (hPa) Annual Range of R2 Factors in Priority (Top 3) 

Region GLOB AC AHT EWA SH EM IS GLOB AC AHT EWA SH EM IS 

1000 0.24 0.42 0.02 0.24 0.08 0.3 0.11 0. 38 0.01 0.21 0.02 0.37 0.01 0.12 

TOMS TOMS TOMS TOMS Topo TOMS Topo 

Topo Omega Topo Topo TOMS NDVI TOMS 

Popu 
Topo/ 

Popu 
Popu 

NDVI/

Omega 

NDVI/

Popu 
Seis 

Omega/ 

NDVI 

850 0.19 0.39 0.09 0.24 0.01 0.31 0.12 0.34 0.08 0.38 0.01 0.05 0.01 0.32 

Topo Topo Topo Topo Topo NDVI Topo 

TOMS TOMS Popu TOMS NDVI TOMS NDVI 

Omega Omega Omega Omega Seis  Omega 

700 0.27 0.55 0.01 0.45 0.20 0.51 0.01 0.32 0.02 0.42 0.00 0.06 0.01 0.33 

Topo Topo Topo Omega Topo TOMS Topo 

TOMS TOMS TOMS Topo NDVI NDVI TOMS 

Seismic  Omega Omega TOMS    

500 0.29 0.40 0.04 0.26 0.18 0.34 0.01 0.11 0.01 0.11 0.01 0.16 0.01 0.24 

Topo TOMS Topo Omega Omega TOMS TOMS 

TOMS/Popu Omega Omega TOMS TOMS Omega Seis 

Omega Topo/Popu TOMS NDVI  NDVI  



Land 2014, 3 1025 

 

 

Figure 3. The annual course of the multi-regression R2 values at the different pressure 273 

levels at the full research region (A, GLOB) and at each subregion (B–G). 274 

 275 
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6. “Small Cell” Analysis 293 

This stage consists of 898,032 regression runs (18,709 × 12 month × 4 pressure levels), in which 294 

each regression has a population of 81 grid points (the result of the division of the research area into  295 

4° × 4° cells, yielding 9 × 9 grid points due to the resolution of 0.5 degrees). Each grid point serves as 296 

the middle point of each cell and gets a regression equation. Due to the latter fact, the 3312 GLOB 297 

region threshold points were cut off to enable the representation of each grid point as the cell’s center. 298 

It was found that 20,543 regression equations are undefined, 36,087 are insignificant and 299 

841,402 equations out of the total 898,032 runs (equivalent to 95.9%) are significant at the p < 0.05 300 

level (R2 > 0.000175). 301 

Due to the large amount of regressions runs, the analysis of the current research step consists of 302 

the temporal distribution of the coefficient of determination (R2). As previously noted, R2 is one of 303 

the major statistical parameters to test the quality and success of the multiple regression predictors to 304 

predict the dependent variable. Table 4 summarizes the R2 monthly variation of the current regression 305 

runs at the different pressure levels. 306 
  307 
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Table 4. Annual categorization of R2 values for the 4° by 4°-cell regression run, at  308 

the different pressure levels. Each cell consists of 81 grid points (N = 81), and values are 309 

significant at the p < 0.05 level. 310 

Pressure 

Level 

(hPa) 

Jane February March April May June July August Septemper October November December 

500 L L L L L L L L L L L L 

700 L L VH VH VH VH H H H H M L 

850 L L M L L VL VL VL VL L L L 

1000 L L L L M M L L L L L L 

Values categorization as follows: very high (VH, R2
4 × 4 value > 0.45; high (H), R2

4 × 4 value 0.4–0.45; moderate (M), R2
4 × 311 

4 value 0.35–0.4; low (L), R2
4 × 4 value 0.15–0.3; very low (VL)—R2

4 × 4 value < 0.15. 312 

The main conclusions from our findings follow: 313 

The regression fits best at 700 hPa in March through October, with an average of R2
4 × 4 > 0.4. High 314 

values of R2
4 × 4 > 0.45 were obtained for spring months (March–June). 315 

The 850-hPa level exhibits the worst regression fit with R2
4 × 4 < 0.15, which represent very low 316 

values in the summer months (June–September). The rest of the months represent low values, except 317 

March, with moderate values (0.35 < R2
4 × 4 < 0.4). 318 

These results are supported by our earlier studies, which emphasized the important role of  319 

the 700-hPa level in explaining temperature increments, on the one hand, and the 850 hPa as the less 320 

important level. In general, the 850-hPa level is considered as a “noisy” level. The reason for that 321 

could be the effects that are both from above (upper-troposphere) and from below, i.e., the turbulent 322 

planetary boundary layer, since the 850-hPa level is often inside or near the top of the planetary 323 

boundary layer. 324 

7. Analyzing the Spatial Distribution of the Multi-Regression Coefficients of the  325 

Different Variables 326 

7.1. Spatial “Small Cell” Analysis 327 

• The combination of the R2
4 × 4 and regression coefficients of the different factors at 700 hPa 328 

during March–June demonstrates the importance of the NDVI trends and the seismic hazard 329 

assessment factor. The latter variable shows up in spite of being chosen as the “dummy 330 

variable”, probably due to its close relation with topography. 331 

• The following regions have demonstrated the best multiple regression correlations to explain the 332 

IAU (T); the Atlas Mountains (especially the eastern slope), the Sahara Desert (Ahaggar 333 

Mountains), the Nile Valley and Delta, the Euphrates Valley, the Persian Gulf coast of Saudi 334 

Arabia, the Aral Sea and its vicinity and the BoHai Bay vicinity (West of Beijing). This fact is 335 

especially true at 700 hPa for the period of March–June, as noted earlier (Figure 4). 336 
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Figure 4. Map of zonal and meridional vertical cross-sections of R2
4 × 4 values with zooming on May. All values are significant at the p < 0.05 337 

level. Missing values (white spots) represent R2
4 × 4 values that are insignificant.  338 

 339 

Map of cross 
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7.2. Vertical Analysis of Layers and Factors 

The vertical analysis consists of subregions and “small cell” analyses, as well as cross-sections and 

some specific points. The main findings are; 

• The dominant level in explaining the IAU (T) at each step of the analyses is 700 hPa. 

The “small cell” analysis strengthens this finding by identifying the period of months with 

the highest explanation of IAU (T), which is March to June. The important role of the 700-hPa  

level in explaining the IAU (T) is probably due to the fact that this level represents both upper 

atmospheric processes and is still being affected by land-atmospheric interaction processes, 

avoiding the larger “noise” of these influences typical for the 850 hPa. Hence, the 700-hPa level 

seems to “filter” the noise from the boundary-layer, as compared to 850 hPa. 

• The 1000-hPa level is second in contributing to the IAU (T) (Table 5) The 850-hPa level 

demonstrated the weakest relation and contribution to the temperature increments. 

• The 700-hPa level demonstrates the best explanation for the ERA15 temperature increments in 

the “small cell” analysis. The vertical cross-section (Figure 4) also supports this result. 

• The topography coefficients are highest at 850 hPa and 700 hPa, which fit the high terrain of 

the region. These levels are the most favorable in representing the topography factor in the 

regression equations due to the averaged terrain height, which often reaches their altitudes. 

• As expected, the TOMS-AI coefficients tend to show a decrease with height, although 

the starting point in the vertical varies; at most points, it starts at the lowest level of 1000 hPa. 

The coefficients occupy all pressure levels that were studied, mainly 1000 and 850 hPa, but also 

can reach up the 500 hPa. It also depends on the distance from the aerosols’ sources. 

• The vertical profiles for the population density multiple regression coefficients show no specific 

trend with height. Although it was expected to have its maximum near the ground level, 

the stronger factors, such as TOMS-AI and “NDVI trends”, which have also a close relation to 

the ground level, become dominant in the model errors. It is noticeable, however, that the highest 

pressure level being reached by the population density coefficients is strongly related to 

the respective population density in the region. In other words, the highest population density 

regions do show the strongest vertical influence on temperature increments. 

• The “NDVI trends” factor is present at each of the profile points and demonstrates, as expected, 

a clear dependency with height, i.e., the coefficients’ values decrease with height. The NDVI 

factor is best represented at 1000 and 850 hPa, but can be found also at the higher levels of  

700 and 500 hPa. 

• The omega 500 factor vertical analysis has no clear trend in the vertical direction. There are 

vertical changes at different geographic locations. For instance, the marine vicinity is 

characterized by significant coefficients of omega 500 at the lower levels of the atmosphere, 

while at continental locations, this factor enters at higher levels. The latter finding can be 

attributed to the interaction of the synoptic state with sea-land breeze, which is dominant in 

coastal regions and, due to its “small scale” or local effect, is not being represented well by 

the model resolution. Moreover, due to a lack of a clear trend in its influence on the IAU (T), it 

seems that the omega 500 factor fails to represent the synoptic state well. Perhaps this is due to 
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the fact that monthly averages are smoothing the daily time scale, which is important for 

synoptic systems. 

• The seismic hazard assessment regression coefficients decrease with height at points where the 

coefficients show a clear vertical structure. Their entrance into the regression equations is quite 

compatible with the spatial distribution of the factor itself. 

Table 5. The parameter (or factor) prioritization for the GLOB and for each subdomain. 

The colors represent the three dominant parameters: gold, the most influential parameter; 

silver, the second; bronze, the third. The months in which these effects are taking place are 

in brackets.  

Area 
Level 
(hPa) 

GLOB AC AHT EWA SH EM IS 

500        

700 TOPO 
TOPO  
(4–9) 

TOPO  
(11–5),  

 TOPO  
TOMS-AI 

(4) * TOMS-AI 
(11–3) 

850    

* TOMS-AI 
(12–3) 

TOPO  

 
NDVI 
MAM 

TOPO (4–9) 
NDVI 

MAM (4) 

1000 
TOMS-AI 

(5–10) 
TOMS-AI 

(5–9) 
 

TOMS-AI  
(3–6) 

 

TOMS-
AI  

(4–5,11) 
 

NDVI JJA 
(5–9) 

* NDVI 
JJA  

(4–5,11) 
 

Variables denoted with a star (*) demonstrate an inverse proportion with the increments (i.e., the negative 

sign of the coefficient). 

8. Factors Analysis: Focusing on the Eastern Mediterranean Region 

A major goal of the present research is to perform the quantification and prioritization of factors, 

especially that of the land use effect on the EM region, as they influence “model errors”. The full 

region of research (GLOB) approximately centers the EM region, while in the progress of the research 

of the main area was divided into six subregions that represent different climatic areas and potentially 

different dominant climatic factors. Two sub-regions out of the six are representing and characterizing 

the EM region. The two subregions that are being identified with the EM region are: the EM subregion 

(20° E–32° E; 32° N–36° N), which encompasses the middle part of the EM Sea (Figure 1), mainly 

a maritime region with only the island of Crete; and the Israel and vicinity (IS) subregion. The IS 

subregion (32° E–40° E; 29° N–33° N) encompasses Israel, Northern Sinai and Jordan. The IS region 

represents a complex area of different climatic definitions, from sea-land interactions, through complex 

topography and an inland desert. 



Land 2014, 3 1033 

 

 

This study discovered that the NDVI trends, as a representative factor of land use change, has 

a significant (p < 0.05) and large impact on temperature increments, generally and especially over 

the EM region (Figure 3B). While the EM demonstrates a bias and, therefore, not a clear effect of 

the NDVI trends on IAU (T), the IS (Figure 3C) exhibits a high fraction of explanation up to 20% of 

the IAU (T) originating from the NDVI trends. This finding is in line with the hypotheses of earlier 

studies, such as Otterman et al. [25], Ben-Gai et al. [26], De Ridder and Gallee [27] and Perlin and 

Alpert [4], who have suggested a strong link between land use changes in the EM region and rainfall 

regime through the enhancement of thermal convection and induced rainfall. 

The EM subregion demonstrates no preference to the synergy effect in the multiple 

regression process. 

9. Conclusions 

The main results of this study is that the following three factors, topography, TOMS-AI and NDVI, 

are statistically significant (at the p < 0.05 level) in their relationship with the IAU (T). That means 

that these three factors are the most effective IAU (T) predictors, especially at the 700-hPa altitude 

during March–June. In contrast, the 850-hPa level presents the weakest contribution to IAU (T), due to 

the contradicting influences of the various variables at this level, which may have been canceling each 

other out. However, this should prompt future research. 

Validation determined that the various multiple regression runs at the spatial subregion analysis had 

succeeded to prioritize and predict the key factors that determined the division of the full domain 

(GLOB) into subregions. The land use as expressed by the NDVI trends shows, as expected, a very 

clear decrease with height and is one of the most influential factors over the EM region. NDVI trends 

explain up to 20% of the IAU (T) in the IS subregion in January at 700 hPa. Moreover, the effect of 

land use change influence is significant through all stages and all combinations of the different 

multiple regression runs at the level of p < 0.05. This is a major finding that was conjectured, but not 

quantified, earlier. 

In contrast to the NDVI trend factor, the calculated LUCI data, which consists of historical land use 

and land cover change data (HITE CD-ROM [5]), had failed to suggest a sufficient explanation of 

the IAU (T). One reason could be that the LUCI categorization does not enter well into 

the regression approach. 

Apparently, averaged monthly mean values of omega 500 data fail to represent well the synoptic 

state; therefore, no clear trend of influence on IAU (T) was indicated. It seems that standardization of 

this dataset would yield a better representation of the synoptic influence on IAU (T). 

The analysis presented here is the first to quantify some of the potential sources for “model errors”. 

Thus, it helps in prioritizing the most important factors that contribute to climate model “errors”. 

In addition, this study suggests to the NWP community of researchers the areas and topics of major 

interest in order to improve our current weather and climate models. For instance, considering 

the conclusions above, a better parameterization of the land use change factor in the models has a high 

potential to improve the NWP models in general and particularly over the EM region. 

This research does not suggest any particular parameterization for the incorporation of any specific 

factor into the model. However, it serves as basic research for the modelers’ community by pointing to  



Land 2014, 3 1034 

 

 

the “right” factor candidates to be inserted or improved in the models’ equations. Additional studies 

should deal with the optimal parameterization of these factors with respect to the research findings. 
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