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Abstract A double-resolution regional experiment on hydro-
dynamic simulation of climate over the eastern Mediterranean
(EM) region was performed using an International Center for
Theoretical Physics, Trieste RegCM3 model. The RegCM3
was driven from the lateral boundaries by the data from the
ECHAMS/MPI-OM global climate simulation performed at
the MPI-M, Hamburg and based on the A1B IPCC scenario of
greenhouse gases emission. Two simulation runs for the time
period 1960-2060, employing spatial resolutions of 50 km/
14 L and 25 km/18 L, are realized. Time variations of the
differences in the space distributions of simulated climate
parameters are analyzed to evaluate the role of smaller scale
effects. Both least-square linear and non-linear trends of several
characteristics of the EM climate are evaluated in the study.
One of the key findings with regard to linear trends is a notable
and statistically significant precipitation drop over the near
coastal EM zone during December-February and September-
November. Statistically significant positive air temperature
trends are projected over the entire EM region during the four
seasons. Also projected are increases in air temperature
extremes and the relative contribution of convective processes
in the Southern Mediterranean coastal zone (ECM) region. A
notable sensitivity of projected larger-scale climate change
signals to smaller-scale effects is also demonstrated.

1 Introduction

Evaluations of climate change trends due to effects of
anthropogenic emission of greenhouse gasses (GHG) are
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usually performed with the help of Atmosphere-Ocean
Global Climate Models (AOGCM) using specially designed
projections of future GHG emissions (IPCC 2001, 2007).
Most of the contemporary AOGCMs are characterized by
relatively coarse (~200 km or more) spatial resolution,
precluding them from accounting for the contributions of
small-scale atmospheric and land surface effects. Regional
climate model (RCM) downscaling of the AOGCM results
is often performed (e.g., Caya and Biner 2004; Christensen
and Christensen 2003; Giorgi et al. 2004a, b; Gubasch,
2001; Jones et al. 1995, 1997; Takle et al. 2007; Pal et al.
2007; Wang et al. 2004) to deeper understand the AOGCM
results over specific areas.

Notable peculiarities of climate conditions characterized
by moderate air temperatures and changeable rainy weather
during the cooler winter season and dry and stable hot
weather during summer over the eastern Mediterranean
region (EM) complicate the use of the RCM approach here
(Evans et al., 2004; Pal et al., 2007; Krichak et al., 2007,
Pal et al. 2007). To illustrate the characteristic of the EM
climate, multiyear mean seasonal [December-February
(DJF), March-May (MAM), June-August (JJA), and
September-November (SON)] precipitation and air temper-
ature at 2 m patterns are presented in Figs. la-d and 2a-d,
respectively. The patterns are based on gridded data from
the Climate Research Unit (CRU) of the University of E.
Anglia (Mitchell et al., 2004). The CRU dataset (space
resolution of 0.5°x0.5°) is constructed with the use of
observation data on a number of climate characteristics made
at land stations. Space distributions of precipitation during
DJF, MAM, and SON in the EM are significantly controlled
by that of the region’s topography (Figs. 1a,b,d). Practically
no precipitation is found over the southern part of the EM
during JJA season (Fig. 1c). The EM conditions fit the
“Mediterranean” type according to the Koppen and Geiger’s
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Fig. 1 Observed (CRU) current
climate (1961-1990) mean sea-

(a) DJF Prec CT CRU (mm)

sonal precipitation (mm) during
a DJF, b MAM, c¢ JJA, and d
SON (square in Fig.1d repre-
sents the ECM target area
referenced in the following
figures)
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(1936) classification. Patterns with the seasonal distribution
of near-surface air temperature also demonstrate the role of
the region’s topography (Figs. 2a-d). Synoptic processes in
the EM are affected by those of mid-latitude and sub-tropical
origin. Interannual variations of the region’s climate are
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controlled by effects of the Hadley cell and Asian-African
monsoon circulations (Rodwell and Hoskins, 1996).

Most of the annual precipitation in the EM is produced
during a limited number of rainfall events. The EM
cyclones are usually associated with upper troposphere
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Fig. 1 (continued)
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intrusions of cold air masses of north-European origin
(Krichak et al., 1997, 2004; Ziv et al., 2005, 2010).
Topography and coastal characteristics (with windward
effects, gap winds, and land-sea breezes, etc.) also influence
the spatial distribution of precipitation patterns in the region

30E 32E 34E 42E 44E

(Krichak et al., 2009a, b). These factors contribute to
sharpening gradients in the spatial distributions of the main
meteorological variables, especially notable in the moun-
tainous and immediate coastal areas of the EM. Successful
descriptions of the mutually interacting effects in the EM
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Fig. 2 Same as in Fig. 1, but for
2 m air temperature (°C) 4ON

39N
38N
37N
36N
35N
34N
33N
san{”
31N
30N
20N
28N
27N

26N

206 226 24E 26E 28E 30E 32 34E 36€ 38E 40E 42€ 44E

(b) MAM Temp CT CRU
107

40N

39N
38N
3N
36N
35N
34N

33N

32N

30N

29N
28N
27N

26N

appear necessary for representation of its climate with a  of AOGCM data is performed for two 30-year time periods,
RCM. representing the current (1961-1990) and future (2071-

Most of the past RCM efforts for the EM region have  2100) climates (IPCC 2001). A different, “transient”
been based on application of a “time slice” approach (i.e.,  simulation strategy has been also suggested (IPCC, 2007).
Giorgi et al., 2004a, b). Under this approach, a downscaling  The transient RCM simulations are initiated at time
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Fig. 2 (continued)
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moments corresponding to past climate conditions and are
continuously performed to a chosen future date (Hagemann
et al., 2008). Under this approach, the high-resolution
climate change evaluations are performed based on results
for much longer time periods than the 30-year ones adopted
under the time-slice strategy. To date, only preliminary

RCM transient simulations of the EM climate change have
been reported (Heckl and Kunstmann, 2009; Krichak et al.
2009a, b; Onol, 2008).

The current paper presents results of a RCM effort
focused on determination of the climate change projections
for the EM region during the first half of 21st century using
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Fig. 3 Simulation domain 65N
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an optimally configured RCM model RegCM3 (Giorgi et
al., 2004b; Krichak et al. 2009a, b; Pal et al., 2007). A
double resolution transient climate change simulation of
anthropogenically induced climate change processes over
the EM is performed; projections of the regional climate
change trends of several climate parameters are determined
and evaluation of the role of the physical mechanisms
involved is undertaken. The experimental setup is discussed
in Section 2. Results of simulations of the current climate
conditions over the EM region are presented in Section 3.
The issue of sensitivity of the simulated climate projections
to smaller scale effects is addressed in Section 4. The
obtained projections of the EM climate to the middle of
the 21st century are presented in Sections 5. Discussion of
the results is given in Section 6.

2 Methodology of analysis and experiment setup
The RCM model used is the third generation RegCM3

model (Pal et al.,, 2007) of the International Center for
Theoretical Physics (ICTP). Two sets of the RCM simu-
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lations are realized with 50 km and 14 vertical (50 km/14 L)
levels and 25 km and 18 vertical levels (25 km/18 L) space
resolutions (Krichak and Alpert, 2010). The top of the
model’s atmosphere is defined at 80 hPa. The model domain
used covers southern Europe, the eastern part of the
Mediterranean region, and the Middle East (Fig. 3). The
size and configuration of the model domain have been
selected to allow a representation of main synoptic processes

Table 1 Area-averaged (36-39E; 32-36 N) multi-year (1961-1990)
differences between model-simulated and CRU data for air tempera-
ture at 2 m (°C) and precipitation (mm)

DJF MAM JJA SON

PREC RCM50-CRU 7.7 —19.9 -29 -1.6
RCM25-CRU 0.7 —4.9 -0.2 2.6

T2m RCM50-CRU —0.1 -0.3 -0.3 1.1
RCM25-CRU 0.6 0.6 -0.3 1.1

Area-averaged (36-39°E, 32-36°N) multi-year (1961-1990) differences
between model-simulated and CRU data for monthly mean air
temperature at 2 m (°C) and precipitation (mm)
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Fig. 4 Same as in Fig. 1, but for
RCM results from the 25 km/
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important for description of the EM climate (Krichak et al.
2009b). The domain includes 160x160 grid points (25 km
resolution) and 80% 80 grid points (50 km). The inner square
in Fig. 3 represents the sub-domain in which variation of the
model’s history variables are hydrodynamically determined

during the simulation experiment. The outer part of the
domain corresponds to the relaxation zone at which lateral
boundary computations are performed. The physical options
used are discussed separately (Krichak et al. 2007, 2009a, b;
Krichak 2008; Samuels et al. 2009).
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Fig. 4 (continued)

(c) JJA Prec CT RCM (mm)
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The driving data adopted are from a transient climate
change simulation experiment performed with the fifth-
generation global atmosphere-ocean ECHAMS/MPI-OM
model of the MPI-M (Muller and Roeckner, 2008). The
ECHAMS atmosphere model is hydrostatic with spectral
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T63 truncation (1.875x1.875 spatial resolution) and 31
hybrid vertical levels. The ocean model MPI OM uses a
conformal mapping grid with a horizontal grid spacing of
1.5° and 40 vertical levels. The ECHAMS/MPI-OM
experiment is initiated from the pre-industrial period
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Fig. 5 Same as in Fig. 2, but for
RCM results from the 25 km/
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(~1,850). For the future climate projection, the ECHAMS
experiment employed greenhouse gasses (GHG) emission
scenario A1B (IPCC 2001). Within the full range of the
IPCC GHG anthropogenic emission scenarios, the AIB
scenario (IPCC 2007; Raupach et al., 2007) predicts a

medium-high increase of CO, concentration to about
700 ppm by 2100 with carbon emissions ranging from
between 1,450 and 1,800 GtC. The mixing of the CO, into
the deep ocean maintains a slow surface ocean CO,
increase, so in AIB the oceanic sink steadily increases.
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<

Fig. 5 (continued) (C) JUA Temp CT RCM

Also in AI1B, fossil fuel emissions increase until 2050 and  tal Panel on Climate Change (AR4 IPCC) are fairly
decrease thereafter. consistent when it comes to the region of the Mediterranean

As opposed to some other regions in the world, the = where annual precipitation and number of rainy days are
future climate change projections based on results of  likely to decrease and temperatures, especially those in the
multiple Fourth Assessment Report of the Intergovernmen- ~ summer are likely to increase (IPCC, 2007). When

@ Springer



A double-resolution transient RCM climate change simulation experiment

177

a Prec 35-37E;32—-34N DJF s:25km;d:50km

C Prec 35-37E;32-34N JJA s:25km;d:50km
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b Prec 35-37E:32-34N MAM s:25km;d:50km

1965 1970 1975 1980 1985 1990 1995

d Prec 35-37E;32-34N SON s:25km;d:50km

1965 1870 1975 1980 1985 1930 1985

1965 1§70 1975 1880 1985 1680 1985

Fig. 6 Area average of the monthly precipitation (mm) the ECM target area (indicated in Fig. 1d) during 1960-2000 as simulated RCM
experiments with 25 km/18 L (solid) and (50 km/14 L) space resolutions a DJF, b MAM, ¢ JJA, d SON

compared with the other IPCC AOGCM results, results of
the ECHAMS model used to drive the RegCM show a
slower drying than than produced by most of the models
from the 2020-2040 time period. The trend is catched up by
the experiment in the later decades (2040-2060 and later;
e.g., Samuels et al. 2009).

3 Simulation of the current climate

3.1 Spatial distribution of seasonal precipitation and air
temperature

Parameters of the current EM climate as produced by the
experiment are discussed in this section. The results are

presented separately for four (DJF, MAM, JJA, and
SON) seasons. To evaluate the level of success of EM
climate representation by the model, multiyear seasonal
means of the simulated results are compared with those
from the CRU archive. Table 1 presents multiyear (1961-
1990) mean absolute differences between the total
precipitation and air temperatures at 2 m (T2m) from
the model run and the CRU archive averaged over a
large Middle East sub-area (36°E-39°E; 32-36°N). As
follows from the table, the use of 25 km (instead of
50 km) horizontal resolution allows for a significant
improvement of the RCM results over the sub-area for
precipitation during the four seasons. Less notable is the
contribution of higher space resolution to the accuracy of
representation of the air temperature distribution over the
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(a) RCM Temp DJF Trend (deg/10y) 2001-2060
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Fig. 7 Same as in Fig. 6, but for 2 m monthly air temperature (°C)

sub-area. As is demonstrated in the following, the use of DIJF, MAM, JJA, and SON patterns with the simulated
the higher-resolution allows a more accurate RCM  precipitation and T2m fields averaged for 1961-1990 are
representation of the air temperature in the near-coastal  given in Figs. 4a-d and Fig. 5a-d, respectively. The patterns
zone however. may be compared with those in Fig. la-d and Fig. 2a-d.
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(c) RCM Temp JJA Trend (deg/10y) 2001-2060
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Fig. 7 (continued)

The areas that have little or no precipitation in Fig. 4a-d are
well located even at some relatively small scales; however,
there is a tendency for the model to simulate excessive

precipitation over some of the steep mountainous areas.
This is clear in the patterns for DJF (Figs. 1a, 4a), although
is less evident in the pattern for MAM (Figs. 1b, 4b) and
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Fig. 8 Linear trend in seasonal
precipitation (mm) a DJF, b
MAM, ¢ JJA, d SON (black
solid lines indicate zones with
90% significance level of the
trend)

—-40 —-30 -20 -10 0 10 20 30

SON (Figs. 1d, 4d). It should be also noted that the CRU  CRU current climate precipitation, especially over data
data are available at a much coarser resolution (2x) than  sparse areas.

that of the model (25 km). This might be part of the The modeling results also provide reasonably success-
explanation for the discrepancy between the simulated and  ful representations of mean seasonal 2 m air temperature
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Fig. 8 (continued) (c) RCM Prec JJA Trend (mm/10y) 2001-2060

patterns for DJF, MAM, JJA, and SON (Fig. 5a-d). Over  precipitation and low-level/surface temperature, over
most of the southern EM, the model shows a tendency  the area.

to slightly overestimate temperature. In summary, the Discussed above peculiarities of the current EM climate
25 km/18 L RegCM3 performs well in simulating the  (including those in temperature and precipitation) are

@ Springer



182

S.0. Krichak et al.

Fig. 9 Same as in Figs. 8

but for 2 m monthly air temper-
ature (°C: 95% significance
level over the whole area)

(a) RCM Temp DJF Trend (deg/10y) 2001-2060
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(b) RCM Temp MAM Trend (deg/10y)
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reasonably represented in the both 50 km/14 L (see also
Krichak et al. 2009a; Samuels et al. 2009) and 25 km/18 L
simulation runs. Some differences, representing the contri-
bution of smaller scales, are detectable however. An
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evaluation of the differences is performed below to
determine the sensitivity of the simulated climate and
climate change trends in the region to the effects of the
smaller spatial scales.
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Fig. 9 (continued) (c) RCM Temp JJA Trend (deg/10y) 2001-2060
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3.2 Time variability of simulated climate parameters Israel and adjacent areas in the southeastern Mediterranean

coastal zone, hereafter ECM). With this aim, an ECM target
The RCM effort presented is specifically focused on  area (35-37°E; 33-36°N) has been defined for further
simulation of climate and its projected changes over north  evaluations (indicated by square in Fig. 1d). This area is
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considered important for water resources and agricultural
production in the highly populated region of Israel making it
very vulnerable to expected climate change (e.g., Samuels et al.
2009). To evaluate the sensitivity of the simulated climate to
the model spatial resolution, area-averaged monthly mean
precipitation and near-surface temperature produced for the
years 1960-2000 for the target area at 50 km (dotted line) and
25 km (solid line) resolutions were calculated. Results from
simulations are presented in Fig. 6a-d (precipitation) and
Fig. 7a-d (temperature). No time averaging of the data series is
performed to keep the time variability unchanged. As above,
the time series are aggregated separately for four seasons
(DJF, MAM, JJA, and SON).

The joint presentation of the 25 and 50 km results
allows for an evaluation of the contribution of smaller

a Prec 35-37E;32-34N DJF RCM50 minus RCM25

scale effects in the RCM simulation over the region.
During DJF, MAM, and SON (Fig. 6a,b,d), the 25 km
experiment produces systematically higher amounts of
precipitation over the ECM than the 50 km one while
precipitation amounts for JJA season are notably lower
(Fig. 6¢). When compared with observed trends, the
results of the 25 km experiment with higher precipita-
tion in the winter and lower precipitation during the
summer are more accurate than the corresponding
50 km results. According to Fig. 7a-d, the use of higher
(25 km/18 L) space resolution leads to a 1.0-1.5°C
decrease in the seasonal T2m calculated for DJF, MAM,
and SON (Fig. 7a,b,d). At the same time, the area
averaged air-temperature simulated in the 25 km experi-
ment for JJA (Fig. 7c) seasons over the ECM are slightly

C Prec 35-37E;32—-34N JJA RCM50 minus RCM25

0.7
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b Prec 35-37E;32—34N MAM RCM50 minus RCM25
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Fig. 10 Time variation of area averaged difference in mean seasonal precipitation over the ECM simulated in the 50 km/14 L and 25 knm/18 L

RCM experiment a DJF, b MAM, ¢ JJA, d SON
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a Temp 35-37E;32-34N DJF RCM 50 minus 25

C Temp 35-37E;32—-34N JJA RCM50 minus RCM25
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Fig. 11 Same as in Figs. 10 but for 2 m monthly air temperature (°C)

(0.2-0.3°C) higher, than those produced in the 50 km
run.

Comparison between the simulated and observed pre-
cipitation and air temperature fields between model results
and CRU data shows that the high-resolution RegCM3
skillfully captures the general climate rainfall patterns
during the four seasons. In accordance with this, the
following discussions are mainly based on data from the
25 km/18 L RCM run.

4 Projection of future changes of the ECM climate
Climate parameters from the RCM simulations are

characterized by oscillations of different time-scales.
The oscillations of regional climate parameters at

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060

relatively short-time (several years) scales are to a large
extent a reflection of the nonlinear and chaotic nature of
the real climate system and apparently have no (or very
little) predictability (Giorgi 2005). Relatively long-term
(inter-decadal) regional trends are due to a mixture of
natural and computational factors: the nonlinear nature
of the climate system, the regimes of the general
circulation of the coupled atmosphere-oceans system,
the presence of feedback and threshold processes (Rial
et al, 2004), effects of model internal variability (e.g.,
Caya and Biner, 2004), etc. The trends up to some extent
may be representing contributions of physically meaning-
ful climate change processes taking place both inside and
outside of the region (Gubasch, 2001; Leckebusch and
Ulbrich, 2004; Meehl et al., 2000; Ulbrich and Christoph
1999).
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a RCM 25 km Prec 35-37E;32-34N DJF

C RCM 25 km Temp 35-37E;32-34N DJF
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b RCM 25 km C.Prec 35-37E;32—-34N DJF
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Fig. 12 Time variation in area averages climate change variations of
monthly mean parameters over the ECM target area during DJF as
simulated by RegCM3 (25 km/18 L) for a precipitation (mm), b
convective precipitation (mm), ¢ temperature (°C at 2 m), (d)

4.1 Linear trends

In addition to the time varying signal however, the
experiment also exhibits climate trends persisting during
the simulation period. Climate variability of this type is
affected by anthropogenic forcings and may be considered
representative of the climate change signals (Giorgi, 2005).
As a first step for determination of the anthropogenically
induced climate change variations, least-square linear
trends in the simulations for multi-year seasonal precipita-
tion and near-surface air temperature were computed.
Significance of the linear trend (slope) has been tested
against the zero trend according to Mann-Kendall method

@ Springer

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060

temperature maximum (°C at 2 m), e temperature minimum (°C at
2 m), f relative humidity (% at 2 m), g maximum wind speed (m s " at
10 m ), h solar incident flux (Wt m 2)

(Kendall and Dickinson Gribbons, 1990; Mann, 1945).
Figures 8a-d, 9a-d present the computed linear trends for
precipitation and air temperature performed at every grid
point starting from the yearly seasonal data. Zones with
significance at 90% level linear trends in precipitation are
indicated by solid black contours in Fig. 8a-d. No such
contour lines are found in Fig. 9a-d since linear trends in
near-surface air temperature are characterized by signifi-
cant trends over the whole area. The trends for the both
parameters are displayed on a latitudinal-longitudinal plot
to yield a two-dimensional trend distribution. Figures 8a-d
present linear trends in the seasonal precipitation (milli-
meter per decade) during DJF, MAM, JJA, and SON,
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Fig. 12 (continued)

respectively, over the 60 year period 2001-2060. The near-
coastal zone of the EM region is characterized by a
notable trend to decline in precipitation during DJF winter
seasons (Fig. 8a). A significant drop in precipitation
reaching (—30 mm decade™') is projected for the ECM.
Similar changes in seasonal precipitation amount are
projected for the northern part of the EM. A minor
negative trend (10 mm decade™') characterizes northern
parts of the EM during spring (MAM). A minor (and non-
significant) rise in MAM precipitation amount (5 mm
decade ") is projected for the ECM (Fig. 8b). Practically
no changes in precipitation amount are projected for the
whole EM region during summer (JJA) (Fig. 8c). The
RCM experiment projects less notable decreases than in
the winter but also a negative significant precipitation

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060

trend (down to ~10 mm decade ') during autumn (SON)
(Fig. 8d) over the EM coastal zone.

The linear trends in air temperature at 2 m over the
EM are given in Figs. 9a-d. The whole region is
characterized by significant T2m trends. A 0.4-0.5°C
decade 'air temperature rise is projected for winter
(Fig. 9a). A slightly less intense warming process is
projected for the EM region during spring (Fig. 9b) with a
warming is of ~0.3°C decade ' over the coastal zone
(including the ECM). A more intense warming (0.5°C
decade™') characterizes continental regions in southern
part of Asia Minor and northeastern Mediterranean. Also,
relatively slow T2m 60 y rise (0.35°C decade™') is
projected over the near coastal central EM zone (including
the ECM) during summer (JJA; Fig. 9c). The warming
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Fig. 13 Same as in Figs. 12 but for MAM
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Fig. 13 (continued)

trend is significantly more notable over the Middle East
(>0.6°C decade ') and Asia Minor (0.5°C decade ). The
air temperature rise during autumn (SON) varies from
~0.2°C decade ' over the ECM to 0.3°C decade . It is of
interest to note that the patterns in Fig. 8a-d and Fig. 9a-d
well agree qualitatively with similar patterns obtained by
simple subtraction of multi-year mean seasonal precipita-
tion and air temperature simulated in the experiment for
years 2031-2060 and 1961-1990 (imitation of time slice
strategy, not presented). The “time-slice” and “transient”
trend patterns for precipitation differ significantly over
the EM and ECM. In particular, the “time-slice”
approach does not capture the intense (and significant)
precipitation drop over the near-coastal Mediterranean
zone found in the patterns for DJF and SON (Fig. 8a,
d). At the same time, no significant differences between
the “transient” and “time-slice” patterns for air-
temperature have been detected. The fact appears to be
demonstrating that increases in the period of time
averaging result in a notable decrease in the influence of
the physically based variability on the climate change
signal. The effect is more significant in the simulated
variations in precipitation than in those for the air
temperatures, which appear more dependent on effects of
the larger scales.

5 Time variations in the climate change trend over ECM

5.1 Role of small-scale effects

To estimate the role of small-scale effects in the climate
change trend projected, time series of the differences

2005 2000 2015 2020 2025 2030 2085 2040 2045 2050 2055 208

between the 50 and 25 km ECM area-averaged seasonal
(separately for each of the seasons) precipitation and near
surface air—temperatures are given in Fig. 10a-d and
Fig. 1la-d. The two (50 and 25 km) runs project quite
similar (although differing by amplitudes) trends of other
parameters as well (not presented). As follows from
Fig. 10a, the graph with precipitation difference varies
from 2.5 to —2.5 mm day ' during winter (DJF). Amplitude
of the oscillations is somewhat smaller in the figures for
autumn (Fig. 10d) and spring (Fig. 10b). The differences
for summer are significantly smaller (0.1 to 0.1 mm day ';
Fig. 10c). The amplitude of the oscillations in difference
between amounts of summer precipitation (JJA) produced
in the 50 and 25 km runs during the later years 2050-2060
suggest the inability of the coarser resolution 50 km run to
represent small-scale processes. For the simulated DJF
and MAM T2m, differences are gradually increasing from
0.2°C to 0.8°C and from 0.1°C to 0.7°C, respectively. This
is perhaps a consequence of excessive warming in the
50 km run due to underproduction of precipitation and
clouds. Results from the double resolution experiment
suggest an increase in the role of convective precipitation
under the warmer climate conditions during years 2001—
2060, as can be seen in the increase in precipitation in the
25 km model which better captures these local convective
processes. The situation is somewhat different in the cases
of summer [and autumn] seasons (Fig. 1lc-d). Namely,
during the seasons the simulated 50 minus 25 km air
temperature differences are negative. Absolute values of the
differences increase with time from ~0°C-0.4°C [-0.25°C
to —0.8°C] during 2001-2060 (i.e., the 50 km experiment
systematically produces lower T2m values, indicating
overproduction of precipitation in the 50 km run).
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Fig. 14 Same as in Figs. 12 but for JJA
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. 14 (continued)

5.2 Projections of regional climate trend

Results of the experiment focusing on the inter-decadal time
variability of the projected 2001-2060 climate change trends
over the ECM have been evaluated based on an approach
similar to that suggested by Giorgi (2005). The quantities
being discussed are the “climate changes”, i.e., the differ-
ences between the model simulated area average values of
different climate parameters at each year and those repre-
senting “present day” conditions (reference 1961-1990
averages). In contrast with Giorgi (2005) no strong time
filtering of the original time-series was applied however.
Only a 3-year running average of the original time series was
performed in order to reduce the effects of the interannual
variability in the model data without affecting the inter-
decadal one.

Model simulated area-averaged ECM time series of the
following quantities (a) total precipitation, (b) convective
precipitation, (c) anemometer (2 m) temperature, (d) maxi-
mum anemometer temperature, (€) minimum anemometer
temperature, (f) relative humidity, (g) maximum wind
magnitude and (h) short-wave incident radiation are dis-
cussed here. The time series are presented in Fig. 12a-h;
Fig. 15a-h separately for DJF, MAM, JJA, and SON.

In general, the results can be divided into two
separate periods: (a) 2001-2020 and (b) 2021-2060.
These periods exhibit opposite trends in a number of
the parameters evaluated. This trend is also seen in the
driving ECHAMS data (not presented). During winter
(DJF) (Fig. 12a-h), the RCM experiment projects
increases in mean seasonal total precipitation amount
(20-5 mm month™ ') from 2001 till 2015-2020 and a
consequent gradual 60 mm month™ ' drop in precipitation

2080

2005 2010 205 2020 2025 2030 2035 2040 2045 2050 2055 2060

(Fig. 12a). A minor gradual decline in amount of DJF
convective precipitation is also projected (Fig. 12b).
Simulated climate change processes during 2001-2060
are characterized by a gradual rise in anemometer air
temperature as well as the temperature extremes (mini-
mum and maximum temperatures (Fig. 12c-e¢). The
simulated ECM climate change process is characterized
by an insignificant rise in relative humidity until ~2020
followed by a gradual drop in the parameter during
2020-2060 (Fig. 12f), as well as a decline in the amount
of solar incident radiation until ~2020 followed by its
rise during the rest of the period (Fig. 12h). The trends
are consistent with those in the total precipitation
projected. Projected rise in maximum wind speed of
~0.8 ms ' (Fig. 12g) from 2001 till 2020 followed by a
1 ms ' drop during 2020-2060 are also consistent with
the trends in total precipitation shown in Fig. 12a.
During spring (Fig. 13a-h) the experiment projects an
increase in total precipitation amount of ~80 mm month ™'
until ~2015, followed by a gradual =90 mm month™ ' drop
in precipitation amount during 2020-2060 (Fig. 13a). Also
the rate of monthly mean area average convective
precipitation in the ECM increases to ~50 mm month '
during the 2001-2015 time period and then declines by
~40 mm month™ ' during the rest of the period (Fig. 13b).
As in the DJF case, the experiment projects a gradual rise
in the MAM air temperature, as well as minimum and
maximum air temperature (~3.0°C) during 2001-2060
(Fig. 13b-d). As above the projected MAM trends in
relative humidity and incident solar radiation appear to be
resulting from those in total precipitation (Fig. 13a).
Relative humidity is projected to rise from 2001 to 2010
and then to drop quite slowly (Fig. 13f). The time-period
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Fig. 15 Same as in Figs. 12 but for SON
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. 15 (continued)

till 2060 in the simulation results is characterized by a
drop in amount of incident solar radiation till ~2015
followed by its minor rise (Fig. 13h; ~20 Wt m™?).

The experiment projects a gradual drop in total
summer precipitation during 2001-2050 followed by rise
in later years (Fig. 14a). The rate of mean monthly
convective precipitation is increasing however in the
experiment’s projection (Fig. 14b). Simulated monthly
mean, as well as the minimum and maximum near surface
air temperatures (Fig. 14c-e) during summer are rising
from 2001 to 2030-2040 and then remain quasi-constant.
Relative humidity (Fig. 14f) in the RCM results is rising
from 2001 to ~2015. The experiment projects minimal
changes in near surface relative humidity during summer,
a minor rise in maximum wind velocity until 2015
(Fig. 14g) and a rise in the amount of incident solar
radiation until 2050 (Fig. 14h).

During autumn the experiment projects a rise in total
precipitation amount until 2015-2020 with consequent
drop in later years (Fig. 15a). Similar behavior is also
projected for convective precipitation (Fig. 15b). In an
accord with the trend the experiment also projects air
temperature (mean, maximum, minimum) decrease until
~2020 and a rise thereafter (Fig. 15c-e). Also in accord
with the trend in total precipitation simulated areca-
averaged seasonal values of relative humidity (Fig. 15f;
solar incident radiation (Fig. 15h)) are rising (declining)
from 2001 to 2020 and declining (rising) afterwards. The
values of monthly mean maximum wind speed projected
for autumn (Fig. 15g) are not affected by the global
warming trends, however.

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2080

6 Overview and discussion

This study’s overall aim was to estimate dynamically based
future regional climate change trend projections over the
EM, focusing on the Israeli sub-region. A double resolution
regional climate change simulation experiment over the
eastern Mediterranean region for the period from 1960 to
2060 has been performed.

The RCM experiment qualitatively confirms earlier
projections (Giorgi et al. 2004b; Krichak et al. 2007,
2009a) on notable climate changes in the ECM region
during the first half of 21st century. Application of the
double-resolution transient climate simulation strategy
allowed a more detailed analysis of the process. A
statistically significant positive trend in near-surface air
temperature during the four seasons of year characterizes
results of the experiment over the whole EM region during
2001-2060. The experimental projection of climate change
also includes a notable, significant negative precipitation
trend during DJF and SON over the ECM. The experiment
also consistently projects a minor positive precipitation
trend during MAM and negative precipitation trend during
JJA. The trends are not significant over the area, however.
The result is a consequence of relatively low frequency of
rainy events during MAM and practically absolute absence
of rains during JJA. Obtaining more statistically significant
trend estimates for the seasons would require more data
(i.e., using daily RCM data or performing simulations for
longer time periods). Also projected are the rises in the air
temperature extremes as well as in relative contribution of
convective processes in the ECM region during 2020-2060
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as a result of projected decline in amount of total
precipitation but a zero trend in that of convective one.
Comparison of results of the simulations with 50 km/14 L
and 25 km/18 L reveals a notable sensitivity of the
projected larger-scale climate change signals to smaller-
scale effects. Projected multi-decadal variations of air-
temperature and its extremes, maximum wind speed and
solar incident radiation flux over the ECM are clearly
controlled by those in total precipitation.
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