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1.  INTRODUCTION

Understanding the implications of climate change
on rainfall is critical for water management, agricul-
ture and planning. In regions such as the Middle
East, which has recently been shown to be a ‘hot
spot’ of global climate change (Giorgi 2006), and
where water resources are already scarce, such infor-
mation can play a crucial role in optimizing develop-
ment strategies. The best tools available for the pre-
diction of future changes are climate models. Over
the past few years, the use of ensembles, or combina-
tions of multiple climate model results, has been sug-

gested as a way of improving probabilistic simula-
tions of future climate change (Collins 2007). These
probabilistic scenarios can help better assess risk,
and are useful in planning and devising mitigation
strategies (Stott & Forest 2007, Lopez et al. 2009).

At both global and regional levels, it has been
shown that different climate models vary in per -
formance in different geographical regions; there-
fore, a combination of models will outperform a
 single model (Doblas-Reyes et al. 2000, Thomson et
al. 2006, Weisheimer et al. 2009). However, there has
been much debate as to whether unequal weighting
outperforms equal weighting (e.g. Weigel et al. 2010,
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DelSole et al. 2012). Due to uncertainty in the rela-
tionship between simulated present-day climate
and simulated climate changes, a model simulation
which ex hibits a high amount of skill with regard to
current or past climate does not necessarily provide a
more accurate projection of climate change (Whetton
et al. 2007, Räisänen et al. 2010, Räisänen & Ylhäisi
2011). Though we are aware of these limitations, in
this study, we have used the best data available in an
attempt to improve upon rainfall projections at the
local level. Since much of the debate about weight-
ing is due to the fact that different models are more
skillful in different geographical regions, we hope
that by focusing on a local level we can overcome this
limitation. The Middle East in general and Israel in
par ticular have been chosen, in part, be cause of the
extremely sharp precipitation gradient in the region.
This gradient causes considerable difficulties in re -
liable simulation, given the need for very high spa-
tial resolution due to the importance of orographic
effects, especially in the northern part of Israel
(Giorgi & Lionello 2008). While the use of ensembles
in this region is not a substitute for higher resolution
data, the range of data provided by multiple simula-
tions will hopefully enable more robust analysis.
Under the assumption that weighting the models
provides added value, it becomes necessary to assess
what type of weighting would be most optimal. The
challenge in creating such en sembles is how to
best combine the varying simulations from different
 models. Recent attempts include allocating model
weights according to inverse proportionality to the
errors in forecast probability (Min et al. 2009),
Bayesian optimal weighting schemes (Robertson et
al. 2004), Bayesian hierarchical analysis (Sanso 2008)
and pairwise dynamic combinations (Chowdhury &
Sharma 2009).

For the Middle East, recent climate change studies
have focused on results of individual regional climate
model (RCM) configurations, including the MM5
(Smiatek et al. 2011) and the RegCM (Krichak et al.
2010, 2011, Samuels et al. 2011). On a local scale, the
impacts of future climate change on the hydrology of
the Jordan River (Samuels et al. 2010) and on water
availability in the Sea of Galilee (Rimmer et al. 2011)
have also been studied using single high-resolution
climate model simulations. Within the limitations dis-
cussed above, we argue that ensembles can provide
more skillful simulations here as well. In this paper,
we present the use of a divergence metric to opti-
mally weight different simulations and create ensem-
ble probability distributions for chosen rainfall para -
meters at a local scale.

2.  DATA SETS

2.1.  Study area and historical data

The Middle East lies at the nexus of Asia, Europe
and Africa and is characterized by steep precipitation
gradients, high interannual rainfall variability (Alpert
et al. 2008) and limited water resources (Gvirtsman
2002, Tal 2006). Here we focused on 13 stations
located throughout Israel (Fig. 1; details of stations
in Table 1). The average annual rainfall ranges from
semi-arid (50 to 200 mm yr−1) to temperate (200 to
600 mm yr−1) to semi-humid (600 to 1200 mm yr−1).
Daily data from the stations for the years 1965−1999
were considered.

2.2.  Climate models

Recently, simulations from rRCMs for the Middle
East in general and Israel in particular have been
generated as part of the GLOWA Jordan River pro-
ject (www.glowa-jordan-river.de). This is a multi-
national, interdisciplinary project focusing on sus-
tainable water management in the region. As water
resources are directly linked to rainfall, climate sim-
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Fig. 1. Map showing locations of the 13 rainfall stations
(dots). Topography is based on data from the climate-model
version of the Japan Meteorological Agency’s (JMA) opera-

tional numerical weather prediction model
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ulations are an important aspect of this project. Four
climate simulations currently in use are generated by
2 versions of the MM5 regional model (MM5 3.5 and
MM5 3.7) (Smiatek et al. 2010); 1 set is driven by the
ECHAM5-MPI general circulation model (GCM) and
the second is driven by the UK Met Office HadCM3
GCM. Another RCM simulation is the ICTP RegCM
regional model driven by the ECHAM5-MPI GCM
(Krichak et al. 2010, 2011). Given the similarity be -
tween the MM5 3.5 and MM5 3.7 versions, only the 2
simulations from the MM5 3.5 version were used here.

Another high-resolution global simulation is based
on a climate-model version of the Japan Meteorolog-
ical Agency’s (JMA) operational numerical weather
prediction model, with a horizontal grid size of about
20 km (Mizuta et al. 2006, Kitoh et al. 2008, Jin et al.
2009). Currently, this is the only GCM available at
this resolution. While the 3 RCM models used in our
study (ECHAM-MM5v3.5, Hadley-MM5v3.5 and
ECHAM-RegCM) provide transient climate simula-
tions from 1960 to 2060, the JMA experiment is a
time slice experiment with a validation period (1979−
2007) and a near-future simulation (2015−2035). All
simulations assume the SRES (Special Report on
Emissions Scenarios) greenhouse gas emissions sce-
nario A1B which contains a balanced emphasis on all
energy sources. For all models, precipitation data for
the 13 chosen stations was calculated using inverse
distance weighting (IDW) from the nearest gridpoints.

3.  METHODOLOGY

3.1.  General structure

To identify changes in both mean and extreme
events over time, statistical distributions, such as
cumulative probability and probability density func-

tions (PDFs), are often used. Here we compared the
PDFs for different time periods in order to identify
future shifts in both mean and extreme amounts of
rainfall. First we compared the observed data from 13
stations with model simulations for past/current cli-
mate. Then we compared the modeled simulations
for the current era with simulations for the future, to
obtain a sense of expected future change.

Fig. 2 shows the PDFs for Kfar Giladi from the
observed data and 4 models. PDFs for annual
amounts of rainfall (in mm), numbers of wet days and
numbers of 3 d wet spells per season (October−April)
are shown. The PDFs were calculated using a normal
kernel function. A wet day was considered a day with
rainfall >1 mm. The different models have different
skill with regard to each chosen parameter. For the
observed data and 3 of the models, the 29 yr period
from 1970−1999 was used. For the JMA model, the
29 yr period from 1979−2007 was used.

There were 2 steps to the process: validation and
projection. For validation, we combined the PDFs
from the 4 models into a single PDF and then com-
pared it with the PDF from the observed data. Once
we had determined that the calculated PDF captured
the spread of historical data, we applied the same
methodology for future time periods in order to cal-
culate the projected future PDF. Future PDFs were
compared with the PDF of the historical period to
identify future shifts and changes.

3.2.  Jensen-Shannon divergence

The combination of models was done using the
Jenson-Shannon (JS) divergence metric, a method of
measuring the similarity between 2 distributions (Lin
1991). This metric is based on the widely used infor-
mation-theory measure of divergence: Kullback-
Leibler (KL). However, KL is not a metric (e.g. is not
symmetric, does not satisfy triangle inequality) so it is
inappropriate for measuring and comparing dis-
tances between numerous models. JS can be viewed
as a modification of KL that makes it a metric. JS has
been widely applied in computational sciences,
including bioinformatics, genomic comparisons and
protein surface comparisons (Ofran & Rost 2003, Sims
et al. 2009, Itzkovitz et al. 2010). One of its features
makes it particularly useful for the case of multi-
model analysis: it can assign a different weight to
each probability distribution. The metric is calculated
as follows:

JSπ(p1, p2) = H (π1p1 + π2p2) – π1H (p1) – π2H (p2) (1)
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Name Latitude (N) Longitude (E)

Kfar Giladi 33°14’ 35°34’
Kfar Blum 33°10’ 35°36’
Har Kenaan 32°59’ 35°30’
Kibutz Kinerret 32°43’ 35°34’
Yiron 33°04 35°27’
Eilon 33°03’ 35°13’
Qiryat Shaul 32°07’ 34°39’
Tel Aviv 32°01’ 34°36’
Kiryat Anavim 31°48’ 35°07’
Jerusalem 31°46’ 35°13’
Dorot 31°30’ 34°38’
Beer Sheva 31°15’ 34°38’
Eilat 29°33’ 34°39’

Table 1. Locations of stations
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where p1 and p2 are the probability distribution
functions (each 0.5 in this case) and π1 and π2 are
the weights of the probability distributions p1 and
p2, re spectively, with the constraints that π1,π2 ≥
0,π1+π2 = 1. H is the Shannon entropy function,
which is a measure of uncertainty and is calculated
as follows:

(2)

where x is a vector of variables and b is the base of
the logarithm used. The most common base used is 2,
which was also chosen for this study. It can be seen
in Eq. (1) that the JS divergence is the entropy of the
average minus the average of the entropies.

JS values range between 0 and 1, with 0 being
the most similar and 1 being the most divergent. It
should be noted that the JS score is a unitless value
and its importance in our case lies in its relative value
to the other JS scores.

The JS divergence was calculated for all models
compared with the historical data for the past time
period. Since lower JS divergence numbers are
 associated with models with higher similarity to the
observed data, the inverse of these numbers was used
to calculate the weights given to each of the models.
The weight for each model was calculated as:

(3)

where wi is the weight for each model i, JSDi is the
calculated JS divergence between model i and the
historical data and N is the number of models (here 4).

It should be noted that 
N

Σ
i=1

wi = 1. Once the weights

were determined, PDFs from the 4 models were
 combined to create a single ensemble PDF.

4.  BOOTSTRAPPING

One of the problems in attempting to determine the
weights of different models is that an independent
validation dataset must be created. In order to meet
this requirement, given that we had only 29 yr of past
data, the bootstrapping method was employed. The
process of calculating weights was done for a ran-
domly selected sample of data. Out of the 29 yr data-
set we randomly selected a sample of 20 yr from
each model and from the observed data. The weights
were calculated for this random sample, and a single
ensemble PDF was created. The JS divergence met-
ric was then calculated by comparing the weighted
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Fig. 2. Probability density functions (PDF) for Kfar Giladi for observed data and 4 models (see Section 2.2) of annual amounts 
of rainfall, numbers of wet days and numbers of 3 d wet spells per season are shown
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PDF from the 20 chosen years with a PDF created by
the remaining 9 yr. This process of random selection
followed by weight calculation was repeated 3000
times. The final weights (Table 2) and final JS diver-
gence values (Table 3) used were the means of the
3000 sets.

5.  ENSEMBLE COMPARISON

Table 2 shows the values of the weights calculated
using the JS divergence bootstrapping method for
each model, station and parameter. Next to the

weight is a number between 1
and 4, indicating the rank of the
model compared to the other
models. There was no one best
model for either a specific para -
meter or a specific station, though
the ECHAM-RegCM seemed to
best capture the annual amounts
of rainfall, while the JMA best
represented the numbers of
wet days per season, with the
ECHAM-MM5 coming in at a
close second. In the case of 3 d
wet spells, the JMA slightly out-
performed the ECHAM-RegCM
and was the best predictor.
Table 3 shows the calculated
JS divergence between the ob-
served data compared with the
calculated weighted PDF, equal
weights and that of the best indi-
vidual model. The best model
was defined for each parameter
as that with the lowest sum of
ranks (Table 2).  Generally, the
weighted ensemble clearly out-
performed the ensemble of equal
weights which, in turn, outper-
formed the best model for all pa-
rameters (Fig. 3). Fig. 3 shows the
fitted PDF for annual amounts of
average rainfall for Kfar Gila -
di, Tel Aviv and Beer Sheva. It
should be noted that in the fig-
ure, the non-weighted ensemble
is very close to the weighted one.
The slight dif ferences can be
 better seen in Table 3.

6.  FUTURE SIMULATIONS

Fig. 4 shows the calculated weighted PDF compar-
ison of the historical period (1965−1994) and the
observed data (left hand column), a PDF for the near
future (2015−2035) compared with the past model
(middle column) and a PDF of the far future (2036−
2060) compared with the past model (right hand col-
umn). The amount of rainfall and the wet day para -
meters for 4 stations representing northern (top row),
central (middle 2 rows) and southern (bottom row)
Israel are shown. For near-future cal culations, all
4 models were used. For far-future  calculations, the
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Location ECHAM-MM5 Hadley-MM5 ECHAM-RegCM JMA
Weight Rank Weight Rank Weight Rank Weight Rank

Annual average amounts
Kfar Giladi 0.24 4 0.24 1 0.28 3 0.23 2
Kfar Blum 0.25 2 0.20 3 0.35 1 0.20 4
Har Knaan 0.27 2 0.20 4 0.31 1 0.22 3
Kibbutz Kinneret 0.27 2 0.14 4 0.34 1 0.24 3
Yiron 0.26 2 0.21 4 0.31 1 0.22 3
Eilon 0.22 3 0.21 4 0.34 1 0.23 2
Qiryat Shaul 0.23 3 0.14 4 0.36 1 0.27 2
Tel Aviv 0.26 1 0.20 4 0.27 3 0.27 2
Qiryat Anavim 0.21 2 0.19 4 0.36 1 0.25 3
Jerusalem 0.22 2 0.19 4 0.32 3 0.27 1
Dorot 0.26 1 0.21 3 0.26 4 0.27 2
Beer Sheva 0.18 4 0.21 3 0.38 1 0.24 2
Eilat 0.32 2 0.36 1 0.17 3 0.15 4

Number of wet days
Kfar Giladi 0.26 4 0.23 2 0.26 3 0.25 1
Kfar Blum 0.25 3 0.22 4 0.29 2 0.25 1
Har Knaan 0.28 2 0.18 4 0.27 3 0.27 1
Kibbutz Kinneret 0.27 2 0.28 1 0.22 4 0.22 3
Yiron 0.26 2 0.21 4 0.31 1 0.22 3
Eilon 0.27 3 0.20 4 0.29 1 0.24 2
Qiryat Shaul 0.26 1 0.29 2 0.22 4 0.24 3
Tel Aviv 0.26 1 0.25 3 0.21 4 0.28 2
Qiryat Anavim 0.21 3 0.20 4 0.30 1 0.29 2
Jerusalem 0.24 2 0.18 4 0.30 1 0.28 3
Dorot 0.25 2 0.23 3 0.22 4 0.30 1
Beer Sheva 0.26 2 0.19 4 0.23 3 0.31 1
Eilat 0.33 1 0.29 2 0.17 4 0.21 3

Number of 3 d wet spells
Kfar Giladi 0.22 3 0.27 1 0.25 4 0.26 2
Kfar Blum 0.24 2 0.27 1 0.28 3 0.22 4
Har Knaan 0.18 4 0.20 3 0.34 1 0.28 2
Kibbutz Kinneret 0.13 4 0.22 3 0.45 1 0.20 2
Yiron 0.29 2 0.16 4 0.33 1 0.22 3
Eilon 0.29 1 0.18 4 0.27 3 0.26 2
Qiryat Shaul 0.14 4 0.27 2 0.30 3 0.29 1
Tel Aviv 0.19 4 0.29 1 0.27 3 0.25 2
Qiryat Anavim 0.13 4 0.17 3 0.47 1 0.23 2
Jerusalem 0.10 4 0.17 3 0.53 1 0.19 2
Dorot 0.13 4 0.30 2 0.24 3 0.32 1

Table 2. Calculated weights of the different climate models based on the Jenson-
Shannon divergence values between each model and the observed dataset for rain-
fall amounts, the numbers of wet days and the numbers of 3 d wet spells.  Calculated
weights and ranks are given for each model. For model descriptions see Section 2.2
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JMA model was not used, as there were no simula-
tions for the years 2035−2060. In this case, the
weights were calculated for the 3 RCM models, again
based on JS divergence values.

With regard to both annual amounts of rainfall and
numbers of wet days, for the 3 more northernly sta-
tions, there was a clear shift to the left in both the
near-future and far-future periods. As can be seen in
Table 4, a more intense reduction oc curred in the
lower and middle percentiles (10 and 50) than in the

higher percentiles (90 and 95). This sug-
gests that, while the average amount of
rainfall will decrease, extended rainfall
events will still occur. The pro jections for
Kfar Giladi were the most dramatic, with
a far-future reduction of almost 25% in
median precipitation amounts and a re -
duction of almost 15% in the number of
wet days. For the central stations of
Jerusalem and Tel Aviv the projections
were less  dramatic, but still suggest a
reduction of between 5 and 15% in both
rainfall amount and number of wet days
in the lower and middle percentiles.
The southern station of Beer Sheva ex -
hibited a slightly different trend, with
median rainfall days and amounts increas-
ing slightly in both the near and far future.
However, here the extremes of annual
rainfall and number of wet days showed
mixed results, with  different signs of
change for the near and far future. Since
this is a region with average annual rain-
fall amounts of around 200 mm and num-
ber of rainfall days per year of around
35, even a change of 10% is not that
great. Table 4 shows the expected rainfall
changes based on equal weighting. Equal
weighting seems to temper the changes to
a certain extent in both far-future rainfall
amounts and wet days. The changes in
near-future rainfall amounts and wet
days remained fairly similar, ex cept for
Beer Sheba, where, as we mentioned,
large changes in percentages trans late
into small actual changes due to the low
levels of rainfall occurring there.

7.  DISCUSSION AND CONCLUSIONS

In spite of the limitations posed by the
weak connection between current and

future climate and the biases with respect to uncer-
tainty in model simulations, the use of ensembles is
now accepted practice in re search involving global
 climate models; the same holds true for higher reso-
lution models at re gional and even local scales. Here
we demonstrated the use of the JS divergence metric
for generating such en sembles on a local level. The
main advantage of using such a divergence metric is
that it provides an objective way of quantifying the
distance be tween different distributions in a consis-
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Location JS divergence EW BM
Weight Rank Weight Rank Weight Rank

Annual precipitation amounts
Kfar Giladi 0.0003 2 0.0003 1 0.0007 3
Kfar Blum 0.0006 2 0.0006 3 0.0004 1
Har Knaan 0.0004 1 0.0005 2 0.0005 3
Kibbutz Kinneret 0.0004 1 0.0005 2 0.0008 3
Yiron 0.0003 2 0.0003 3 0.0002 1
Eilon 0.0004 2 0.0004 3 0.0002 1
Qiryat Shaul 0.0006 1 0.0007 3 0.0006 2
Tel Aviv 0.0008 2 0.0008 1 0.0014 3
Qiryat Anavim 0.0014 1 0.0016 3 0.0015 2
Jerusalem 0.0012 1 0.0013 2 0.0018 3
Dorot 0.0010 1 0.0010 2 0.0025 3
Beer Sheva 0.0003 1 0.0005 2 0.0006 3
Eilat 0.0057 1 0.0076 2 0.0131 3

Number of wet days
Kfar Giladi 0.0007 3 0.0007 2 0.0004 1
Kfar Blum 0.0001 2 0.0001 1 0.0001 3
Har Knaan 0.0001 1 0.0001 2 0.0001 3
Kibbutz Kinneret 0.0001 1 0.0002 2 0.0003 3
Yiron 0.0002 1 0.0002 2 0.0003 3
Eilon 0.0001 1 0.0001 2 0.0002 3
Qiryat Shaul 0.0002 1 0.0002 2 0.0004 3
Tel Aviv 0.0003 1 0.0003 3 0.0003 2
Qiryat Anavim 0.0001 1 0.0001 2 0.0002 3
Jerusalem 0.0002 1 0.0002 2 0.0004 3
Dorot 0.0004 2 0.0004 3 0.0003 1
Beer Sheva 0.0006 2 0.0007 3 0.0005 1
Eilat 0.0064 1 0.0071 2 0.0080 3

Number of 3 d wet spells
Kfar Giladi 0.0014 1 0.0014 2 0.0022 3
Kfar Blum 0.0013 1 0.0013 2 0.0023 3
Har Knaan 0.0016 1 0.0018 3 0.0017 2
Kibbutz Kinneret 0.0045 1 0.0072 2 0.0080 3
Yiron 0.0014 1 0.0016 2 0.0025 3
Eilon 0.0010 1 0.0011 2 0.0022 3
Qiryat Shaul 0.0007 1 0.0008 2 0.0012 3
Tel Aviv 0.0020 2 0.0020 1 0.0025 3
Qiryat Anavim 0.0020 1 0.0043 2 0.0056 3
Jerusalem 0.0023 1 0.0049 2 0.0072 3
Dorot 0.0020 3 0.0018 2 0.0018 1
Beer Sheva NA NA NA 
Eilat NA NA NA

Table 3. Jenson-Shannon (JS) divergence for calculated probability den-
sity functions. Results for proportionally weighted calculations (JS diver-
gence), equally weighted calculations (EW) and best models (BM) are
shown for 13 stations and 3 parameters. Calculated weights and ranks 

are given for each model. NA: not available
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tent manner so that many models can be compared to
the observed values as well as to each other. Assign-
ing different weights to the models based on this
 calculation allows optimization of the predictive
strengths of the different models. These strengths
may lie in their simulation of specific parameters or in
their level of accuracy for certain geographic loca-
tions. This is especially useful as we have shown that
no one definitive best model exists for either the sta-
tions or the different parameters. It should be noted,
however, that the metric cannot compensate for
biases common to all of the models.

In addition, focusing on the PDFs of different rain-
fall parameters and the changes in their future distri -
butions provides an accepted and  relatively simple

way of assessing change. The shifts in
PDFs supply probabilistic information
about mean and extreme values, both
important components of water plan-
ning and management. Future predic-
tions from our ensemble simulations
support  previous work, which shows
a decrease of >20% in mean re -
gional precipitation by 2060 (Shindell
2007, Smiatek et al. 2010, Krichak et
al. 2011), with an increase in extreme
events in both observed historical data
(Alpert et al. 2002, 2008) and in future
climate simulations by 2060 (Samuels
et al. 2011). They also support his -
torical studies showing a stronger de -
crease in the north than in the south in
1960−1990 compared to 1930−1960
(Ben-Gai et al. 1998). To further assess
the benefit of unequal versus equal
weighting, cross-validation of the
 simulated climate changes, as sug-
gested by  Räisänen et al. (2010), could
be applied. This will be attempted
in future research once more  high-
resolution simulations have become
available.
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Location Time Amounts of rainfall (%) No. of wet days (%)
period 0.10 0.50 0.90 0.95 0.10 0.50 0.90 0.95

JS divergence weighting
Kfar Giladi NF −2.7 −8.0 −0.7 0.8 −3.8 −1.2 −1.2 −0.7

FF −14.9 −24.6 −8.0 −3.2 −10.3 −14.4 −4.7 −3.8
Tel Aviv NF −11.5 −5.7 −0.7 −0.4 −6.5 −1.4 2.0 −2.1

FF −21.0 −9.8 −1.5 −1.7 −8.0 −6.9 −2.3 −5.4
Jerusalem NF −17.2 −1.9 −3.4 2.1 −7.7 −4.5 −2.0 −2.2

FF −27.1 −16.4 −9.8 −2.2 −15.6 −10.8 −7.2 −5.0
Beer Sheva NF 2.1 2.8 8.7 2.2 −1.9 1.2 −3.0 −1.4

FF 7.8 0.5 −1.8 −10.0 3.3 3.9 3.0 3.6

Equal weighting
Kfar Giladi NF −2.8 −8.5 −0.5 1.1 −3.8 −1.4 −1.1 −0.6

FF −13.3 −23.3 −5.9 −1.1 −8.8 −13.4 −4.2 −3.6
Tel Aviv NF −11.0 −5.2 0.0 0.0 −6.0 −1.2 2.4 −1.6

FF −16.8 −7.0 0.6 0.2 −4.3 −2.5 2.5 −0.5
Jerusalem NF −16.7 −2.4 −3.3 1.4 −9.0 −5.4 −1.9 −1.4

FF −28.2 −16.2 −8.8 1.3 −12.6 −8.8 −4.1 −2.5
Beer Sheva NF 0.7 1.9 6.7 1.1 −1.0 2.7 −2.0 −0.6

FF 2.9 −3.2 −7.3 −14.7 −4.7 −1.6 −0.4 0.1

Table 4. Change in 10th, 50th, 90th and 95th percentile annual amounts of rainfall and numbers of wet days for the near future
(2015−2035; NF) and far future (2035−2060; FF) for Jenson-Shannon (JS) divergence weighting and equal weighting. Bold: 

values with statistical significance above α = 0.05
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