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ABSTRACT
A novel approach for reconstruction of rainfall spatial-temporal dynamics from a 

wireless microwave network is presented. It employs a stochastic space-time model based 

on a rainfall advection model, assimilated using a Kalman filter. The technique is able to 

aggregate the data in time and space along the direction of motion of the rainfall field, 

which is recovered from the simultaneous observation of a multitude of microwave links.

The technique is applied on a standard microwave communication network used 

by cellular communication system and comprising 23 microwave links, and it allows

observation of near-surface rainfall at the temporal resolutions of 1 minute. The accuracy 

of the method is demonstrated by comparing instantaneous rainfall estimates with 

measurements from five rain gauges, reaching correlations of up to 0.85 at 1 minute time 

interval with bias and RMSE of -0.2 mm h-1 and 4.2 mm h-1 respectively, and up to 0.96 

with RMSE of 1.6 mm h-1 at the 10 minutes time interval, for a 22-hour intensive 

rainstorm with average rain rate of 3.0 mm h-1 and peak rain rate of 84 mm h-1. The 

results are compared to those of other spatial reconstruction techniques.

The proposed dynamic rainfall reconstruction approach can be applied to larger 

scale dynamic rainfall assimilation methods, enabling interpolation over data-void 

regions and straightforward incorporation of data from other sources, e.g. rain gauge 

networks and radars.
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1. Introduction

Accurate measurements of rainfall intensity are critical for numerous applications, 

ranging from flood warnings, urban drainage planning and fresh water resource 

management playing a vital role in many parts of the world, to global circulation and 

climate analysis.

It has long been known that the attenuation A [dB km-1] of a radio signal at the 

frequencies of tens GHz is dominated by the effects of rainfall R [mm h-1] and is 

governed by a well-known power law equation:

bA aR= (1)

where the parameters a and b are, in general, functions of link frequency, 

polarization and drop size distribution (DSD), see Jameson (1991). Microwave links can 

therefore serve as a basis for measurements of path-integrated and area-integrated rainfall 

(Atlas and Ulbrich 1974, 1977). The advantage of microwave links for high temporal 

resolution measurements over conventional rain gauges was demonstrated by Minda and 

Nakamura (2005). 

Recent advances in wireless communication technology bring about the 

opportunity of using commercial microwave communication hardware, available off-the-

shelf. The use of dual-frequency microwave links, operating on different, specially 

selected frequencies, allows producing reliable estimates of path-integrated rainfall (Holt 

et al. 2000; Rahimi et al. 2003) and rainfall spatial distribution, in conjunction with rain-

gauges and radar (Grum et al. 2005). A number of applications of dual-frequency 

microwave measurements were explored: calibration of weather radar (Rahimi et al.
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2006), correction of X-band radar rainfall estimates (Krämer et al. 2005) , identification 

of melting snow (Upton et al. 2007) and even estimation of DSD parameters (Rincon and

Lang 2002). The potential of use of single-frequency links for urban rainfall 

measurements was revealed by Upton et al. (2005).

The use of microwave attenuation measurements for the tomographic 

reconstruction of rainfall fields was pioneered by Giuli et al. (1999) who suggested a

specially designed hypothesized system of microwave links with predefined geometry, 

operating at either specially selected frequencies where the A – R relationship is linear or 

using differential phase shift, combined with point rain gauges. This system allowed 

application of linear tomography to reconstruct spatial distribution of rainfall. All of these 

approaches, however, rely on dedicated, specially installed equipment.

The feasibility of cost-free estimation of near-the-ground rainfall from attenuation 

measurements in standard commercial microwave networks was demonstrated by Messer 

et al. (2006) and Leijnse et al. (2007a). The use of commercial hardware installations 

poses new challenges, because commercial microwave networks are optimized for high 

communication performance and are designed in the way that reduces the effect of 

weather-related impairments on quality of service.  Thus, the observation type, time and 

magnitude resolution, network geometry and frequencies are predefined and, in most 

cases, cannot be changed; records of received signal level (RSL) are distorted by 

quantization. Other difficulties in estimation of average rainfall per link from signal 

attenuation include uncertainties due to variability of DSD along the link (Berne and 

Uijlenhoet 2007), wet antenna attenuation (Minda and Nakamura 2005; Leijnse et al. 
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2008) and uncertainty in determination of clear air attenuation due to water vapor-

induced attenuation and scintillation effects (Holt et al. 2003; Rahimi et al. 2003).

Tomographic reconstruction of spatial rainfall intensity distribution from RSL 

records in commercial microwave networks is addressed by Goldshtein et al. (2008) and

Zinevich et al. (2008).

In this paper it is demonstrated how the RSL records from standard microwave 

communication equipment can be applied for reconstruction of rainfall dynamics at the 

temporal resolution of 1 minute. The studied event is a 22-hours strong rainstorm (a cold 

front movement) on 26-27 December 2006 with a peak intensity reaching 84 mm h-1

(extrapolated from 1-minute rainfall value), comprising a sequence of continuous strips

of cumulonimbus clouds, preceding the cold air mass and moving southeastwards (Figure

1). This convective rain cloud system is typical for mid-winter in Israel and is

characterized by continuous precipitation with higher rainfall intensity at its leading edge 

(Goldreich 2003).

This event has been studied using data collected by an operating star topology 

network of 23 microwave links from an Israeli cellular provider; all are vertically 

polarized and are transmitting at the frequency bands of 18, 22 and 23 GHz. The 

transmitter-receiver separation distance varies from 0.8 to 18 km; the network operates in 

the cities of Ramle and Modi’in in Central Israel, covering an area of 32x25 km2. The 

built-in measurement and logging facilities register RSL at the magnitude resolution of 1 

dB every minute. The rainfall estimates were compared to the measurements of five

tipping-bucket rain gauges (Figure 2) with tipping volume of 0.1 mm and the resolution 

of tipping time registration of 1 min-1, providing the magnitude quantization of 6 mm h-1.
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Even over this limited area, the density of the links varies considerably, reaching 

its highest around Switch Ramle in the middle of Ramle city. East to Ramle, however, the 

representativeness is rather poor, which is a natural consequence of the fact that the 

density of cellular masts often follows that of the population and is low in suburban areas.

To fill the gaps between links, a stochastic spatio-temporal model was employed. 

This model is able to aggregate the data in time and space along the direction of motion 

of the rainfall field, based on the advection model. It describes the evolution of the rain 

field in time, assuming that during short time periods (minutes), the main force acting on 

a rain cell is advection. The transport model uses the estimates of local rainstorm velocity 

and direction derived from the analyses of correlation of rainfall peaks among the links. 

The estimation of hidden variables (spatial distribution of rainfall), along the direction of 

motion is done using a non-linear Extended Kalman filter (EKF) over the system of links, 

producing the instantaneous reconstructed rainfall fields over a Cartesian grid. In 

addition, the estimates of the proposed dynamic reconstruction approach were compared 

with those of two other spatial reconstruction techniques. 

The proposed dynamic rainfall approach can be adopted to larger scale 

assimilation systems, enabling interpolation over data-void regions and straightforward 

incorporation of data from other sources – rain gauge networks and radars, similarly to 

the algorithm demonstrated by Grum et al. (2005). The technique can find applications in 

thunderstorm nowcasting, where accurate measuring of precipitation and rainstorm 

dynamics with sufficient time and space resolution is essential (Wilson et al. 1998).

The paper is organized as follows. In section 2, the space-time model is described. 

In section 3 the use of the EKF is detailed, and section 4 describes the estimation of the 
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storm dynamics. Section 5 outlines the spatial reconstruction and in section 6 a specific 

case study is analyzed. Section 7 concludes the paper. 

2. Space-time model

The advection equation is the one describing the transport of a conserved scalar 

quantity in a vector field. Advection often refers to the transport of some property of the 

atmosphere or ocean, such as heat, humidity or chemical constituents. It is widely used in 

meteorology and atmospheric studies (Allen et al, 1991; Daley 1995). 

The use of an advection-diffusion model to describe the evolution of rainfall in 

space and time, aimed for real-time prediction of rainfall distributions and forming a 

stochastic framework in which both rain gauge and radar data may be included, has been 

considered by several authors (see, for example, Mizutani 1981; Jinno et al. 1993;

Kawamura et al. 1997).  The latter proposed a method, based on a two-dimensional 

stochastic advection-diffusion equation including a development/decay term in 

combination with a Fourier domain shape method. It was shown that the model can 

forecast motion, shape, size and intensity distribution of individual rain cells, using a 

Lagrangian view of the rainfall intensity field. Note that such model should not be 

considered as an attempt to physically model the turbulent and thermodynamic behavior

of convective air but just a convenient way to describe the rainfall dynamics as observed 

at the ground level.

Since the present study is oriented on estimation of an arbitrary rainfall field from 

microwave links rather than temporal evolution of behavior of a single rain cell as in 

Kawamura et al. (1997), this model was employed in the Eulerian view. In this case, 

however, estimation of the diffusion and, especially, the development/decay coefficients 
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in every point in space would require observation redundancy that is absent in the 

relatively sparse network under study; the model was therefore reduced to the pure 

translation. The basic assumption of such a model is that the rainfall intensity distribution 

can be considered as a conserved quantity over a short time interval (a few minutes), 

relatively to the typical lifetime of a rain cell (about an hour in Israeli climate); advection 

is assumed to follow isobaric surfaces and is therefore predominantly horizontal. The 

dynamically propagated estimates of rainfall spatial distribution are then corrected with 

EKF according to the newly observed data.

In the spatial dimension, the wind vector field (U,V) at the steering level of a 

storm is considered curl-less and divergence-less over a small area (32x25 km2) with 

simple topography, and changing slowly over the interval of 3 hours, which is a plausible 

assumption for the cold front convective rainfall in synoptic systems. Even though the 

advection model does not require this assumption, it is necessary to estimate the wind 

field aloft from the microwave observations.  Note that even within the same climatic 

region, these assumptions can be invalid for other seasons and types of rainfall storms. 

In contrast to Kawamura et al. (1997), here the model is implemented in spatial 

domain, where efficient numerical schemes exist.  The two-dimensional advection 

equation is integrated for a volume element, and thus a finite-volume scheme for a 

regular grid y xM M× is obtained ( h is equal to ½):

1|
, , , , , ,
t t t t t t t

i j i j i j h i j h i h j i h jr r F F G G+
− + − += + − + − (2)

Here, ,
t

i jr equals rainfall intensity in the ( ),i j pixel center, 1,..., yi M= , 

1,..., xj M= at time t and ,
t

i j hF ± , ,
t
i h jG ± are fluxes across boundaries of (i, i±1) and (j, j±1). 
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1|
,
t t

i jr + stands for predicted rainfall intensity of 1
,
t

i jr + based on the estimations at time t, 

without accounting for observations at time t+1. This will be used later in the EKF 

formulation.

There is a variety of possible numerical schemes for estimation of fluxes F and G 

(e.g. Hourdin et al. 1999). In the present experiments, the form based on the van Leer 

scheme described by Allen et al. (1991) was used, where not only rainfall intensities in 

box centers but also their spatial gradients (slopes) are taken into account (this is essential 

to counteract the numerical diffusion):

( )
( )

, 1 , 1 ,
, ,

, ,

0.5 1 , 0

0.5 1 ,

t t t t
i j i j h j i i j ht t

i j h i j h t t t
i j i j h j i

r u r u
F u

r u r otherwise

− − − −

− −

−

 + − ∆ ≥= 
− + ∆

(3)

Here, the dimensionless advection velocity , ,
t t
i j h i j hu U t x− −= ∆ ∆ in the x

direction is the local Courant number of the flow, which absolute value should be less 

than one for the numerical stability of the method. The flux ,
t

i j hF + and fluxes ,
t
i h jG ± due 

to the second wind component V are calculated analogously. The values t
j ir∆ (and, 

correspondingly, t
i jr∆ for the second dimension) are the local slope estimates. A simple 

expression for r∆ which minimizes numerical diffusion and guarantees monotonicity is:

( )( ),
, , , 1 , 1 ,

, 1 , 1
2 , 0

0,

i j
i j i j i j i j i j

i j i jj i

S
S r r r r

r rr
otherwise

− +
+ −


= − − ≥ −∆ = 




(4)

If r∆ are set to zero (e.g. in the buckling areas, where the slope estimates is set to zero), 

the method reduces to simple diffusive upstream differencing (Allen et al. 1991). 
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The spatial resolution of the system is theoretically limited by the Courant numbers

which, in turn, are determined by the advection speed of a storm given the desired t∆ . In 

practice, the model (3) produces numerical artifacts (oscillations due to sharp spatial 

gradients, typical for high-order schemes) at the resolution of 1x1 km2, even in cases 

when Courant numbers u and υ are less than one (that happens at the advection velocity 

of 17 m s-1, which is quite common). The results presented here are in the scale of 

1.5x1.5 km2. Increasing pixel size does not lead to performance improvement since 

bigger pixels average over larger areas that smoothes the reconstructed rainfall; this 

lowers the validity of the assumption of constant rain rate over a pixel. 

3. Extended Kalman filter

The Kalman filter (Drécourt, 2004) is an efficient data assimilation method that 

explicitly accounts for the dynamic propagation of errors in the model. For linear models 

with known statistics of the system and measurement errors, the Kalman filter provides 

an optimal estimate of the state of the system, in terms of minimum estimation error 

covariance, without assuming any specific distribution of model and observation errors, 

by just requiring error to be zero-mean and uncorrelated in time (Drécourt, 2004). The 

use of non-linear models requires the extended Kalman filter, where propagation is based 

on a statistical linearization of the model equation. It should be noted that due to 

linearization, EKF is not necessarily optimal.

EKF estimates spatial-temporal precipitation distribution tr from a set of 

incomplete (non-uniform and sparse network of backhaul links) and noisy (complicated 

by quantization noise) observations to , combining past predictions with new 

observations. The state transition model is given by:
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( )1 1 1| 1,t t t t t tf+ + + += = +r r ε r ε  (5)

where 1|t t+r is the prediction of the true rainfall 1t+r from the tr according to the 

propagation model (2); 1t+ε is a stochastic component – zero-mean noise with a 

covariance matrix tQ , accounting for the evolution of rainfall field which is not 

described by the model (2). Note that ( ),f ⋅ ⋅ is non-linear since it contains the second-

order terms used in the calculation of r∆ (4); the linearized operator, used in EKF 

calculations, is given by Jacobian 1 1|t t t t t+ += ∂ ∂J r r r .

The observation model ( ),h ⋅ ⋅ relates the hidden state space r to the observable 

space:

( )1 1 1| 1,t t t t t th+ + + += = +o r v o v  (6)

1| 1| 1|
1 ,...,

Tt t t t t t
NA A+ + + =  o (7)

Here, 1|t t+o is the predicted microwave attenuation, calculated from the predicted 

state 1|t t+r and 1t+ν is the zero-mean measurement noise with a covariance matrix 1t+R , 

associated with an observation at time t+1. The function ( ),h ⋅ ⋅ is constructed according 

to the power-law equation (1) over the reconstruction grid of y xM M× blocks (rainfall 

intensity is assumed to be constant within a block):

( )1| 1|
, , ,

1 1

M My x bkt t t t
k i j k k i j

i i
A l a r+ +

= =

≈ ∑∑ , 1,...,k N= (8)

where , ,i j kl is the length of the kth link segment over the grid block ( ),i j . The 

non-linear operator ( ),h ⋅ ⋅ is linearized for the EKF calculations:
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( ) 11
, , ,

1|, 1|

bkt k
i j k k k i j

t ti j t t

A l a b r
r

−+

++

∂
= =

∂
H  (9)

Note that for any bk < 1 (for example, for a horizontally-polarized link, operating 

at high frequencies), the derivative does not exist for 1|
, 0t t

i jr + = . To overcome this issue, 

we constrain 1|t t+r to minimum 0.001 mm h-1 at every iteration t. The choice of the 

constant has little impact on the performance of the algorithm; it just should be small 

enough to be considered zero rainfall. The rest of the Kalman equations are standard 

(Drécourt, 2004).

The power-law coefficients ka and kb specific for the kth link, k=1,…,N were 

estimated using the T-matrix method for calculation of the extinction cross section 

(Mishchenko, 2000) according to the lognormal model of DSD, parameterized by two-

years DSD measurements in Israel; it was found by Feingold and Levin (1986) that this 

model is well suited to Israeli climatology. The resulting values are given in Table 1.

The performance of the formulated EKF model largely depends on accuracy of

estimation of the process and measurement covariance matrices Q and R. The 

measurement noise ν should, in general, take into account the uncertainties in estimation 

of the zero rainfall RSL due to atmospheric and instrumental (observation quantization) 

impairments. 

The former is treated in the pre-processing stage.  Knowing the exact zero rainfall 

RSL at every time frame is important to achieve proper estimation of line-integrated 

rainfall-induced attenuation. The mean zero level was estimated for each link separately 

over a 5-hour dry period prior to the beginning of the event and then subtracted from the 

microwave records; the occasional negative values were clipped to zero. The measured
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rainfall-induced attenuation t
kA% , k=1,…,N, t=1,..,T was corrected for wet antenna 

attenuation according to the two-parameters correction function (Leijnse et al., 2007b), 

modified so that the wet attenuation is independent on link length:

1 21 exp
min

t
k

t t
kk k

t
k

AC C
lA A

A

    − −     = −     



%

%

%

(10)

The parameters C1 and C2 were calibrated by minimizing ( )
2bkt t

k k k
t

A a R l − 
 ∑ between 

link L11 of the length 11 1.60l = km (see Figure 2) and the time series Rt of rainfall 

records from the Switch Ramle rain gauge for one hour of the event, from 1500 to 1600

LT (Local Time) 26 December 2006. The correction (10) was applied then to all existing 

microwave links since all microwave antennas used in the study are of the same type and 

from the same manufacturer; it was shown (Leijnse et al. 2008) that wet antenna 

attenuation is mostly independent on frequency in the range of 18-23 GHz.

The measurement noise tν accounts for the quantization noise that is modeled as 

an additive uniformly distributed random variable with a covariance matrix:

12

2
2 ∆

=⋅= IIR qσ  (11)

where Δ is quantization interval in dB (equal to 1 dB for the microwave network 

used in this study).

The process noise 1t+ε involves the variations of the precipitation field which are 

not described by the model (2). In general, the correct way to estimate the process 

covariance would be collecting enough statistics of the residual 1| 1t t t+ +−r r for rainfall 
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patterns, specific for a given region, season and a phase of a rainstorm. However, the 

microwave observation network, considered in the present study is rather sparse and 

limited in size.  The system needs therefore to be able to quickly adapt to the changes in 

the storm that are not accounted by (2), for example, an arrival of the rainstorm front into 

the monitored area (the model is initialized with zero rainfall). For this reason, the 

uncertainty of the component ε, expressed in the covariance matrix Q, is necessarily 

high. In practice, the optimal values of Q, obtained from pilot simulations of the EKF 

model given the experimental setup (Figure 2), exceed that of the measurement noise ν

by orders of magnitude; the value of ν lies in optimal weighting of observations from 

individual links, according to their uncertainty. This fact naturally fits the Kalman 

framework: in the case when the predicted (model) rainfall is very uncertain due to the 

undefined (zero) boundary conditions and limited observation area, the optimal 

(maximum) advantage is taken from the available measurements. The system is therefore 

weakly sensitive to the assumptions about the model (e.g. pixel size, accuracy of the 

advection velocity estimation) at the pixels, crossed by microwave links; the accurate 

modeling remains important for rainfall estimation in the data-void regions.

For this limited and sparse network configuration the white model noise was 

assumed (the model covariance matrix is diagonal). In order to allow the model to 

quickly adapt to the arrival of the front, the values Q on the main diagonal were 

initialized by the variance of the all non-zero observations from one of the rain gauges 

(Ramle West) during the rainstorm under investigation, ( )kkQ =111 mm2 h-2, 

1,..., y xk M M= × , expressing this way the maximum uncertainty about expected 

rainstorm front arrival. In general, Q represents the prior information about a rainstorm; 
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in the studied event, Q was estimated from the observations of the rainstorm itself, so that 

the present study cannot be considered as real-time monitoring. In practice, the values of 

Q can be either taken according to the anticipated rainfall intensities in the storm, or just 

as an average over the data, observed in the past, representing similar rainfall patterns.

Note that in this case the distribution of the model noise ε cannot be considered 

zero-mean even approximately (it is just the distribution of rain rates in the event). For 

this reason, posterior covariance estimates were not analyzed in this paper, even though 

for a wider and denser network and well-calibrated Q and R it is possible to get estimates 

of variances of the reconstructed rainfall in any point in space.

4. Estimation of storm dynamics

To estimate the dynamic parameters of the rainstorm (wind velocity and the 

direction of the storm movement), the vector analyses technique, used by Desa and 

Niemczynowicz (1997) based on tracking of the arrival time of a prominent feature of 

the storm and further extended by Upton (2002), was adopted. The time lags ,i jtδ , 

corresponding to delays in arrival of the storm front were taken according to the best 

cross-correlations ,i jρ between all pairs (i,j=1,…,N) of microwave links in the monitored 

area. Knowing the spatial locations of links which are determined by the coordinates of a 

link midpoint and taking into account that the plurality of links is arbitrarily oriented in 

space, one can expect that averaging over a number of link pairs can allow measuring the 

dynamics of the rainstorm. Note that this assumption of plausibility of approximation of a 

link as a point for the dynamics analyses is reasonable when the length of a link is 

smaller than the typical size of a feature (e.g. rain cell). To reduce the effects of local 
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rainfall variation on accuracy of estimation of ,i jtδ , the registered time series were 

passed through a low-pass three-tap FIR filter with 6dB cut-off frequency of 2π

( 21 25.05.025.0)( −− ++= zzzH ).

One of the problems in such an approach is the identification of the features,

corresponding to the same rain cell over time series, recorded by different gauges

(microwave links in this study), if more than one rain cell appears in the monitored area. 

The cross-correlation coefficient ,i jρ was used as a measure of reliability of the estimate

,i jtδ , i.e. how likely that the ( ),i j time series are produced by the same feature of the 

rainstorm.

In a three-dimensional space where ,i jxδ , ,i jyδ are the projections of the distance 

between the midpoints of each pair of links ( ),i j on the ( ),x y axes and tδ is the time 

axis, movement of a rainfall front can be represented as a plane, described by coefficients 

(p1, p2):

1 , 2 , ,i j i j i jp x p y tδ δ δ+ = (12)

For all pairs of total N links, the system of 







2
N

linear equations is written as:

δtMp =  (13)

This system of linear equations is over-determined for N ≥ 3 and can be solved 

using the method of weighted least squares, where each equation, corresponding to a pair 

of links, is weighted by its correlation powered by a parameter γ >> 1, reducing this way 

the effect of link pairs with low value of the correlation peak, which most likely do not 

correspond to the same features of the rainfall field:
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1,2

1,N N

γ

γ

ρ

ρ −

 
 

=  
 
 

W O  (14)

The parameter γ should be taken sufficiently large so that only observations with 

the most prominent correlations affect the result. Yet, due to the short length of the time 

series used in calculations of correlations, outliers which are very common should be 

removed. The solution is refined by discarding P percents of the equations (most likely 

outliers), showing the worst mismatch between the measured and estimated correlation

lags MpδtΔ −= and then the refined estimate p~ is recalculated using (13). This 

procedure may be repeated several times; in practice, it was found that two iterations is 

enough (Figure 3).

The refined mean squared mismatch ( )22 = −Δ δt Mp% % can provide an 

indication of the fit goodness and can be used to estimate the optimal γ ( ⋅ denotes the

averaging operation). Thus, over the entire event, the optimal 10γ = is obtained as

( )2arg min
γ

γ γ= Δ% (Figure 4, A). On the other hand, large 2Δ% indicate low 

confidence of the estimates, i.e. the lack of consistent features registered by majority of 

microwave links; time frames with 2 τ>Δ% are invalidated. In the study, the whole 22-

hour event was divided into 14 three-hour frames with 1.5 hour overlapping; the 

distribution of 2Δ% is shown at Figure 4 (B); the confidence threshold 20τ = s2 was 

chosen accordingly. The measured advection slowness |||| p and the tangent of direction 

1
1 2d p p−= from all confident frames were interpolated then into the 1 minute scale using 
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cubic splines; the advection velocity and direction were finally obtained as 

1|||||||| −= pυ and the arc tangent of d.

The value of P is in general depends on the network configuration and is 

determined experimentally; in the present study, it was taken 0.75. The resulting velocity 

and directions for the event, determined from 23 microwave links for the entire event are 

plotted at Figure 5. 

It is important to note that the suggested approach does not estimate the true wind 

direction but its component, normal to the front. If the assumption of collinearity of wind 

direction and the front-normal component does not hold and different parts of the front 

resemble each other, the advection direction and speed, determined by the method differs

from the true wind direction at the steering level of a storm. 

5. Spatial reconstruction 

To get better insight into the advantages of the proposed spatio-temporal method, 

we consider as references a stochastic interpolation technique (SHT) by Goldshtein et al.

(2008) and a non-linear tomography technique (NLT) by Zinevich et al. (2008) which are 

briefly outlined below.

a. Stochastic interpolation.

In the stochastic reconstruction, each link i=1,…,N of the length li is divided into a 

set of Ki equal intervals, where the rainfall intensity is assumed to be constant, so that the 

total path attenuation equals ,1
Ki

i i jjA A
=

= ∑ . Each interval is then represented as a sample 

point with (unknown) rainfall intensity ,i jr , i=1,…,N, j=1,...,Ki, distorted by quantization 

noise ni inherited from its parent link. The variance of the quantization noise t
iσ is 
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approximated by Taylor series expansion of the non-linear function ( )A
i i iR R A n= +% , 

where iA% is the true path-integrated rainfall-induced attenuation and A
in is the attenuation 

quantization noise with variance given by (11), see Goldshtein et al. (2008) for details.

Let θ denote the required rain rate estimation at a specific location and 1,..., Nr r
θ

a series of Nθ data point measurements from the nearby microwave links, located within 

a predetermined area, dependent on spatial correlation of rainfall and defined by the 

parameter q (radius of influence). The proposed model is based on the Inverse Distance 

Weighting (IDW) interpolation method (Shepard, 1968) over an irregular grid and its 

solution is given by:

( )

( )∑

∑

=

−−

=

−−

×+

××+
= θ

θ

σ

σ
θ N

i
ii

i

N

i
ii

zW

rzW

1

121

1

121

(15)

where Wi is the inverse squared distance weighting function. The dimensionless constant 

z and the radius of influence q [km] are determined experimentally, and for this study 

were taken 0.5 and 6 km, respectively. The unknown ,i jr , Ni ,...,1= , iKj ,...,1= are 

obtained separately for each link ˆ 1,...,i N= according to the minimum MSE  

( )ˆ 2

ˆ, ˆ,
1

ˆ
Ki

i j i j
j

r θ
=

−∑ between ˆ,i jr , ˆ1,..., ij K= and the estimates of ˆ,
ˆ
i j

θ , calculated according 

to (15) at the locations of the î th link sample points from all other microwave links,

excluding the link î . The optimal ˆ,i jr are calculated in the way that preserves the total 

path-average rainfall, measured by the î th link: ( ) ( )
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2008). After adjusting all ˆ,i jr over the entire network, the procedure is iterated with 

new ,i jr .

The major advantage of this model over the EKF-advection is that it does not make 

any assumptions regarding the underlying physical model of the phenomena (besides 

spatial correlation of rainfall) ; the method can easily be adapted to various rainfall 

patterns or microwave networks since it requires tuning of only two parameters (z and q).

The major disadvantage is that the procedure allows reconstructing rainfall fields in 

space, not in time.

b. Non-linear tomography

In the NLT technique, the area is divided into M cells which size varies in space 

and follows the local density of the microwave network (Figure 6). A system of N non-

linear equations is formulated according to the assumption of constant rainfall intensity at 

each pixel:

0
1

=−∑
=

ib

ii

M

j

ib

jij RLrl ,  i=1...N (16)

The system of equations is then iteratively linearized and a linear inversion 

technique is employed at each iteration. Since the system (16) is in general 

underdetermined, a regularization operator (smoothing) is applied (Zinevich et al., 2008). 

The resulting estimates, related to the centers of the pixels then interpolated over the 

whole area using IDW (Shepard, 1968).

In general, both SHT and NLT algorithms make different but similar assumptions 

about the underlying physical model and are optimized with respect to the variable 

density of the microwave networks.  NLT is better suited for the dense networks, where 
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the assumption of constant rainfall over a pixel is valid, since it explicitly accounts for 

variations of rainfall intensity between different pixels along the link. However, it is a 

deterministic algorithm that does not assume any observation uncertainty. SHT is more 

appropriate for sparse networks, since the assumption of constant rainfall over a link 

segment is weaker than that of NLT; it explicitly accounts for the observation 

uncertainty. The EKF-based algorithm features advantages of both spatial techniques and 

incorporates the rainstorm dynamic analyses for better representing rainfall in data-void 

regions.

6. Case study: analyses and results

Figure 7 demonstrates four time slots showing the motion of a part of the front, 

reconstructed using EKF from the RSL records from microwave links, obtained at spatial 

and temporal resolution of 1.5x1.5 km2 and 1 min, and corresponding radar images. The 

spatial resolution of radar is 0.775x0.775 km2. The microwave map shows rainfall at the 

radar clutter area where the radar is unable to measure.

This qualitative comparison shows that in general microwave patterns follow 

those of the radar. The link L1 shows almost zero rainfall at 1533 LT 26 December 2006 

(from now on, time stamps are taken from the microwave maps) that results from missed 

weak rainfalls due to 1 dB quantization of microwave observations. At 1539, microwave 

map shows strong rainfall in the middle of the map which demonstrates the ability of the 

spatio-temporal reconstruction technique to estimate rainfall in the data-void area (only 

L1 records a part of the front at that time). Due to simplicity of the advection model that

does not account for development/decay of convective cells, the microwave rainfall 

estimates at the south-east part exceed those of the radar since at all four time frames 
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(especially at 1554)  the model continues to translate the rainstorm features exactly as 

they were “seen” by the links in the past.

At 1533, 1539 and 1545 a “false” front, mainly caused by the link L3 is observed 

prior to the major one; the reason for this effect is the lack of links besides L3 at the 

northern part of the map, so that it the algorithm misses the actual distribution of rainfall 

along L3, producing uniform rainfall along the link. Note zero rainfall near the link L13

at 1533; here, the 2.56 km link recorded 0.1 mm h-1 path-averaged rainfall. This indicates 

highly variable structure of the rainstorm (rainfall intensity in the surrounding pixels 

reaches 20 mm h-1).

A convenient way to examine performance of the proposed technique is to apply 

linear regression to the EKF-reconstructed rainfall and rain gauge measurements. 

However, conventional linear regression fit assumes that the independent variable (rain 

gauge) is known with zero uncertainty. In our case, the algorithm estimates the average 

rainfall over a 1.5x1.5 km pixel while rain gauges provide only point measurements, 

which can be considered representing the average rainfall over the pixel area with some 

uncertainty. Therefore, the method of total least squares, assuming uncertainties in both 

independent and dependent variables (Krystek and Anton, 2007) was chosen as a more 

appropriate one. Note that the correlation between the Ramle West rain gauge and the 

Switch Ramle rain gauge that are located at the same reconstruction pixel reaches only 

0.70 at the gauge separation distance of 1.5 km, which indicates the weak 

representativeness of point measurements for comparison and further justifies the 

necessity of total least squares.
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The cumulative rainfall series obtained using microwave-based EKF-advection 

reconstruction has been compared to rain gauges at five different locations (see Figure 8). 

Three rain gauges out of five (Ramle West, Switch Ramle and Modi’in Shimshoni) are 

located in close proximity of microwave links (links cross the pixels, compared to rain 

gauges). Other rain gauges (Kfar Shmuel and Maccabim) are located away of microwave 

links; the ability of the algorithm to interpolate rainfall in space and time is assessed in 

these sites. The skills of the method (correlation coefficient, bias, RMSE and the linear 

regression equation) of the microwave-derived rainfall measurements vs. rain gauges 

measurements are given in Table 2 and analyzed in detail below. 

a. Ramle West and Switch Ramle rain gauge stations

One can see that in the Ramle area (rain gauges Ramle West and Switch Ramle) 

the EKF- and NLT- derived estimates outperform SHT both in terms of correlation ρ and 

RMSE, since the density of links at this area is high. In this case, SHT effectively 

averages over the nearby links, providing the averaged areal rainfall which is inherently 

lower than the point rainfall, measured by rain gauges. For the same reason, the SHT

measurements have a consistent negative bias over all five sites. The microwave 

measurements, assimilated into the dynamic model are able to track the short-term 

variations in rainfall intensity more accurately.  In the EKF-based algorithm only 

microwave measurements which contributed in the past (according to the storm 

dynamics) into the estimation of rainfall rate at a specific point in time and space take 

part. The scatter plots (Figure 9) demonstrate the ability of the EKF-based reconstruction 

to better represent the temporal variability and especially high intensity peaks, that 

expresses in the slope coefficient of the regression equation closer to one (see Table 2). 
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The regression equation for Ramle West shows slope smaller than one (0.83) and 

intercept of 0.39. To get insight into the reasons behind, let us first compare the rain 

gauge with the closest bi-directional microwave links (L11 and L12). The resulting 

regression equations are given in Table 3.

It can be seen that the short (1.6 km) link L11, oriented nearly orthogonally to the 

rain front direction, shows very good agreement with Ramle West gauge; conversely, link 

L12 shows lower average rainfall as it averages over its length (6.56 km) oriented along 

the rain front movement direction; this is the reason for high intercept values (0.79, 1.08) 

since the link L12, being oriented orthogonally to front, records rainfall even at the time 

frames when the gauge does not.

Ideally, the EKF reconstruction could be able to track the rain front peak along 

the link L12 and the lower average rainfall in L12 would have a little effect on estimation 

at the Ramle West location; in practice, due to lack of the information about distribution 

of rainfall along the link L12, it provides lower estimates at the Ramle West location. As 

a result, all three reconstruction algorithms underestimate the high intensity peaks 

relatively to the point measurements by rain gauges at Ramle West (Figure 8 (A), Table 

2; see also Figure 11 (A)).

Note that the intercept coefficients at the 1 minute resolution (Table 2) are slightly 

higher than zero (0.39 and 0.23); the same effect is observed at the Modi’in Shimshoni

station (intercept of 0.41). It can be seen at Figure 9 (A, B, D) that in many cases 

microwave links record rainfall when rain gauges show no rainfall at all. This can be 

attributed to the spatial variability of rainfall, i.e. longer links, especially the ones 

oriented in parallel with the front record rainfall when the gauges do not. This difference 
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diminishes, resulting in intercept coefficients -0.15, -0.17 and -0.04 at 10 minute 

accumulation (Figure 11).

b. Kfar Shmuel rain gauge station

Note that while Ramle West and Switch Ramle gauges are located directly near 

links, the Kfar Shmuel gauge is about 2.5 km from the nearest microwave link (L1). SHT 

and NLT in this case perform worse (ρ = 0.65 and 0.67 vs. ρ = 0.75 for EKF-based 

reconstruction) due to the temporal delay, necessary for a storm to reach from the link L1 

to the Kfar Shmuel station. Accounting for the delay results in a temporal lag of 2 

minutes; by artificially shifting the time series, derived from the SHT rain maps at the 

Kfar Shmuel station by 2 minutes, ρ rises from 0.65 to 0.77. However, EKF (and, 

similarly, NLT) shows prominent bias (overestimation) of 0.41 mm h-1 relatively to the 

gauge, expressing also in high linear regression slope coefficient (1.41), which is in 

agreement with the difference of 1.5 mm h-1 between path-average rainfall, observed by 

the link L1 and the Kfar Shmuel rain gauge for the whole 22-hours period. To understand 

the reasons behind this overestimation, let us compare the time series of hourly 

accumulated rainfall, recorded by the bi-directional link L1 and the rain gauge (Figure

10, A).

It can be seen that the link L1 provides higher rainfall intensities with respect to 

the rain gauge at the front arrival at about 0130 and 0730 LT 27 December 2006, which is 

most likely due to higher spatial variability of rainfall. The secondary convergence lines 

of the storm are less regular and are represented by sporadic convective cells showing

less homogeneity than for example arrivals at 1530 LT 26 December 2006, see Figure 1

(B). For this reason, the link L1, oriented roughly in parallel with the fronts, is exposed to 
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more convective cells than the point gauge, which results in the higher rain rates; rainfall 

peaks between 0142-0210 LT 27 December 2006 are completely missed by the rain 

gauge (Figure 10, B). Accordingly, it can be seen from Table 2 that during the whole 

event the average rain rate recorded by Kfar Shmuel rain gauge is 2.56 mm h-1 vs. about 

3 mm h-1 for other four gauges. Note that SHT that averages over wider area including L2 

produces lower rainfall at this site. 

Another example of the discrepancy between link and gauge measurements is the 

rainfall peak at 1530 LT 26 December 2006 that is missed by the link L1 (Figure 10, C). 

At 1545, however, the link L1 again records a longer peak than that of the gauge.

Note that the link L1 misses weak rainfalls between front arrivals around 1700, 

2200 (Figure 10, A), which is most likely due to 1 dB quantization of attenuation records 

(see Zinevich et al. (2008) for details).

c. Modi’in Shimshoni rain gauge station

In the Modi’in area, SHT and NLT perform similarly but slightly better than the 

EKF-based reconstruction. Thus, the correlation with the Modi’in Shimshoni rain gauge 

located directly on the links L8 and L9 for the SHT(NLT) reaches 0.81(0.80) vs. 0.77 for 

the EKF-based algorithm, and RMSE for spatial algorithms is 3.26(3.30) mm h-1 vs. 3.51

mm h-1 for EKF. Since the station is located in the close proximity of the links L8 and L9, 

the SHT estimate at this point is not distorted by rainstorm track affecting EKF and 

represents the path-averaged estimate of rain rate based on L8, L9 only. Figure 8 (D) 

shows that there is consistent underestimation of EKF-derived rainfall with respect to the 

rain gauge around 0000, 0130 0300 LT 27 December 2006, that can again be attributed to 

the spatial variations of rainfall (there are no confident estimates of rainstorm dynamic at 
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those times that may indicate the sporadic character of the rainstorm); one can suggest 

that L7, L8 are roughly orthogonal to the advection direction. In this case, path-averaging 

effect of microwave links may result in underestimation of the rainfall, produced by 

isolated convective cells. As a result, EKF shows overall negative bias of -0.26 at the site 

of Modi’in Shimshoni; similarly, negative bias -0.21 and -0.29 are found in the SHT and 

NLT statistics (Table 2). 

d. Maccabim rain gauge station

The rain gauge Maccabim is the most distant one, located 4 km from the nearest 

links (L7 and L8). Both EKF and spatial algorithms perform poorly at this site; however, 

EKF shows ρ =0.57 vs. 0.24 for SHT and RMSE 5.65 mm h-1 vs. 7.45 for NLT due to its 

ability to interpolate rainfall in both spatial and temporal dimensions. The EKF algorithm 

overestimates the rainfall at the Maccabim site from the beginning of the event until 

approximately 1800 LT 26 December 2006; cumulative rainfall, measured by link at this 

time reaches 24 mm – exactly the value, recorded by EKF at the Modi’in Shimshoni site 

during the same time frame, since EKF simply translates the rainfall field registered by 

L7, L8. The discrepancy between EKF results and the Maccabim rain gauge is most 

likely caused by decay of the front, which can also be seen at Figure 7, time slot 1554. 

The EKF algorithm starts to miss rainfall consistently at about 0300 LT 27 December 

2006; there is no indication of exact rainstorm direction at that time since there were no 

prominent fronts tracked by the multitude of microwave links (Figure 5).  The differences 

between microwave links and the gauge at the period of 0000-0300 time follows the same 

pattern as in the Modi’in Shimshoni station (Figure 8, E, D). At 0300-1000, the EKF 

algorithm misses a considerable amount of rainfall due to rainstorm direction change: it 
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can be seen (Figure 2) that there are no nearby microwave links in front of the Maccabim 

site for the rainstorm, arriving from north-east at 0300-1000. At those times all three 

algorithms show negative bias of about -0.65 since there are no microwave links that

record rainfall observed by the Maccabim rain gauge.

When artificially introducing a time lag of 5 minutes into the SHT reconstruction, 

the correlation at Maccabim raises from 0.23 up to 0.63 and RMSE lowers from 7.5 mm 

h-1 to 5.4 mm h-1, since this operation compensates the time delay necessary for the storm 

to arrive from Modi’in to Maccabim. However, it should be noted that such temporal 

shift results in improvement mostly due to the similarity of different parts of the front 

with each other, since (as it follows from Figure 2), the only time frame when links L7, 

L8 observe the same part of the front as the Maccabim gauge is between 1930-0000 LT 

26-27 December 2006 (the rainstorm azimuth is around 90-110°).

e. Accumulating over 10 minutes interval

Accumulating results over the 10 minutes interval diminishes the differences 

between the all three reconstruction algorithms, producing temporal correlations of up to 

0.97 (see Table 4, Figure 11), lowering the timing errors of the spatial algorithms. The 

best RMSE 1.59, 1.62 and 3.87 mm h-1 are achieved by EKF for the Ramle West, Switch 

Ramle and Maccabim stations and the best RMSE of 2.35 and 1.35 mm h-1 at the other 

two stations are achieved by SHT. The linear regression slope coefficient of SHT at 

Ramle West, Switch Ramle and Kfar Shmuel stations is considerably lower than that of 

EKF or NLT (0.80-1.19 vs. 0.91-1.59), which arises from the missed high rain rates due 

to the SHT averaging effect. At the Maccabim site, the slope coefficient for EKF (0.56) is 

lower than that of SHT and NLT (0.65 and 0.60), which results from lowering of short 
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periods of peak intensity during advection of rain fronts from L7,L8 to the Maccabim 

location. This smoothing effect of EKF advection can be seen that by comparing the EKF 

records at Figure 8 (D, E): for example, a clearly observable peak at 1500-1600 on Figure 

8 (D) is smoothed after being translated to the Maccabim site (Figure 8, E).

7. Conclusion

The paper explored the concept of recovering the rainstorm dynamics from 

correlations of multiple commercial microwave communication links and assimilation of 

observations into a stochastic spatio-temporal rainstorm model, based on the rainstorm 

advection and the extended Kalman filter, through comparison of the microwave-derived 

rainfall estimates to five ground rain gauges. In addition, the spatio-temporal 

reconstruction results were compared to two spatial reconstruction techniques. All three

algorithms show similar performance for three rain gauges, located in the close proximity 

to microwave links. The spatio-temporal EKF-based technique performs better than 

spatial algorithms when compared to two other rain gauges, located 2-4 km away of 

microwave links (correlations 0.75 vs. 0.67 and 0.57 vs. 0.24 at 1 minute temporal 

sampling) that demonstrates the ability of the method to capture the rainstorm dynamics 

(velocity and direction) and to track the rainstorm accordingly.

Measuring the near-surface areal distribution of rainfall at the temporal resolution 

of 1 minute is a unique advantage of the commercial microwave network used in this 

study; it is known that the sampling interval of 5 minutes, typical for radars, can be a 

considerable source of errors (Piccolo et al, 2005). In addition, the communication 

systems are constructed according to the long-term rainfall statistics in the local climate 
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to assure minimum interruption in any weather conditions by providing enough fade 

margins for the strongest rainfalls occurring in the region.

The important meteorological benefits of measurements by commercial 

microwave links are accurate mapping of near-surface precipitation over wide areas, 

including currently unmapped areas (e.g. regions with complex orography), measurement 

of urban precipitation, where the high density of microwave links advantageously provide 

redundancy, and mapping of the horizontal wind field of a storm, similar to the mapping 

produced by Doppler radars. 

However, much work still needs to be done to bring the approach to the 

operational level. Thus, representing rain front movement as a plane in the { }, ,x y tδ δ δ

space can be a valid assumption only over small areas. Next, only in the case of 

homogeneous rain front it is possible to correlate the same rainstorm features recorded by 

different links. This becomes problematic if a rainstorm is formed of sparse rainfall cells, 

as at 0130-0600 LT 26 December 2006 when no time frames were considered confident; 

the missed information can be taken from adjacent areas. The dynamic model in the

present form does not allow real-time observations; forecasting advection dynamics and 

rainfall uncertainties (model error covariance) should be considered. The pure translation 

model accounting for neither diffusion nor development/decay of the individual rain cells 

is valid only over short time periods and small areas; a-priori diffusion coefficients may 

be introduced. The problem is generally underdetermined, since the number of links is 

limited; introducing spatial correlation into the model may be necessary. The problem of 

spatial scale of the model is essential: on one hand, pixel size should be small relatively 

to the typical size of a rain cell, to diminish the numerical diffusion and allow more 
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accurate representation of the rainstorm features; on the other hand, pixel size is limited 

by the rainstorm velocity and numerical stability of the second order numerical scheme. 

Possible solutions may involve splitting each time step into a number of shorter steps so 

that the Courant numbers stay less then one, and introducing flux limiters to prevent 

oscillations of the solution. In the study, zero rainfall attenuation was determined from a-

priori known dry periods immediately before the beginning of the event; in a real

application, the changes of zero rainfall attenuation during an event due to variations in 

air moisture and scintillation effects should be taken into account.  Finally, dense 

communication networks allowing observation at high temporal and spatial resolution, 

are not available everywhere; it was shown that the quality of reconstruction at every 

point depends on the availability of nearby links. Besides, the technique needs to be 

tested on rainfall patterns other than the frontal rainstorm, described here.
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List of Figures

FIG. 1. Examples of radar maps of the studied event, showing (A) an arch-like rainstorm 

front moving from north-west and (B) sporadic convective cells 15 hours later. The 

studied area is marked by a rectangle.

FIG. 2. Locations of microwave links, used for rainfall observations, around the cities of 

Ramle and Modi’in (□), rain gauges (∆) Ramle West, Switch Ramle, Kfar Shmuel, 

Modi’in Shimshoni, Maccabim and the location of the weather radar (*). Out of 23 

microwave links, 14 are distinct ones and other 9 complement some of them in opposite 

directions. The local orography contours are given in meters; height difference between 

the cities of Ramle and Modi’in is about 250 m. The surroundings of the cities are 

suburbs with low population density. 

FIG. 3. Distribution of initial ij∆ and refined ij∆
~ for 253 and (after removing outliers) 189 

different pairs of links at the time slot 1930 – 2230 LT 26 December 2006.

FIG. 4. Average mismatch ( )2~ γ∆ for different values of γ for the entire event (A) and a 

histogram of 2~
∆ for 14 time slots of the entire event under study (B). Time frames with 

large 2~
∆ correspond to the cases where it is impossible to determine rainstorm 

dynamics (no clear rainstorm features captured by the majority of the links).
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FIG. 5. Change of advection velocity (A) and azimuth (B) over 15 time slots (13 

measured values) over the entire event, interpolated at 1 minute resolution.

FIG. 6. Voronoi chart showing the variable density grid consisting of 18 non-uniform 

pixels, used for NLT reconstruction; pixel centers are denoted by (□).

FIG. 7. The series of snapshots of rainfall field, reconstructed using the stochastic space-

time model from microwave links (right), compared to the weather radar images (left), 

over the entire test site at 4 time slots. The standard radar maps do not cover the whole 

area because of the clutter, while the maps, reconstructed from microwave links are 

restricted to the area where measurements were available. The interval between 

successive radar scans is 3-4 min, so that radar images were aligned so that the time slot 

at the microwave map falls approximately in the middle of radar scanning interval (e.g. 

1533 on microwave map vs. 1536 on radar map).

FIG. 8. Cumulative rainfall extracted from the instantaneous rainfall maps produced by 

EKF-advection reconstruction, compared to the rainfall measured by rain gauges at five 

locations.

FIG. 9. Scatter plots and corresponding linear regression equations of the reconstructed 

rainfall fields vs. rain gauges, for the EKF-advection reconstruction at 1 minute 

resolution.  
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FIG. 10. Comparison of hourly accumulated time series of path-averaged rainfall intensity 

of the bi-directional link L1 vs. Kfar Shmuel rain gauge (A) and comparison of the same 

links and the rain gauge over a 1.5 hour segment (B), (C).  The L1 time series were 

shifted by 3 minutes to compensate for 2.5 km distance between the link and the rain 

gauge.

FIG. 11. Scatter plots and corresponding linear regression equations of the reconstructed 

rainfall fields vs. rain gauges, for the EKF-advection reconstruction at 10 minute 

resolution.
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TABLE 1. Power-law equation coefficients used in the study. 

Coefficients 18 GHz 22 GHz 23 GHz

ak 0.0521 0.0828 0.0915

bk 1.1153 1.0741 1.0651

TABLE 2. Correlation coefficients ρ, bias and RMSE and linear regression equation of the 

microwave rainfall estimates vs. rain gauges at the 1 minute temporal resolution for the 

EKF-advection, SHT and NLT algorithms. 

Rain gauges

Statistics

Ramle West Switch 

Ramle

Kfar 

Shmuel

Modi’in 

Shimshoni

Maccabim

EKF 0.85 0.83 0.75 0.77 0.57

SHT 0.78 0.81 0.65 0.81 0.24

ρ

NLT 0.84 0.86 0.67 0.80 0.23

EKF -0.19 0.04 0.41 -0.26 -0.61

SHT -0.24 -0.01 -0.14 -0.21 -0.58

Bias

NLT -0.39 -0.16 0.58 -0.29 -0.76

EKF 4.24 4.11 4.33 3.51 5.65

SHT 5.13 4.27 4.29 3.26 7.47

RMSE

NLT 4.44 3.72 5.04 3.30 7.45

EKF 0.83x+0.39 0.94+0.23 1.41x-0.64 0.78x+0.41 0.42x+1.47

SHT 0.58x+1.14 0.67x+0.99 1.06x-0.29 0.83x+0.30 0.33x+1.80

y=ax+b

NLT 0.74x+0.50 0.84x+0.34 1.54x-0.79 0.83x-0.21 0.29x+1.77

Aver. rain rate 3.28 3.06 2.56 2.99 3.56
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TABLE 3. Linear regression equations for the Ramle West rain gauge vs. its nearby bi-

directional links L11 and L12.

Links Forward direction Backward direction

L11 0.97x-0.29 0.94x+0.03

L12 0.58x+0.79 0.56x+1.08

TABLE 4. Correlation coefficients ρ, RMSE and linear regression equations of the rainfall 

estimates vs. rain gauges at the 10 minutes temporal resolution for the EKF-advection, 

SHT and NLT algorithms. 

Rain gauges

Statistics

Ramle West Switch 

Ramle

Kfar 

Shmuel

Modi’in 

Shimshoni

Maccabim

EKF 0.96 0.96 0.85 0.93 0.56

SHT 0.95 0.94 0.84 0.94 0.58

ρ

NLT 0.96 0.97 0.85 0.94 0.56

EKF 1.59 1.62 3.04 1.54 3.78

SHT 1.96 1.90 2.35 1.35 4.34

RMSE

NLT 1.79 1.36 3.11 1.36 4.42

EKF 0.99x-0.15 1.07x-0.17 1.57x-1.05 0.93x-0.04 0.56x+0.95

SHT 0.80x+0.40 0.87x+0.40 1.19x-0.63 0.95x-0.07 0.65x+0.68

y=ax+b

NLT 0.91x-0.07 0.98x-0.09 1.59x-0.93 0.94x-0.12 0.60x+0.65
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FIG. 1. Examples of radar maps of the studied event, showing (A) an arch-like rainstorm 

front moving from north-west and (B) sporadic convective cells 15 hours later. The 

studied area is marked by a rectangle.
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FIG. 2. Locations of microwave links, used for rainfall observations, around the cities of 

Ramle and Modi’in (□), rain gauges (∆) Ramle West, Switch Ramle, Kfar Shmuel, 

Modi’in Shimshoni, Maccabim and the location of the weather radar (*). Out of 23 

microwave links, 14 are distinct ones and other 9 complement some of them in opposite 

directions. The local orography contours are given in meters; height difference between 

the cities of Ramle and Modi’in is about 250 m. The surroundings of the cities are 

suburbs with low population density. 
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FIG. 3. Distribution of initial ij∆ and refined ij∆
~ for 253 and (after removing outliers) 189 

different pairs of links at the time slot 1930 – 2230 LT 26 December 2006.
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FIG. 4. Average mismatch ( )2~ γ∆ for different values of γ for the entire event (A) and a 

histogram of 2~
∆ for 14 time slots of the entire event under study (B). Time frames with 

large 2~
∆ correspond to the cases where it is impossible to determine rainstorm 

dynamics (no clear rainstorm features captured by the majority of the links).
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FIG. 5. Change of advection velocity (A) and azimuth (B) over 15 time slots (13 

measured values) over the entire event, interpolated at 1 minute resolution. 
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FIG. 6. Voronoi chart showing the variable density grid consisting of 18 non-uniform 

pixels, used for NLT reconstruction; pixel centers are denoted by (□).
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FIG. 7. The series of snapshots of rainfall field, reconstructed using the stochastic space-

time model from microwave links (right), compared to the weather radar images (left), 

over the entire test site at 4 time slots. The standard radar maps do not cover the whole 

area because of the clutter, while the maps, reconstructed from microwave links are 
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restricted to the area where measurements were available. The interval between 

successive radar scans is 3-4 min, so that radar images were aligned so that the time slot 

at the microwave map falls approximately in the middle of radar scanning interval (e.g. 

1533 on microwave map vs. 1536 on radar map).



FIG. 8. Cumulative rainfall extracted from the instantaneous rainfall maps produced by 

EKF-advection reconstruction, compared to the rainfall measured by rain gauges at five 

locations.



FIG. 9. Scatter plots and corresponding linear regression equations of the reconstructed 

rainfall fields vs. rain gauges, for the EKF-advection reconstruction at 1 minute 

resolution.  
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FIG. 10. Comparison of hourly accumulated time series of path-averaged rainfall intensity 

of the bi-directional link L1 vs. Kfar Shmuel rain gauge (A) and comparison of the same 

links and the rain gauge over a 1.5 hour segment (B), (C).  The L1 time series were 

shifted by 3 minutes to compensate for 2.5 km distance between the link and the rain 

gauge.
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FIG. 11. Scatter plots and corresponding linear regression equations of the reconstructed 

rainfall fields vs. rain gauges, for the EKF-advection reconstruction at 10 minute 

resolution.


