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Abstract. Commercial microwave radio links forming cel-  The expressions for RMSE of the path-averaged rain-

lular communication networks are known to be a valuablefall estimates can be useful for integration of measurements

instrument for measuring near-surface rainfall. However, opfrom multiple heterogeneous links into data assimilation

erational communication links are more uncertain relativelyalgorithms.

to the dedicated installations since their geometry and fre-

guencies are optimized for high communication performance

rather than observing rainfall. Quantification of the uncer- .
-~ : . - 1 Introduction

tainties for measurements that are non-optimal in the first

place '_S essential to assure usab|.I|ty of Fhe data. i . Electromagnetic waves, especially at high (tens of GHz) ra-

In this work we address modeling of instrumental impair- s frequencies are known to be affected by atmospheric con-
ments, i.e. signal variability due to antenna wetting, base<jtions in general and by precipitation in particular. The spe-
line attenuation uncertainty and digital quantization, as welliic rainfall-induced attenuatiok [dB km~] of a radio sig-

as environmental ones, i.e. variability of drop size distribu- ) 5t the frequencies of tens of GHz is dominated by the ef-
tion along a link affecting accuracy of path-averaged rainfall toot5 of rainfallR[mm h~—1] and is governed by a well-known
measurement and spatial variability of rainfall in the link's power law equation

neighborhood affecting the accuracy of rainfall estimation
out of the link path. Expressions for root mean squared er-x — 4 R? (1)
ror (RMSE) for estimates of path-averaged and point rain-
fall have been derived. To verify the RMSE expressionswhere the parametetsandb are, in general, functions of
guantitatively, path-averaged measurements from 21 opetink frequency, polarization and drop size distribution (DSD)
ational communication links in 12 different locations have (Jameson, 1991). Rainfall estimation using microwave links
been compared to records of five nearby rain gauges oveas been studied over the last few decades (for example, At-
three rainstorm events. las and Ulbrich 1977; an overview can be found in Zinevich
The experiments show that the prediction accuracy iset al., 2009), but only recently (Messer et al., 2006; Leijnse
above 90% for temporal accumulation less than 30 min ancet al., 2007a) it has been demonstrated that data recorded in
lowers for longer accumulation intervals. Spatial variabil- commercial cellular communication networks can be used to
ity in the vicinity of the link, baseline attenuation uncer- €stimate space-time rainfall intensities.
tainty and, possibly, suboptimality of wet antenna attenuation Microwave links, being an indirect rainfall measurement
model are the major sources of link-gauge discrepancies. Itool, suffer from inherent inaccuracies. It was shown (Atlas
addition, the dependence of the optimal coefficients of a conand Ulbrich, 1977) that at the frequencies of about 35 GHz,
ventional wet antenna attenuation model on spatial rainfaltthe power-law relationship is approximately linear and is es-
variability and, accordingly, link length has been shown. sentially independent of DSD and temperature, showing em-
pirical errors of less than 10%. However, the uncertainties in
determination of path-averaged rainfall intensity due to vari-

Correspondence toA. Zinevich ation in DSD increase with lowering frequency to 9 GHz to
BY (artemsin@post.tau.ac.il) more than 20%. Rincon and Lang (2002) have shown that the
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1386 A. Zinevich et al.: Prediction of rainfall intensity measurement errors

instantaneous estimates based on power law Bdefd to  is described in Sect. 4. Experimental errors and predicted
overestimate the actual rainfall, especially at high rain rate€RMSE are studied by comparing link and gauge observations
where variations in DSD affect the power law measurementsin Sect. 5. Section 6 concludes the manuscript.

even though the agreement between power law and dual fre-

quency estimates is very good during the intervals of strati- .

form rain. Wet antenna attenuation has been found to havé Uncertainty models

great impact on measurement accuracy (Minda and Naka; . .. . .
mura, 2005) if this effect is not taken into account. The un_AS|mpI|f|ed model for microwave attenuatiofl, measured

e L . . by a radio receiver is
certainties in determination of clear air attenuation due to wa- y

ter vapor and scintillation effects also have a directimpact ong,, = Ao+ AR+Aw+ny 2)
measurement quality (Holt et al., 2003; Rahimi et al., 2003;
David et al., 2008). The effects of raindrop canting angles,whereAq is baseline attenuation unrelated to rainfalk is
temperature, intra- and inter-storm variations of rainfall mi- Path-integrated rainfall-induced attenuatiar is excess at-
crostructure, link length and frequency, temporal samplingténuation due to wet antenna anglis observation quantiza-
strategy, power resolution and wetting of antennas have beefion noise, modeled as a uniformly distributed random vari-
addressed by Aydin and Daisley (2002), Berne and Uijlen-able (Widrow and Kofr, 2008) with variance
hoet (2007), Leijnse et al. (2007b, 2008a, b). 2

However, the latter studies on uncertainties have been orix2 — A” €)
ented toward estimation of expected errors using a simula- 712

tion framework, primarily to choose the optimal conditions for A dB quantization interval. Equatio)can be assumed
for measurement of path-av_eraged rainfall. _The simulationygjid for signalsAgr, Aw with dispersion much higher than
results represent climatological average estimates of uncera: note that this assumption does not hold for weak rainfall.

tainty that do not account for inter- and intra-storm variation goth A and A,, depend on DSD distribution along a link;
of rainfall intensity. The results are therefore not directly pesides, all components are independent.

applicable for accurate on-line variance estimation that is re-

quired, for example, for assimilation of microwave rainfall 2.1 Uncertainties due to DSD variations

measurements (Grum et al., 2005; Zinevich et al., 2009).

The experimental verification of the accuracy of uncertainty The path-integrated rainfall-induced attenuation results

quantification has received little attention by now; it has beenfrom absorption and scattering of electromagnetic waves by

shown by Leijnse et al. (2008a) that experimentally measuredaindrops, distributed at a point along theL km link as

errors considerably exceed the predicted ones, since not alVa(D,x), whereD is the equivolumetric raindrop diameter

error sources have been taken into account. andQq(D) is the extinction cross-section at given frequency
On the other hand, commercial hardware installations areand polarization (Atlas and Ulbrich, 1977):

characterized by lack of control over link parameters. The

links are installed in the way that maximizes communica-

tion performance rather than the accuracy of rainfall mea-AR:o'4343/dx /dDNd (D,x) Qd(D)

surements; having online variance estimation is essential for L D
accurate integration of observations from multiple links. -0 4343/dD1\7d(D L) 04(D) @)
This work attempts to build a framework for quantitative ' ’

estimation of uncertainties of path-averaged microwave rain- b

fall measurements. The expressions for root mean squaregnhere N, (D, L) = f,dx N4(D,x) is the path-integrated

error (RMSE)E [ec] of the estimation errar= R—Rfores-  psp. Similarly, the path-averaged rainfal, is given by
timatesr of path-averaged rainfakt have been derived. The

RMSE e§timates take in_to accoupt the mgjo_r error sourcesp  _ &/dD]\_/d(D,L)Vd(D)DS, (5)

DSD variations along a link and signal variations due to an- L

tenna wetting, guantization of the signal attenuation mea- b

surements and uncertainty in the determination of the basewahere Vy(D) is the raindrop terminal velocity. Since both

line (zero rainfall) attenuation. A model of rainfall spatial V4(D) and the scattering cross-section can be approximated

variation is adopted to facilitate comparison of path-averagedy power lawsVy(D) = 3.78D%%7, 0q4(D) = CD" (Atlas

rainfall estimates with nearby rain gauges, still the most reli-and Ulbrich 1977), bothAg and R; can be considered

able instrument for surface rainfall measurements. higher-order moments of the DS®; (D). The relation be-
The paper is organized as follows: in Sect. 2 the model fortween Ar and R, becomes linear at frequencies of about

mean squared error (MSE) of path-averaged rainfall estima34 GHz where the power in the cross-section expression

tion error is formulated. The calibration of model parametersequals to that oVy(D). Commercial microwave links op-

is addressed in Sect. 3. The spatial rainfall variability modelerate at various frequencies; uncertainty in determination of
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path-averaged rain rate from attenuation measurements in- The model given by Eqg. 6) can be adopted for

creases as frequency lowers (Atlas and Ulbrich, 1977). R (AR+nw) keeping in mind that even zero-meap leads
For a given link, the stochastic relationship betwegs to a biased estimate &, since

andR; can be obtained empirically by fitting their estimates

based on the DSD measurementshof(D, L) for a given  E [ (Ar+nw)” ] #E[OtAg] (12)

link length L. For convenience, let us write an expression for ) )

the expected value @t; given Ag according to Eq.J) with ~ due to non-linearity of the power law Ed)(

inverted power law coefficiente =51, o« = (aL)#: . . o
P ® a=(al) 2.3 Uncertainties due to baseline variation

~ ~ /3
RL(AR) = E[RLIAR] = aAR. (6) _ . L
R The level of baseline attenuatiofy(r), wheret is a time
The MSE of R, due to DSD variations can be modeled index, varies in time due to primarily variations of water va-
using another ad hoc power-law expression with two link- por concentration in the atmosphere, ducting and scintilla-

specific parameterg,§ (we adopt a notatiomw?[R|A] = tion; the transmission/reception analog circuitry is affected
E [(R B IQ(A))2|A} for MSE): by Fer_nperatur_(_a variations that may lead t_o_ addit?onal signal
variations (Leijnse et al., 2007b). In addition, wind effects

2 on the antennas and masts may also cause variations in the
6,§SD[RL |AR]=E [(RL — Ry (AR)) |AR} = yA%. @) baseline signal; the estimation of the latter is complicated by
signal quantization. In this work, the baseline attenuation es-
The verification of adequacy of the power law parametrictimate has been calculated as a sample meagndf attenua-
form is addressed in the context of a model, comprising weition measurements immediately before and after a rainstorm:

attenuation effects, in Sect. &, the time of rainstorm starts and ends in the area has been de-
termined according to nearby rain gauges with 10 min mar-
2.2 Uncertainties due to antenna wetting gins, to compensate for link-gauge physical distance. Then,

the measurements ofy of 2...27 h length (depending on
A thin film of water on an antenna or a radome is known to gata availability) have been used for calculations, described
cause a considerable attenuation of the received signal. Ae|ow. For practical applications, existing rain/no rain detec-
simplified empirical two-parameter model for a wet antennation techniques can be used (Rahimi et al., 2003; Upton et

attenuation estimately, originating from (Kharadly and  gj. 2005; Goldshtein et al., 2009; Schleiss and Berne, 2009).

Ross, 2001) have been used by Minda and Nakamura (2005} he noiserq due to short-time variations

Leijnse et al. (2007b); Zinevich et al. (2009): .

. no(t) = Ao(t) — Ao (13)

Aw=c1 (1_ e*CZ(AR+AW)> ; (8)
is zero mean under an assumption that the average baseline

Denotingay (A) = C]_(l—e_CZA), let us represent the true estimate, obtained from measurements before and after the

wet antenna attenuation as rainstorm, gives an unbiased estimate of baseline during the
rainstorm (the best guess, provided that there is no other in-
Aw =aw (AR+ Aw) +nw (9)  formation w.r.t. baseline variation during a rainstorm is avail-

able).
To quantify uncertainty ofig (MSE ofng), a sample MSE
estimatec}g has been calculated over no-rain intervals as a

deviation fromAo, assuming that baseline variations during
AR+nw=Am — Ao—ng —aw(Am — Ao—ny). (10)  rainy periods have similar statistical properties. Note that
Since bothny,, and the measurement error Ky, are caused the length of qlata samples before and after ev_ent should be

equal; otherwise, the sample MSE becomes biased towards

by DSD variability along a link, they should be modeled the | int | While short data int | lead t
jointly using the same DSD data. Taking into account that. € longer interval. '€ snort data intervals may lead 1o

the effect ofnw on rainfall estimate decreases with increasemaccurate estimates of the baseline variations, they are still
of Ag+n a\gcording to Eq.8) (for large Ay, Aw — c1 unbiased as long as the unbiased sample variance estimate
W . 1 w

and is weakly affected by its variations), a following ad hoc (Papoulis, 1991) is used for sample_ MSE cal<_:u|at|on_. Me_a-
surement of temporally averaged rainfall requires estimation

parametric MSE model, parameterized by three link-specific . - .
variablesy. s, s is proposed: _of baseline varlgb_|l|ty in the same temp(_)ral scale. To facil-
itate MSE prediction of accumulated rainfall amounts over
an interval of Ar samples length, the pre/post rainstorm at-
tenuation measurements have been averaged over a sliding
window of lengthAr prior to calculation of}g (note that av-

Xy (AR +ny)’ e EARTIW) (11)  eraging of rain rates is not equal to averaging attenuations,

whereny, is noise, caused by rainfall variations near the an-
tennas. Substituting unknowsr + Ay, from Eq. @) into
Eqg. @), Eq. ) transforms into

. 2
6Bspiwel RLIAR+1w] = E [(RL —RL(AR+nw)> IAR+nw]
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1388 A. Zinevich et al.: Prediction of rainfall intensity measurement errors

used to calculateio. Because of this,A the quantization-
related bias, if any, is cancelled fany—Ag, and therefore
ng in Eq. (14) can be considered zero-mean.

-40

451

—_—A
m

A

)
551 Ay,

............... Event endpoints

2.4 Uncertainties of estimation of path-averaged

-50 .
rainfall

Path-integrated attenuation, dB

Employing the Taylor series expansion of non-linear

] . ‘ aw (Am — Ag —no—n,) around the estimate of the rainfall-

00:00 2528 Do 2006 00:00 induced attenuatiory — Ag and taking linear terms, we can
rewrite Eq. (4) as

Fig. 1. An example of the baseline attenuation determination

(23.27 GHz, 2.19km).A) is the measured attenuatiosg is the A N A ,

estimated baseline, ang is RMSE of Ag. Event endpoints, defin- 4w (A'V' —Ao—ng— ”0) =dw (A'V' - AO) +ay

ing the beginning and the end of the rainstorm, are determined ac- A

cording to the nearby Switch Ramle gauge. (AM - AO) (=ng—no),  (15)

-60

o _ A = Ay — Ag— (A —A)—z- , (16
due to non-linearity of Eq.1); these differences are of sec- R+ 1w M 0 dwi7M 0 M (nq+n0) (16)

ond order and are neglected for MSE prediction). An exam- . ' - A

ple of the baseline and MSE is given in the Fig. 1. Note thatVN€€dw is the first derivative ofay W.r.t. Am — Ao, and

at frequencies around 34 GHz where the attenuation-rain ratéy = 1—61629Xp<—62 (AM - Ao))) is an auxiliary vari-

relation becomes nearly-linear, the difference between averable. Recalling that both, andng are zero-mean and in-

aging of rain rate and attenuation nearly vanishes. dependent, the estimates of the rainfall-induced attenuation
In some cases, the natural short-term variationggrdue Ar=E [ARJFHW‘AM —Ao] and its MSE become

to the atmospheric scintillation produce a dithering effect on

the quantized signal so that sample mean represents the A A A (A _a ) (17)
erage baseline attenuation; for shamt, quantization noise R= M 0wl AM o)

in pre/post rainstorm samples is also absorbed &rgtmhat 5

may lead to overestimation of baseline variability. For short(}z[A ‘ A ] ~2 (A 2

. . 4 +nw|Am—Ao |Zty | —=+05 ). 18
links or at low frequencies, the natural fluctuations of the RTW|AM 0 M\12 770 (18)

base level attenuation are comparable in magnitude to the
quantization intervah = 1 dB (in the present study). In this Neglecting the higher-order terms of the Taylor series is plau-
case, quantization causes a nonlinear distortion of the signagible under an assumption that the magnitudedpf— Ao
the trueAg is known to withinA. Increasing sample size is much higher than that of the noise terms. While this
does not decrease the variance of quantization error, givei$ the case for high rain rates whetg is nearly constant
by Eq. @), and the estimation of tru&? is complicated. A (otherwise, the reduction of Eql4) to the conventional
possible heuristics in this case is to lirgf to the minimum ~ EQ. (17) similar to the one used, for example, by Leijnse
given by Eq. 8), supposing that near-zeﬁrg indicates that €t @l- (2007b) W(_)l_JId be |mpos_5|ble), thls_ app_rOX|[nat|on can
the nonlinear quantization effect dominates other variability/€ad t0 the additional errors in the estimation 4% and
sources. Because of non-linear quantization effects, quand> AR+"w‘AM —AO] for weak rain rates where signal
tization error in baseline estimate may affect an entire raing,, — A, to noisen, +no ratio is low and more Taylor expan-
event, introducing a bias in estimation of path-averaged rainsjon terms may be required to accurately represgntThe
fall. o ] ) ] second derivative,,(x) < 0; the direct consequence of this
Substituting Eq.13) into Eq. (10), we get the signal dis- g that the conventional estimation &k using Eq. 17) leads
tortion model to overestimation of weak rain rates due to neglecting of the
term with a/,(x). By retaining the term withu;,, Eq. (17)
AR+nyw=Am— Ao—no—nq —aw (AM - Ao—no—nq) . (14) transforms into

~ Note that, in general, signal quantizqtion can be performedAR =~ Ay — Ao—aw (AM —Ao) _ (AM _AO) ,E[(nq +no)2]. (19)
in different ways: for example, rounding of measured sig- 2

nal to a nearest integer value does not introduce bias, while One can see that zero-mean noige-ng leads to a bias if
flooring or ceiling do introduce negative or positive bias of the last term in Eq.19) is dropped. However, this issue can
A/Z dB. Naturally, this bias presents in both rainy signal at- be put aside as long as the empirical functigris calibrated
tenuation measuremewuty and the measurements dfy, for the model given by Eq1(7) to provide unbiased rain rate
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A. Zinevich et al.: Prediction of rainfall intensity measurement errors

estimation (see Sect. 3.2). Substituting Bd) (nto Eq. (L6)
and substitutingAr + nw for Ar in Eq. (6), we can rewrite
the latter as

Ii’L (AR> = E|:(>¢(Ap—i-n\,\,)"J ‘AR] = E|:Cl (AR—tM (nq +n0))ﬂ:|. (20)

Again, using a linear approximation arourik, denot-
ing another auxiliary variabléy, = aﬁAg_ltM, the Eq. g0)
simplifies to a trivial
Ru(AR) = E[wdf —dy (ng+no) | = A (1)
Similarly, noticing independence af, andng with DSD-

related uncertainties and substituting the Bd),(Eq. (L8
transforms into

%[ R[] = B[ (R-aifotau (n, +10)) | =

12

~2 N 2 (A% .,
UDSMWet(RL‘AR)JFdM 11T (22

2.5 Temporal averaging

1389

antenna attenuatiod,, and quantization error,. Using
the first-order approximations of nonlinear models fay
(Eq. 8) and the power-law relation (Eq), the estimateir

in Eq. (L7) is equivalent to the deterministic relation (e.g.
Leijnse et al., 2007b; Zinevich et al., 2009). Next, we have
derived the Eq.242) for MSE for path-average rainfall esti-
mates, based on an ad hoc model for uncertainty ofith&
relation given by Eq.X1), sample MSE estimat?eozof base-
line uncertainty and a simplified model for variance of quan-
tization error (Eq3). Finally, Eq. @4) for MSE of time- and
path-averaged rainfall has been derived.

3 Calibration of model parameters

The model parameters (rainfall attenuation and MSE model
coefficients, wet attenuation coefficients) have been cali-
brated using a DSD database and a set of rain gauge and
microwave links records.

The wet antenna attenuation coefficients have been derived
from observations of six intensive convective rainstorms (Ta-
ble 1) recorded in central Israel during the winters 2006,
2007 and 2008 by a commercial network of 21 vertically po-
larized microwave links, operating at frequencies 18-23 GHz

To get a better insight into the effect of various error sourcesyjith |engths varying from 0.81 to 7.26 km, installed in 12

as a function of temporal averaging intervals, let us esti-difierent locations.

mate the MSE of path- and time-averaged rain (&g(z))
over Ar minute intervaly =1,... Az, given a set of instan-
taneous attenuation measurements {Aw (¢) — Ao(t);t =
1,...,At}. By substituting the averaging operatgf into
Eq. (11,

a 2
62[<RL<r>>|sz[(<RL<z>>—(aA;?ﬂ +diy (0 (ng () +n0))) ].(23)

Here, dy (¢) is obtained fromdy by substitutingiR(t),
Awm (1), Ag(t) for Ar, Aw, Ag. Note thatrg does not depend
ont=1,... Ar (that is, the typical period of variations o§
is assumed to be much longer tham; Eq. 23) does not

The links record quantized instanta-
neous microwave attenuation with=1dB magnitude and
one minute temporal resolution. For comparison, five rain
gauges, recording point rain rate with 6 mmthmagnitude
and one minute temporal resolution, have been installed in
the vicinity of microwave links (Fig. 2).

The rest of parameters have been derived using the DSD
database consisting of 6282 DSD spectra, collected in central
Israel during 1984-1985 (courtesy of Zev Levin; see Fein-
gold and Levin (1986) for details) at the temporal resolution
of one minute.

3.1 Derivation of power law coefficients

account for instantaneous baseline variations due to scintilla-

tion since their effect olR; (¢)) is assumed to be minor due To transform the DSD time series into spatial profiles know-
to averaging). Rearranging terms on the r.h.s. of B§),(  ing the rainstorm advection velocity, the Taylor's hypothesis
recalling independence af, andng on each other and on of frozen turbulence is invoked (Leijnse et al., 2008a). As
DSD-related errors, we get a result, the integration of the space-varyi¥g(D, x) along

the link can be replaced by integration of discrete point-scale

2[R, (1)) |R] = (agSMWet(RL ‘AR (r))>+ $<dM (;)2> DSD time series

2 L

A X ) [L/v]
17 Hidm (1))?6§. (24)  NyD)= /dx Ny(D,x) = T3] > Na(D.1), (25)
=1

0

2.6 Summary of the uncertainty model where[] stands here for rounding operatianjs the rain-

. . . rm advection velocity that h n estim rre-
To sum up, we have derived the estimates of path-lntegrateﬁto advection velocity that has been estimated by corre

rainfall-induced attenuatiorir and path-averaged rainfall ating multiple microwave links (Zinevich et al., 2009); the
- R - . ! ) : ; i
R, in Egs. (17), (21) based on the model for the measured (climatological) average for six studied rainstorms (see Ta

signal Ay given by Eq. B), comprising baseline attenua- ble 1)isv=14.6ms=.
tion Ag, path-integrated rainfall-induced attenuatiég, wet

www.atmos-meas-tech.net/3/1385/2010/ Atmos. Meas. Tech., 3, 13832010



1390 A. Zinevich et al.: Prediction of rainfall intensity measurement errors

Table 1. List of rainstorms, used for empirical assessment of MSE prediction accuracy.

Event Duration, Net rainfall Peak rain Average rain
h duration, h  rate,mmnt rate, mmt?
26 December 2006 22 9.6 84 2.97
5 January 2007 62 11.6 48 0.81
29 January 2007 38 5.7 72 0.59
4 January 2008 9.5 1.9 54 1.22
29 January 2008 51 7.1 54 1.48
14 February 2008 20 2.6 42 1.09
Total 202.5 38.5 1.22
Table 2. Conventional power-law coefficients b for frequency =
bands in use, determined from g estimated using Eq26) for [32.07°N 34.77°6]
average link length of 3.43 km. Tek-Aviv
Frequency a b
band

18 GHz 0.069 1.154
19 GHz 0.070 1.145
22 GHz 0.099 1.121
23 GHz 0.110 1.112 134 131

Ramle West

Ram\e

The parameters, 8 in Eq. (6) have been obtained using
a non-linear fit ofNg = 6200 DSD profilesV, (D), using the
T-matrix method for extinction cross-section (Mishchenko,
2000):

is

Fig. 2. Locations of microwave links, used for rainfall observations,
R around the cities of Ramle and Modi'iiJj and rain gaugesA)
whereAg, R, andR,, are given by Egs4), (5) and 6). The  Ramle West, Switch Ramle, Kfar Shmuel, Modi'in Shimshoni and
problem in Eq. 26) and the rest of non-linear minimization Maodi'in Center. The local topography contours are given in meters.
problems in this study are solved using simplex optimizationThe duplicating links installed in parallel are denoted twice, e.g.
(Press et al., 1992); preliminary coarse grid search has bee?2 and L23.
done to find optimal initial values, likely leading to a global
minimum.

Dealing with disdrometer records requires addressing th X . !
sampling error issue; it was shown by Uijlenhoet et al. (2006)%ands are listed n the Table 2. The power-law functions
that the sampling distribution of any DSD moment convergeshawe been found similar to the lognormal model (Zhang and

asymptotically to Gaussian with increase of sample size. Thé\/loayen 1999), especially in low rain rates that is in agree-
sampling distribution of high moments such as rain rate re- ment with Feingold and Levin's (1986) conclusion regarding
mains skewed for sample size as large as 500 samples, Whlé raeli DSD, even though the actual values of the coefficients
results in biased estimates of bulk rainfall variables. In thed'ffer since non-linear minimization (Leijnse et al., 2007b)

s ; been applied in EQRQ) versus linear optimization in log
DSD records used in this study, a typical DSD sample size J'as
a few thousand drops for point rain rates of above 1 mmh domain by Zhang and Moayeri (1999).

at one minute resolution. For this reason, the effect of the3 2 Derivation of wet antenna attenuation coefficients
sampling errors on power-law coefficients is assumed to be

negligible. It has been shown by Leijnse et al. (2008a) that wet an-
tenna attenuation is essentially independent on frequency at
17-23 GHz, so in this study only link length dependence

Ng . 2
o] = arg min)_ (R~ Ru.(AR())". (26)
af iz

The resulting power law coefficients for typical frequency
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has been assumed fox, c» (i.e. different coefficients for \ — ‘ —
link length ranges 0...1km, 1...2km, etc.). Assuming that . _egresfm” ne
nearby gauge rainfall record®o) averaged oveAr minutes :

I
3
T

approximate averaged link rainfdlR; ), the coefficients-, E o
co are g 0 ' : :
exr.co=arg miny ((Ro), ~ (R (4)) ), en "
’ i 1 [ 1 §
i 4l
A A : 2 3 4 5 6 7
{()i= Zj:i ();/At, (28) Link length, km

whereAg, R, (ARr) are given by Eqs1(7) and (L9); averag-  Fig. 3. Differences between total link path-averaged rainfall amount

ing (-}, lowers differences due to link-gauge physical separa-2"d @ nearby rain gauge measurements per link-gauge pair, as a
tion. Summation through goes over all available data (Ta- function of link length, over the entire database.

ble 1), and the weights; are chosen to give the same weight

to different rainstorm events; otherwise, estimates are biasetfable 3. Wet antenna attenuation coefficients cofor various link
towards longer events. In practice, estimates; ot are re- lengths.

liable atAr >10 min (i.e.c1, c2 change weakly with further

increase ofAr). Assuming that the sample mean (summa- Link lengths ¢1,dB ¢y, dB™L

tion in Eq. 27) approximates the expectation operator, the range

estimate ofR; (AR) is unbiased (Papoulis, 1991); the bias
caused byry in Eq. (12) is absorbed into the coefficients
c1,C2.

Due to the difference in the nature of observations, a sin-
gle point gauge is not necessarily representative of the link
path-averaged rain rate due to spatial rainfall variation. Spa-
tial variations may lead to considerable differences in path-
averaged rainfall amount in the link’s location and point rain-

fall amount at the gauge’_s location, even tho_ugh_the link and;ng Nakamura (2005), Leijnse et al. (2007b), Kharadly and
the gauge are installed in close proximity; in this case, thegggg (2001). Note that the latter reported relatively high

link-gauge difference in rainfall intensities and baseline er-., = g 4B py directly measuring wet antenna attenuation, ex-
rors will be absorbed into the wet antenna attenuation Coeftluding variations of rainfall along a link, that is similar to

ficients when the latter are calibrated using E2Y)( HOW-  the case of short links in Table 3.

ever, in the climatological scale, the gauge records can be The records of 9 out of 13 available link-gauge pairs in-
considered representative of the areal average rain rate; ”‘tﬂuding 7.16km links lead the optimization in EQ7 to
link-gauge differences in the recorded rainfall amount will excessively large values of (tens of dB) due to rainfall in-
decrease with increase of the number of different realizatensity variations. The long links, installed roughly orthog-
tions used for calibration. Eq27) requires therefore min- gy to the typical rainstorm advection direction capture
imization over much data that comes from multiple links, parts of rainstorm missed by the gauges, located apart. This
oriented in various directions. The Fig. 3 demonstrates thajeads to underestimation of rare high-intensity peaks since
for the link length ranges where much data are available (e.gie optimization (Eq27) concentrates on link-gauge mis-
2...3km), the link-gauge differences in total recorded rain-match (rainfall captured by a link but missed by a gauge)
fall amount per event are widely scattered around zero, thaj, more abundant (low) rain rates. This indicates impossi-
indicates that realization-specific differences in rainfall in- bility of calibration of long links for wet antenna attenuation
tensity at link-gauge locations have little effect on the result-using Eqg. 27) in the present setup due to either high spatial
ing wet attenuation coefficients. rain rate variations or, possibly, baseline variations that are
The list of the coefficientsy, c2 is given in Table 3. One ot represented by pre/post rainstorm measurements. These
can see that, in general, the coefficienthat determines  |ink-gauge pairs have been excluded from further considera-
maximum (saturation) value of the wet attenuation correc-tion. As a result, the variation of link-gauge differences for

tion (Eq.8) lowers for longer links, due to increase of the 7 16km links is small (Fig. 3) since only similar link-gauge
spatial rain rate variability along longer links and increase of yecords have been retained.

chances that rainfall, captured by a link in the middle, does
not affect one or both antennas. The coefficientbe close
to the range of 3.32—-8 dB, reported in the literature by Minda

..1km 8.707 0.196
.2km 7.441 0.149
..3km 8.876 0.112
.5km 6.409 0.136
..6km 4.227 0.289
..8km 4.631 0.203

NaksDdDEO
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Fig. 4. An example of the power-law fit (Eq. 6) and predicted RMSE (EL).of path-integrated attenuation (E4).and path-averaged rain
rate (Eq.5) of the DSD database, including variations in DSD and wet antenna attenuation, for a 4 km 20 GHz link. The right figure is a
zoomed version of the left one.

Note that the errors in the determinationAf, have less  and reaches 7% (maximum 17%) for 7.16 km links as rain-
impact on the measurement accuracy for longer links sincdall variability along the link increases. These results suggest
the relative contribution o\, into the total measuredy is dependence of parameters of the E).dn rainfall spatial
lower. variability; the model, given by Eqs29), (30) is better suited

for stratiform, homogeneous rainfall, or short links. The op-
3.3 Derivation of coefficients of path-averaged rainfall  timal wet attenuation coefficients (i.e. producing least biased
MSE model estimates of rainfall) may therefore be different for different

) ] s types of rainfall (e.g. convective or stratiform). In general,
Firstly, for each ofVr path-integrated DSD profileS; (D), 3 more accurate model for wet antenna is needed (e.g. Lei-

calculated according to EQ¥) from the available DSD data,  jnse et al., 2008a). The latter, however, requires calibration
the path-integrated attenuatidr is computed using Eqd).  with gauges, installed at both antenna locations for each link
The instantaneous DSD spectra, multiplied by link lengthinat are unavailable. Equation29j, (30) has been used in
L-Nqg(D,1) andL-Nq(D,[L/v]) at two ends of each pro- ne present study despite biasedness, assuming that they still

file are substituted into Eq4) to calculate path-integrated 40w estimating the typical scale of wet antenna-related er-
attenuation value$g (), j = 1,2, simulating constant DSD 5.

along the link. Then, the wet antenna attenuations for two Next, Ry (Ar()),

.,N;r are calculated for all
antennasiy (j),j =1,2 are obtained by solving

DSD profiles using Eq.2(1), and the parameters of the

Aw () = aw(AR() + Aw (). (29)  model for MSE of DSD-related uncertainties are calibrated
as

Equation R9) is inverted for unknowm, (j) by golden sec-

tion search; the valuey, = (Aw (1) + Aw (2))/2 is the sim- Ng

ulated wet antenna attenuation. Finally, the path-integrateqy, s, ¢] =arg mmZ((RL (i)— Ry (AR(1)>) (32)

ARr(i) is calculated from the full-th DSD profile as y.8.e

AR() = Ar+ Aw — dw (Ar+ Ay). (30) ~Bspnwer| RulAR(D)])

The above estimation is valid under the assumptiondhat  As in Eq. 4), thei-th sampleR; (i) andR; (i) are given by
with c1, cz calibrated using Eq2(7) is applicable for the case  gqs. ), (6). Examples ofR ;.
of constant DSD along the link. With real data, this assump-
tion, in general, does not hold due to non-linearity:@f

(AR) andopsp+wet [RL ‘AR]

are shown in Figs. 4, 5. RMSE increases substantially with

link length, due to increased variability between antenna lo-

E[ Aw—aw(AR+ Aw)| Aw] #0. (31) cations. Conversely, excluding wet antenna-related variabil-
ity from consideration (using E{. instead of Eql11) leads

The bias increases with link length and rain rate. Over theto decrease of MSE for longer links (not shown here); for in-

available DSD data, the average bidg (Underestimates true  stantaneous measurements, wet antenna effects mostly dom-

AR) is about 5% ofAr (maximum 10% for high rain rates) inate the effect of DSD variability along a link. Increas-

for links shorter than 3km (two thirds of the studied data) ing frequency directly leads to accuracy improvement; thus,
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Table 4. The performance statistisp+wet EQ. (33) for various rain rates and frequencies.

R,mmh1 2km 2km 2km 2km  0.5km 4km 8km 8km
16 GHz 20GHz 24GHz 38GHz 20GHz 20GHz 20GHz 38GHz

1-10 0.99 0.99 1.00 1.14 1.00 0.99 1.00 0.98
10-100 0.96 0.97 0.98 0.96 0.99 0.97 0.99 1.04

25 >—06km —6— 16.0 GHz
*—1.7km sol | —*—180GHz
2.8 km —+—20.0 GHz
20 *—3.9km —%— 22.0 GHz
e e —8— 24.0 GHz
€ g 157 | —6—38.0GHz
€ €
P 15 o
8 g 10 [
e 0 e B/E/E/J
5 5
0 : : 0
0 2 4 6 8 10 0 2 4 6
Attenuation db km™' Attenuation db km’'

Fig. 5. The predicted RMSE of rain rate estimatgsspwet(Rr |[AR+nw) (EQ. 11) as a function of link length for a 22 GHz vertically-
polarized link (left) and as a function of link frequency for a 2.2 km link (right).

18 GHz link is almost twice more uncertain than 24 GHz one4 Estimation of point rainfall from path-averaged

(Fig. 5, right). These results are in agreement with conclu- measurements

sions of Atlas and Ulbrich (1977), Leijnse et al. (2008a). _ _ _ _
To assess the accuracy of the approximatioﬁ%%fmwm To compare path-averaged rainfall with the point scale rain

by Eg. (L1), the statistics gauges, one can address modeling of rainfall spatial variabil-
ity through the use of geostatistics methods (Schabenberger
Ng . . .
~ N and Gotway, 2005) to obtain an MSE expression for rainfall
ElGDSDJFWet[RL @ ‘AR(Z) ] estimation at an arbitrary point in space.
SDSD+Wet = i > (33)
3 (RL (i)— Ry (AR(,-)» 4.1 Semivariogram modeling

i=1
has been calculated for various frequencies 16...38 GHz anblr_mder the assumpt!on of staﬂonarlty of a two—dmensmnal
link lengths 0.5. .. 8 km. ValueSpspywet close to one indi- rainfall field and its isotropy (covariance between rainfall at
cate validity of Eg. {1). One can see that in most cases, t_"(‘j’F’ po;ntﬁ' depends qnly on d@stance db.etwr? enSthem; t2he va-
the error does not exceed few percents, with maximum of 14' |ty_<_) this a_ssu_mptlon IS discussed in the _ect. 5.2), an
percent (Table 4) empirical semivariograny (k) describes the spatial correla-

The model for&l%SD (Eq.7) can be verified similarly to tion of rainfall » between two points, separated by distance
Eq. (11) using statistics in Eq3@), producing results, similar
to ones in Table 4. 2y (W) =E [(rx - rx(h))z], (35)

In the case of temporal averaging, the coefficients, ¢ _ N
differ from ones in Eq.11) as they are calibrated over time- wherex (k) = {x': |x —x'| =&}. In practice, an empirical
averaged data to take into account correlation between adjgsemivariogranyg (h) is firstly calculated from rainfall data
cent time frames by replacing the expectation operator in E85)(by sample

Nk L A 2 mean and then is approximated by Gaussian semivariogram

[y.5.¢] =arg minz((um,- (&) —(6SSD+WeI[RL\AR})I,) (34)  model (subjectively chosen as it fits EG5| best)

v =1

C 2
where (-);is given by Eq. 28). Accuracy of the model for i (h) = (s —n) (1—exp< h )) T (36)

At =1 and 30 min is comparable. 2
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where sills, nugget: and range are estimated by non-linear between experimental semivariograms for differant sep-
least square fit. arate realizations using different rain gauge pairs have been
Equation 86) does not assume any a-priori information used instead of applying Taylor hypothesis.
except for climatologically averaged positive spatial autocor- Special attention has been given to the values of
relation that decreases with distance; in particular, it does noyg (h =0|R) that are crucial for stability of optimization
distinguish between weak and strong rainfall. To take thisin Eq. (39) but there is no field data available. Consider-
into account, let us assume that the path-averaged raiyfall able differences of rain rate due to spatial variability ap-
represents the local areal average rainfall in the vicinity of apear already at =0.4 km, for 0.81 km link L7 and Switch
link (e.g. over a circular area with diameter equal to the link Ramle gauge (Sect. 5), that should be modeled by a non-
length). Consequently, one can consider an optimal estimateero nugget. To force the non-zero nugget in E3§),( it
of y (h) given Ry . The conditional semivariogram is defined has been setz (h =0|R.) = yr (h=1.47|Ry). An exam-

as ple of semivariogram modeiy; (2| R;) for 10 min average is
2 drawn in Fig. 6. Note thapr for R;=19.9 mm hlexhibits
2y (h|RL):E[(rx_rx(h>) |RL]' (37)  decrease at = 11km that violates an assumption behind

the non-decreasing model in EQH]; this is attributed to
Climited amount of available high-intensity data for model-
Ing. As a result, multiple peaks, appearing in a specific event
(December 2006, Table 1) express in the model. The val-

Modeling of y (h|R. ) has been done in two steps. Firstly,
empirical conditional semivariograms have been calculate
over a series ofV, rainfall intensity rangesqi};—y . n, =

0 i—2 i-1 I

{10, P2, s [P 2, P, S ues ofyy (h|Ry) for R, different fromR, (i), i=1,...N, are
N 2 obtained by linear interpolation of the famijy (k| Ry (i)),

2ve (hlgi) = <(rx1 rx)"|h Ry > (38) and forR, > Ry (N,) by means of linear extrapolation.

where () denotes averaging over all possible
{x1,x2:lx1—x2l = h, Rp(x1,x2) € qi}, Rp(x1,x2) Is
the local areal average rainfall intensity in the vicinity of
x1, x2. The parametep =1.5 has been chosen to maximize
N, provided that no rainfall bing; are empty, given the
available rain gauge data. The average rainfall estimat
(re1+rx,) /2 is substituted for unknowR (x1,x2). Then,
the modelsyy (h|R. (1)), i =1,...,N, have been fitted
with these empirical semivariograms, producing a set of
parameters\; = {s;,n;,r;},1=1,...Ny

4.2 Spatial discretization of a microwave link

Representation of a link in a discrete form is done by divid-
ing it into a set ofN short intervals where the rainfall inten-
sity is assumed to be constant; the length of an interval is
%hosen 0.5km (Goldshtein et al., 2009). The measured path-
averaged rainfall in this model is approximated by averaging
point rain rateR (x;), i=1,.. N

b ﬁ'\r 1 .
RL:a<a/de(x) ) =N;R(xi) (40)

where the power law coefficients b, «, 8 are taken from
Egs. () and @); the integration is done over all points
along the link. The deviation oR; from the true path-
averaged rainfall fob #1 is about a few percents (Atlas and
Ulbrich, 1977) and is neglected for MSE estimation.

_ 2
A =arg miny (v (hlan Y2 =y (HIRL)?)", (39)
h

where averageR; (i) = (Ry (x1,x2) €¢q;). Taking square
root of semivariograms in Eq39) is necessary to give more
weight to smalk (smally) w.r.t. largeh (considerably larger
values ofy) in numerical optimization.

The empirical semivariograms have been calculated al 3 MSE of rainfall estimation
three differenth (1.47, 6.1 and 11 km) from the records of

four rain gauges over three rainstorms (Fig. 2 and Table 1) trivial estimator of the rainfall at the poindofrom a nearby
In general, it is possible to get the experimental data ovellink’s measurement is the link’s path-averaged rainfall itself,

a denser range of distances from even single rain gauge, 5 (A : :
; : . . =R (ARr). The MSE for th f
record at 1 min resolution, by invoking the Taylor hypoth- RExO; s L( R) e MSE expression for the estimate o
X0) |

esis (using climatological average rainfall advection velocity
14.6ms?) and transforming the time series into a spatial R /A \N2
- ; : 52| R(x0) |AR |=E| (R(x0)— R (A

profile at the spatial resolution of 0.88 km. To generate tem-© X0)|4AR X0 L\4R
porally averaged data for A+ minutes interval, one should _ _ o _
pass the time series via a rectangular moving average filteBy denoting the error in estimation of path-averaged rainfall
of At samples length. However, this operation introducese = R, — R, AR), substituting Eq.40) into Eqg. @1) and
unrealistic correlation between adjacent samples. To aVO'%enotinghij =|xi—x;|.i.j=0..... N, Eq. @) transforms
this, one can subsample the filtered time seriesratamples .

rate, but then the temporal (and, accordingly, spatial) reso-

lution becomesAr-dependent. To preserve the consistency

(41)
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Empirical
Model fit

R =16.3 ]

R, mm ht 00 Distance h, km

Distance h, km

Fig. 6. Examples of empirical and model conditional semivariograms for different valugg dfeft) and the resulting three-dimensional
functiony (k| Ry) (right), 10 min average.

N N . . . .
&Z[R(x())‘AR} %C(0>+$ZZC(M) (the correlation between and R; — R (xp) is negative in

i=1j=1 this case). The maximum error, introduced by dropping the
term 2E[(RL—R(xo))e‘AR], becomes negligible (about
2% on the average, maximum 4%) far above 30 min, for

all links besides L22, L23.

The calculation of£ [(RL —R(xq))e )AR] is complicated
C(hij)=E[Rx)R(x;)]—mnin; (43)  since the models ok, — R (xo) ande are calibrated using
different datasets — the point gauge records (Table 1) and
. L . the DSD database (Sect. 3), respectively; the dependence of
intensities, under an assumption of constant expected value n .
of rainfall intensityn; =n; = Vx;,x; in the area. This as- E[(_R_L _R(xO))e‘AR] On xo requires develop.ment Of_ an
sumption is similar to the one of ordinary kriging (Schaben- additional model. In this study, we neglect this covariance
berger and Gotway, 2005); in the climatological scale, theterm, keeping in mind the consequences — overestimation of
expected rainfall intensity in an area depends on the locas2[R (xo) |Ar] at short temporal averaging intervalsz(less
tion (constant per link-gauge pair and over the studied areay,any 30 min) and for long links L22, L23.
and the area size (determined by the link length and the link- Substituting into Eq.42)
gauge distance, constant per link-gauge pair as well).

The term E[(RL —R(xo))e’AR] in Eq. 42) describes C(hi./) :C(O)_V(hi.i) (44)
covariance betweer anq local rainfall variationR; — and Eq. (1) for E[ez], we get the MSE expression in terms
R(xp). While the former is mostly measurement error, the o

. : ..~ of semivariogram
latter is due to difference between path-averaged rainfall
and rainfall intensity at a single locatiary. This term
can be neglected under the assumption of independence of A 2 N
e and R, — R(xo) (E[e] can be assumed zero according 62[R(x0)’AR] = —Zy(hio)
N 4
to Eq.27). However, some components af(mostly, the i=1

_%éC(hio)-i-ZE [(RL —R(XO))E’AR} +E[€2] (42)

HereC (h;;) is a covariance function

andC(0) = a]% is a-priori climatological variance of rainfall

errors, related to wet antenna attenuation) do depend on 1 MN s R

local rainfall variation. Numerical simulation of Eg42) _mzzy(hij)‘f‘ff [RL‘AR]o (45)
using the DSD database (Sect. 3) shows that neglecting i=1j=1

2E [(RL _R(xO))e‘AR] in Eq. (42) may lead to errors in In the case of the conditional semivariogram(i|Ro) is

directly substituted into Eq46) instead ofy (&); this can be

62[R (x0) ’AR], depending omxg. Thus, locatingeg near one . o
done since the condition

of the antennas leads to overestimationssf R (xo) AR]

by up to 12% atAr=1min for long (7.16 km links) L22, C (hij|Ro) = C (OIRo) — ¥ (hi;| Ro) (46)
L23, since the yvet antenr_la-rellated errors become MOre S§jolds under the assumption of constant mean rai¥glin
vere for longer links; locatingg in the rr]|ddle ofalonglink 14 vicinity of the link, i.e.E[R (x ) |Ro] = E[R(x;)|Ro] =
leads to underestimation @f?[R (xo)|Ar] by up to 15% R, for all pairs ofi, j =0,...,N.
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4.4 \Verification of the spatial uncertainty model

To verify the proposed semivariogram-based spatial uncer-
tainty model, one can conduct a self-consistency check, sim-
ilar to the one in Sect. 3.3, using gauge point records.

Since we are interested in evaluation of the model at gauge% , /
separation distances different from the ones defined by ac- .z | A
tual rain gauge installations, used in the Sect. 4.1 for build- g ) ’ '
ing of the semivariogram model, let us transform the point - 3 -
rain gauge measurement into spatial profiles according to the ol e L5
Taylor hypothesis using climatological average rainstorm ad- T
vection velocity (14.6 ms!). Then the rain gauge samples s
at 1 min temporal resolution can be considered as spatially Ditance h.
distinct point measurements at separationgf 0.88, 1.75,
2.64, ..., 10.51 km between the virtual locationsx1. Note _ : .
that simulation of accumulation intervals longer than 1 min 23 & function of gauge separation distahe0.88, 1.75, 2.64, ...,
becomes complicated, since application of a moving averagéo'51 km, at rainfall intensity ranges, i =1....,Ng, Ar=1min.
filter to the rain gauge time series introduces unrealistic cor-

Fig. 7. The spatial variability prediction statistiSgp(%,i) (EQ.48),

relation between adjacent samples. _ _ An estimate of the expectefd, over the entire database is
The estimate of MSE52[R (xo)|R (x1)] in the location

xo from a p0|r_1t measurement atl_ can be oAb;.amedAfrom 55p= Zp(h,i)N(h,i)/Ze(h,i)N(h,i), (49)

Eq. @5) by settingV =1 and dropping the teré“[R; |ARr], hi hi

related to the link measurement uncertainty. The spatial vari- hereN (h.i)is th ber of les. falling into th
ability prediction statisticsSsp(%,7) is then calculated per whereN (h,i) is the number of samples, falling into the range

each rainfall intensity range;, i = 1,..., N, and each sep- gi at separation can give a quantitative estimate of the mod-

aration distancé as eling accuracy for the given experimental setup. Hekg,
equals to 1.04 that indicates a small overestimation of the
spatial variability-related errors.

phi)=(62[R@x0); IR (x) ]}

. “h’li 5 Results and discussion
g<2)/(hlo| Ravj)_)/(hll|Rav,~)>, , (47)
it Performance of the uncertainty quantification models have
been evaluated using records of 96 link-gauge pairs (Sect. 3,
) Fig. 2) over three convective rainstorms (Table 1). The statis-
e(h,i)= <(R (x0); — R(x1)) >j(h o’ tics S; for the accuracy of MSE predictign; (Xu and Wilke,

2005) w.r.t. measured erref (j =1...96) are

Ssp(h.i)=1/p(h,i)[e(h,i) (48)

where Rayj = (ﬁ(xo)j+§(x1)j)/2, similarly to the 7 E;(R(I’J)_R(I’J)>
Sect. 4.1, ang (h,i) ande(h,i) are the average predicted _
. . . . . Sj—pj/ej, (50)

and measured errors in the rainfall intensity raggei =
1,...,N, and at gauge separatian The summation over the wherer =1,...,7; is the index of a sample (averaging over
index j (k,i) goes through all available rain gauge data at theAr minute interval) for thej-th link-gauge pairR (z, j) and
separatiork and in the range; . R(t, j) are the gauge measurement and link estimate at time

The distribution ofSsp(4,7) is plotted in the Fig. 7. The 1, and&é is the predicted MSE, given by E4%). The val-
graph shows that the accuracy lowers (statistics increases upes ofS; close to one indicate correct prediction of measure-
to 1.25 and higher) at high rainfall intensities (where only ment errors. To examine relative role of each one of the error
a few data samples available) and at low rainfall intensitysources, the results have been calculated at various temporal
levels. In case of weak rainfall, the rain gauge signal quanti-averaging intervalsAz =1, 5, 10, 15, 30, 60 and 120 min).
zation (6 mm 1) leads to non-linear signal distortions that  To get insight into the respective contribution of each com-
possibly results in the mismatch between predicted and megsonent of the measured attenuation model into the predicted
sured errors. At the moderate rain rates of 5-10mfythe  error, statistics in Eq.50) have been computed excluding
model shows statisticSsp(/2,i) close to one, indicating ac- some error sources (i.e. zeroing their respective MSE esti-
curate prediction of the variability. mates in Eq45):

=

2

Atmos. Meas. Tech., 3, 1385402 2010 www.atmos-meas-tech.net/3/1385/2010/



A. Zinevich et al.: Prediction of rainfall intensity measurement errors 1397

1. Spatial+Link — prediction of the total error, including = ' ' '
1 in gauge measurements
all error sources.

L7 link measurements

06

2. Spatial— prediction of error in rainfall estimation at the
rain gauge location due to spatial rainfall variability in
the link's neighborhood only, assuming link measure- o 2w @m0 14w 1500 1600 1mon 1880 1900

04-Jan-2008 ... 04-Jan-2008
ments are perfect.

0.2

Accumulated rainfall, mm

0.25 T T T T T

Measured error
3. DSD - prediction of path-averaged rainfall measure- 02| Sretak
ment error due to DSD variability along the link only. E 015N T et

i p— A

= - Baseline
4. Wet— prediction of error due to antenna wetting only. % oos

° 11"00 12"00 13:00 ‘14"00 15‘00 16‘00 17“00 18"00 19"00

5. Quant- prediction of quantization error only. 04-Jan-2008

6. Baseline- prediction of baseline-related errors only.  Fig. 8. Time series of accumulated gauge rainfall vs. microwave
rainfall (upper plot) and measured vs. predicted RMSE @) of

An example time series of the measured ewpivs. pre-  accumulated microwave rainfall estimates (lower plot). Contribu-
dicted RMSEp; for 10-min average rainfall is shown in tion of various error sources into the total predicted error is shown
Fig. 8, bottom. For clarity, the results are presented in thein the lower plot, for L7 link and Switch Ramle gauge in 3 January
form of measured and predicted RMSE of accumulated rain2008 rainstorm. Link length is 0.81 km, frequency is 23.27 GHz,
fall estimates. One can see that at about 4 January 2008%’:10 min. Note the different scales of the upper and lower plots.
13:30LT the link overestimates rainfall w.r.t. Switch Ramle
rain gauge, while at about 18:30 the gauge records a stron¢ 1

T T
Spatial+Link

peak, partially missed by the link (Fig. 8, top). As a result, ué L s Spatial 1
the error predictiorspatial+Link based on the link measure- ; osf ‘EI’VS;E’ 1
ments and closely following the measured error until 13:30, S04 T e Quant
overestimates measurement error between 13:30 and 18:3 g o2t Baseline
and underestimates starting from about 18:30 (Fig. 8, bot- o”(’zb o 120
tom). This shows that even at short spatial distance (link At, minutes
length 0.81 km and the link-gauge distance is 0.41 km), spa- :
tial rainfall variability strongly affects the error predictionac-  _ ° — kil
curacy, and even a single peak may cause considerable me: g SN e Spatial i
surement errors. ui Wet

Taking into account this dominating effect of spatial vari- 2'f  —mmm—m——— | o
ability and simplifying assumptions made in Sect. 4 (e.qg. in- e ‘ ‘
ferring local areal-average rainfall from link measurements, 20 40 60 & 100 120

A't, minutes

semivariogram modeling with gauge records), one should ex-

pect that the error predictions should be correct only on the-jg 9. performance statistics (top), measure@ and predicted
average. The total statisti§ss used to estimate the accuracy gccumulated errorg (Eq. 51) for various error sources (bottom),

of MSE prediction: as a function of temporal averaging interval.

T;
Z;; p ZZT (R(’ H=Ra. ’)> §=p/e(51) among link-related ones. The predicted wet antenna-related

J . . . —
e errors decrease with increasing: p(Wet) changes from
whereJ is a chosen subset of link-gauge pairs to represent @.28 mm hr! at one minute resolution up to 0.06 mm'hat

specific interval of link lengths or rain rates. 120 min (Fig. 9, bottom). The predicted quantization errors,
independent for different observations, also lower with in-

5.1 Accuracy of error predictions at various creasingAr (from 0.31 to 0.03mmht!). The DSD-related
temporal resolutions errorsp (DS D) exhibit similar dependence, but to less extent

. Lo . (from 0.24 to 0.07 mmh?), due to inter-storm variability in
Figure 9 shows the performance statistid®r various error o hgp.

sources at different temporal resolutions (accumulation in-
tervals)At. At all temporal averaging intervals, spatial vari-

ability uncertainty dominates the link-related uncertainties
(Fig. 9, bottom), even though the role of the latter increases
with Ar. The baseline uncertainty is the major error source
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Fig. 10. Scatter plots of the total microwave measured rainfall vs. rain gauge measurements (I8fpatiath Linkestimates of the predic-
tion error vs. measured error (right) for all link-gauge combinatiadnrs: 60 min. The method of total least squares, assuming uncertainties
in both independent and dependent variables (Krystek and Anton, 2007) has been used to draw regression lines.

The statisticsS varies withAr from 1.00 to 0.82 (Fig. 9, regression slope coefficient from 0.77 to 0.52. Ror=1,
top) that shows more accurate error prediction than it haghe regression equation is close to ideak(0.94c—0.19);
been reported in the literature (the simulation by Leijnse etthe slope parameter lower than 1 is compensated by a small
al. (2008a) has allowed prediction of 32% normalized RMSEpositive intersect parameter. At other temporal accumula-
vs. 94% measured one, that equfifs0.34), due to inclusion  tion intervals the accuracy of error prediction gradually low-
of uncertainties, related to the difference in link-gauge phys-ers (Fig. 9, top). Thus, foAz =5 min, the regression equa-
ical locations and baseline estimation uncertainty. tion is y =0.91x + 0.13 and the overall bias remains small,
Note that the semivariograms, calculated from the records® = 0-97...1.02. ForAz=10... 30 min, the slope parameter
of two point rain gauges, absorb 6 mmthquantization lowers from 0.92 to 0.72, an8l changes from 0.95 to 0.90
rain gauges errors twice, while in link-gauge comparison(Fig. 9). Thg degradation of the prediction_ accuracy with in-
it presents only once. This modeling error as wellss crease ofAs is analyzed below foAs =60 min.
modeling errors (see Sect. 4.4; the validation statisig@}s
(Eg. 49) equals to 1.04) may mask underestimation, leading5.2 Accuracy of error predictions as a function of link
to §=1.00 atAt =1min. For longerAt, this effect quickly length and rain rate
diminishes (only amount of water in a bucket before and after
the accumulation interval is uncertain). For most link-gaugeThe dependence of the performance statisfitsr major er-
pairs, the gauge is located at one of the link ends (Fig. 2)ror sources as well as measured and predicted errors as a
this also leads to overestimation in MSE prediction at shortfunction of link length are shown in the Fig. 11. The spa-
At (less than 30 min) due to the neglected covariance termial variability errors increase with link length; their relative
in Eq. (42). The approximation of a link by its midpoint (i.e. contribution also increases. In most cases, lengths are cor-
settingV,, =1 in Eq.40) leads to RMSE overestimatiors: relative with link-gauge separation distances (Fig. 2), that
values reach 1.05 atz =1 min that justifies modeling rain-  contributes as well. Quantization and baseline-related errors
fall variability along a link according to Eq4@). behave inversely: for longer links, their contribution low-
The scatter plot (Fig. 10, left) shows that the rainfall esti- €rs. The DSD- and wet antenna- related errors increase for
mation is overall unbiased (the regression line is close to 1:1)longer links but for different reasons: wet antenna-related er-
There are a few groups of points in the graph’ CorrespondIOTS naturally grow with link Iength due to increased Spatial
ing to different events (Table 1); microwave links slightly Vvariability (Fig. 5, left), while the errors due to DSD variabil-
overestimate gauges for moderate rainstorms (around avefty along the link also grow due to lowering frequency band
age gauge rainfall of 1.3 mn‘rﬁ), but underestimate for (from 22 GHz for short links to 18 GHz for 4.21-5.92 km
strong December, 2006 rainstorm (average gauge rainfalinks L11/1L27, L4/L24, L13/L17).
or around 3mmh?); a detailed this effect is analyzed in  The regression line in Fig. 11 (top left) shows general over-
Sect. 5.2. This expresses also in the error comparison scattestimation ofS; for long links; thus, 20 link-gauge pairs
plot (Fig. 10, right): high measurement errors (around mea-with links longer than 4 km overestimate the predicted er-
sured RMSE of 2mmtt) tend to be underestimated at the rors, versus 10 link-gauge pairs in the same length range
accumulation interval 60 min. The effect becomes prominentshowings; less than 1. One of the reasons for the overesti-
with increase ofAr to 120 min, leading to lowering of the mation is the neglected covariance term in E&){ another
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Fig. 11. Performance statistics;, j = 1,.., 96 (Eq50) for total predicted error, measured errors and various error sources (spatial variability,
DSD and wet antenna, quantization and baseline), as a function of link lexgt60 min.

one is the suboptimality of isotropic semivariogram models,record (average rain rate of 3.06 mmf. The RMSE un-
discussed next. In general, Israeli convective rainstorms exderestimation follows from rain rate underestimation by links
hibit sequences of fronts driven by western winds (Zinevichwith respect to the gauge. All six links have shown negative
et al., 2009), in parallel to the long links L22/L.23, L11/L.27, bias: 9% for 0.81-2.56 km links L12, L7 and L31, and 17%
L4/L24, L13/L17 (Fig. 2); the variability of rainfall along the for 5.26—-5.92 km links L4/L24 and L11, which may be ei-
front is much lower than predicted. The empirical semivar- ther rainfall overestimation by the gauge or underestimation
iograms in Eq. 88) have been calculated at= 6 km from by the links due to high spatial rainfall variability, charac-
the records of Switch Ramle and Kfar Shmuel gauges; theerizing this extremely intense event. Comparison of these
semivariograms therefore model the variability roughly or- links with another nearby rain gauge Ramle West (not shown
thogonally to the fronts that is much higher. In this case,here) demonstrates a similar trend which suggests that it is
the assumption behind the isotropic semivariogram has beethe links that underestimate rather than the gauge that over-
violated. Note also that only few records from 7.16 km links estimates. As it has been shown in Sect. 3.3, optimal wet
where the link-gauge differences are minimal have been choantenna attenuation coefficients lower for intensive highly-
sen (see Sect. 3.2); this is an additional reason for error overvariable events; use of climatologically averaged wet antenna
estimation. Apparently, these effects overcome the increasattenuation coefficients leads to underestimation of rain rates
of measurement errors for high rain rates for longer links duefor these intensive highly-variable events and overestimation
to suboptimal wet attenuation coefficients (Sect. 3.2). of more homogeneous and uniform rainfall. One can suggest
On the other hand, the errors are underestimated fthat the predictioq .Of uncertainties dug to DSD variation;
0.81km links L7, L26, most likely because there are no along a link (specifically, _anten_na wetting, see SeCJF' 3.3) is
data available to accurately estimate semivariogram at sho:&;)t accurate enough for highly intense convective rainstorms
gauge separation (that is, non-zero nugget is underestimat r, pos§|bly, the DSD data used for modelmg 'S not rep-
in Eq. 36). Note that the effects of overestimation in error resentative for the 26, Decemt_)er 2006 rain storm). On the
prediction for long links remain consistent across all accu-Other h.and, anz=1min, a similar trenq (degreasg of error
mulated intervals between 1 to 120 min. prediction accuracy with increase of rainfall intensity) arises
- from overestimation of measured errors for the weakest event
The dependences &, ¢ and p on average rainfall in- 29 January 2007, characterized by very few peaks, highly
tensity (as recorded by gauges) are shown in Fig. 12. Theorrelated between rain links and gauges and therefore does
contribution of all error sources increases with rain rate, butnot exhibit considerable spatial variability (not shown here).

the growth of spatial variability errors is most prominent. Accordingly, similar trends are observed for other temporal
The general trend of RMSE underestimation for the strongaccumulation intervals.

rain storm 26 December 2006 (Fig. 12, top left) appears at
At =15min and longer, for six (L12, L7, L4/L24, L11, L31)
out of seven link-gauge pairs including Switch Ramle gauge
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DSD and wet antenna, quantization and baseline), as a function of rain rate recorded by a nearby rai ga®@min.

6 Conclusions not be comprehensively assessed in the presence of other er-
ror sources but only based on the point DSD records; it has
Various error sources affecting accuracy of rain rate estimabeen shown that its accuracy is likely insufficient for an ex-
tion using commercial microwave links have been examinedtremely intense rainstorm. Spatial rainfall variability is the
and an analytical expression for MSE of rainfall estimation primary source of discrepancy between link-gauge measure-
from attenuation, measured by a single link has been derivednents, suggesting that effect of spatial variability will re-
Even though a number of simplifying assumptions have beemain major in extrapolation of path-averaged observations
made (e.g. isotropy of the semivariograms and covariancénto areal averages.
functions, second-order stationarity of distribution of rain- Th lculation has b lidated v si i
fall intensities in space and time), the experimental errors are 1e error calculation has been va'| ated over only Six con
mostly in agreement with the predicted ones for various IinkveCt'Ve ramstorm's n Igraell ghmate, st'udylng stratlform.and
lengths, rain rates and temporal averaging intervals. The accher types of ral_nfal_l Is desirable as it may reveal a d_|ff_er-
curacy of the link-gauge error prediction is higher than thatent relative contribution (.)f the error sources and pfed'c“on
reported in the literature (Leijnse et al., 2008a), since ag-aceuracy. The rest of d|screpanC|e§ IS '."“?'y to arise f_rom
ditional error sources (baseline variability and spatial rain—mOde'Ing errors (e.g. a m.meer.of _§|mpllfy|ng assumptions
fall variability) have been taken into account in the proposedhave been made for spatial variability modeling) and other
model. On the other hand, the considered dataset is ”mite(?maccounted error sources — for example, effects of natural
and verification of most of the presented models shows er_emperat_ure vanayons (Le_ljnse etal., 2007a) and an_omalogs
rors of approximately 5-20%, so that the quantification madeorppagat!on (dUCt'ng)' Itis assumed that the basehne vart-
is not very accurate; however, it still allows understanding ation during the rainstorm can be adequately described by

typical magnitude and relative contribution of various error pre- and pOSt- rainstorm measurements, while plausibility of
SOUICes. this assumption is verified only indirectly. On the other hand,

Fome assumptions (e.g. adequacy of quantization error model
rainfall by a link is the baseline uncertainty that dominates'" Eq. (3)’. effe-ct ofquantgatpn on accuracy of baseline vari-
. L . ance estimation, suboptimality of wet antenna-related error
other instrumental (quantization error) and environmental : . L
model in Eq. 81) and wet attenuation calibration errors) can-

(DSD variability along a link) effects; use of climatologically : . .
. - not be thoroughly examined in the present setup, since these
average wet antenna attenuation coefficients may serve as an

additional source of errors. It is known that DSD variability error sources are minor and are masked by others.

is the major error source in radar backscattering measure- In addition, the presented results are based on an as-
ments; its effect on forward scattering and absorption measumption that the wet antenna coefficients and semivari-

surements by a link is much smaller (Jameson, 1991) anegram models are known perfectly: they have been estimated
is masked by other error sources. For this reason, the adrom link-gauge records over the same events, used subse-
curacy of prediction of DSD variability-related errors can- quently for evaluation. A direct drawback of such approach

The major source of errors in estimating path-average
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is overfitting: the wet attenuation coefficients may have ab- the effects of raindrop size distribution, canting, and oscillation,
sorbed a part of other link-gauge differences (e.g. baseline IEEE T. Geosci. Remote, 40(11), 2343-2352, 2002.

errors, differences due to spatial variability and errors due toBerne, A. and Uijlenhoet, R.: Path-averaged rainfall esti-
inappropriateness of power law coefficients) that in turn may Mation using microwave links: Uncertainty due to spa-
result in overestimation of error prediction accuracy. It has U@l rainfall variability, Geophys. Res. Lett, 34, L07403,

been shown that for long (7.16 km) links calibration of wet _ 401-10-1029/2007GRL029409, 2007.
antenna attenuation model with a single rain gauge may bga\"d‘ N., Alpert, P., and Messer, H.. Novel method for water
vapor monitoring using wireless communication networks mea-

complicated for convective rainstorms; to overcome this, ac- ¢, .ements. Atmos. Chem. Phys., 8, 11673-11684, 2008.
curate tracking of baseline along the rainstorm and filteringgeingold, G. and Levin, Z.: The lognormal it to raindrop spectra

out parts of an event with low link-gauge correlation may be  from frontal convective clouds in Israel, J. Appl. Meteorol., 25,

needed. It is assumed that for short links these effects are 1346-1363, 1986.

limited because of large amount of calibration data and vari-Goldshtein, O., Messer, H., and Zinevich, A.: Rain rate estimation

ous link-gauge combinations. It has been shown that the wet using measurements from commercial telecommunications links,

attenuation model is not invariant to the differences in spatial EEE T. Signal Proces., 57(4), 1616-1625, 2009.

rainfall variability that requires further research. Grum, M., Kraemer, S., Verworn, H., and Redder, A.: Combined
For practical real-time applications, either climatologi-  US€ Of point rain gauges, radar, microwave link and level mea-

cally average or forecasted semivariogram models should Zur(;rln;nstz 1'” 2”58;‘” hydrological modeling, Atmos. Res., 77(1~

be used; the ba§eline attenuation should also be F)eriCtel—dlolt),‘A. R._, Ku‘znetso.v, G., and Rahimi, A. R.: Comparison of the

from' pastdry estlmates,' ‘T’md fo'recast—related errors. should be use of dual-frequency and single-frequency attenuation for the

studied as well. In addition, high temporal resolution mea-  measurement of path-averaged rainfall along a microwave links,

surements are not always available; other temporal sampling |EE P-Microw. Anten. P., 15@&), 315-320, 2003.

strategies lead to additional errors (Leijnse et al., 2008a). Th@ameson, A.: A comparison of microwave techniques for measuring

MSE expressions for path-averaged rainfall assume specific rainfall, J. Appl. Meteorol.,30), 32-54, 1991.

climatology (the ad hoc parametric modela@‘SD in Eq. (7) Kharadly, M. and Ross, R.: Effect of wet antenna attenuation

has been built according to Israeli DSD data). on propagation data statistics, IEEE T. Antenn. Propag8)49(
The MSE expressions for path-integrated rainfall measure- 1183-1191, 2001. _

ments can further be used in data assimilation algorithm&<"ystek, M. and Anton, M.: A weighted total least-squares algo-

(e.g. Grum et al., 2005; Zinevich et al., 2009) as variance rithm for fitting a straight line, Meas. Sci. Technol., 18, 3438—

estimates (it has been shown that the bias of rainfall estima- 3442, 2007.

L o L L Leijnse, H., Uijlenhoet, R., and Stricker, J.: Rainfall measurement
tion is overall very limited), providing means for weighing using radio links from cellular communication networks, Wa-

observations according to their uncertainty. Similarly, since ey Resour. Res., 43(3), W03201, doi:10.1029/2006WR005631,
spatial variability is a major error source, its modeling is es-  2007a.

sential for reconstruction of spatial rainfall distribution from Leijnse, H., Uijlenhoet, R., and Stricker, J.: Hydrometeorological

multiple links. The isotropic semivariogram model allows application of a microwave link: 2. Precipitation, Water Resour.

explaining most of the errors; the experimental results sug- Res., 43, W04417, doi:10.1029/2006WR004989, 2007b.

gest that an anisotropic model would allow h|gher error pre_Leijnse, H., Uijlenhoet, R., and Stricker, J.: Microwave link rainfall

diction accuracy for Israeli convective rainstorms. estimation: Effects of link length and frequency, temporal sam-
pling, power resolution, and wet antenna attenuation, Adv. Water
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