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s u m m a r y

As a response to climate change, shifting rainfall trends including increased multi-year droughts and an
escalation in extreme rainfall events are expected in the Middle East. The purpose of this study is to eval-
uate the potential impact of these shifting trends on stream flow in the Jordan River and its tributaries.
We use a non-homogeneous hidden Markov model to generate artificial daily rainfall simulations which
capture independently shifting trends of increased droughts and escalated extreme. These simulations
are then used as input into a hydrological model calibrated for the upper catchments of the Jordan River
to compare the impact on stream flow and water resources between the different rainfall scenarios. We
compare the predicted baseflow and surface flow components of the tested watersheds, and find that
while an increase in extreme rainfall events increases the intensity and frequency of surface flow, the
over all flow to the Jordan River, and the characteristics of the baseflow in the Jordan River system is
not largely impacted. In addition, though it has been suggested that in the case of a multi-year drought
the karstic nature of the aquifer might lead to more intense, non-linear reductions in stream flow, here
we quantify and show the conditions when annual stream flow reduce linearly with rainfall, and when
these relations will become non-linear.

� 2009 Elsevier B.V. All rights reserved.

Introduction

In the Middle East, recently observed trends as well as regional
climate models suggest that climate change will have complex im-
pacts on regional rainfall (Alpert et al., 2002; Krichak et al., 2007;
Samuels, 2008). On the one hand, there will be less total rainfall
resulting in a drier climate, while on the other an increase in the
number of extreme rainfall events is expected. In Israel, most of
these changes in rainfall trends will occur in the north of the coun-
try over the upper catchments of the Jordan River where reduc-
tions over the past few decades have already been recorded
(Givati and Rosenfeld, 2005). These upper catchments are the main
tributaries into Lake Kinneret (also known as the Sea of Galilee), an
important water resource for the region. Hence, such changes are
expected to cause a new distribution of runoff during the rainy sea-
son, and to lower aquifer replenishment and spring discharge, thus
affecting also the other main regional water sources. Given the
implications for water resource availability, there is the need to
accurately model both the changes in rainfall as well as its associ-
ated impact on stream flow in the Jordan River in order to optimize
future operation water policy and feasibility of interventions.

In this study, a methodology for generating artificial rainfall
simulations which capture the expected changing trends is pre-
sented. The procedure for generating artificial rainfall time series
based on historical trends is well established using Markov pro-
cesses and neural networks (Gabriel and Neumann, 1962; Mason,
2004a). In addition, classification methods such as hidden Markov
models (HMM) have proven useful for capturing hidden states
(‘wet’ or ‘dry’) and reproducing daily weather patterns and rainfall
statistics such as the length of dry and wet spells that are impor-
tant for crop choice and agricultural decisions (Bellone et al.,
2004; Thyer and Kuczera, 2000). In this study, we use a non-homo-
geneous hidden Markov model (NHMM) to capture the expected
shift in climate trends. In NHMMs, the timing and frequency of hid-
den states is modified based on exogenous factors providing a way
to include climatic factors or other predictors which moderate de-
sired trends (Hughes et al., 1999a; Robertson et al., 2007, 2004;
Samuels, 2008). The NHMM is used to generate rainfall simulations
representing future climates which are: (1) drier and (2) more
prone to extreme rainfall events. The artificial simulations are then
used as input into a hydrological model to determine the impacts
on stream flow, peak flow, and water recharge.

Prediction of the impact of such rainfall changes on the stream
flow and river systems is not trivial. For such analysis established
and well calibrated mechanisms for groundwater and stream flow
recharge is needed. Here we used the Hydrological Model for Karst
Environment (HYMKE, Rimmer and Salingar, 2006) for the purpose
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of examining the effect of various rainfall patterns on the recharge
of the three main sources of the Jordan River (Dan, Hermon and
Snir tributaries). HYMKE is a systems approach, daily precipita-
tion-stream flow model, which was developed for both the base-
flow and the surface flow (see definitions in ‘‘Stream flow data”)
of large-scale karst basins. The model was applied simultaneously
to these three tributaries. It was verified by comparing the calcu-
lated base flow and surface flow with daily measured data over
34 years, and demonstrated good agreement of both the surface
(r2 > 0.6) and base flow (r2 > 0.77) components of each stream.

The sequentially coupled climate-hydrological model presented
here provides a novel modeling tool for evaluating the impacts of
shifting rainfall patterns due to climate change on one of the most
important surface water resources in the region. The results of such
a model may provide predictions for water planning and manage-
ment and even for political water-related negotiations in the
region.

Study area and data

The Lake Kinneret watershed

The study area in this paper is the Lake Kinneret watershed, lo-
cated in the northern part of the Jordan Rift Valley (Northern Israel
Fig. 1a). Lake Kinneret contributes �30% of the Israeli water con-
sumption. The lake water is heavily distributed through the Israeli
National Water Carrier (NWC) – the national water supply system
that takes water from the lake and distributes it to other parts of
the country. The average area of the lake surface is 166 km2, the
average volume is 4100 Mm3, the average annual recharge is
�400 Mm3 and renewal period is �10 years.

The major water source of Lake Kinneret is the upper catch-
ments of the Jordan River (UCJR, Fig. 1b and c) with an area of
�1700 km2. Of that area, �920 km2 is in Israel, and the rest is in
Syria and Lebanon. The UCJR region includes four different hydro-
logical units: (1) The Jurassic karst region of Mt. Hermon (Fig. 1b),
(2) the basalt plateau of the Golan Heights, (3) the eastern Galilee
Mountains, and (4) the flat alluvial Hula Valley.

An average of 480 � 106 m3 of water (>80% of the entire river
flow) is contributed annually (1969–2006) to the UCJR through
the karstic springs and surface flow of the Mt. Hermon region
(Fig. 1c), an elongated, 55-km long and 25-km wide anticline of
mostly karstic limestone. Only 7% of the range lies in Israel, while
the rest is divided equally between Syria and Lebanon. The Hermon
high regions (above 1000 m ASL) receive the most precipitation in
Israel (>1300 mm year�1), restricted to the wet season from Octo-
ber to April. Precipitation on Mt. Hermon recharges the main trib-
utaries of the upper catchments of the Jordan River (Fig. 1b): (1)
Dan (255 � 106 m3 annually); (2) Snir, also known as Hatzbani
(118 � 106 m3); and (3) Hermon, also known as Banyas
(107 � 106 m3).

Precipitation data

Long-term daily precipitation data from 12 stations were used.
The sources of the precipitation data were the Israeli Meteorolog-
ical Service (IMS). The rainfall series were compiled and corrected
to prevent missing and erroneous values. Fig. 1c shows the location
and the spatial distribution of the selected stations. The amount of
precipitation on Mt. Hermon, was not measured systematically be-
fore 2006, because of the difficulties in maintenance of meteoro-
logical station at altitudes above 2000 m ASL (Gil’ad and Bonne,
1990). The northernmost rain gauges were located in the Golan
Heights at an elevation of �948 m ASL. Since historical records of
daily rainfall intensity at the selected 12 stations vary, the years
1968–2004 were chosen for the study, given that these are the
years with complete records from all 12 stations. A list of the se-
lected station names, location, and source of the rainfall time series
is shown in Table 1.

Stream flow data

The hydrological model was calibrated for default rainfall-
stream flow relations using daily discharges of the main UCJR trib-
utaries – Dan, Snir and Hermon, measured by the Israeli Hydrolog-
ical Service (IHS). Stream flows were measured by continuous

Fig. 1. (a) Orientation map of the east Mediterranean. (b) Mt. Hermon area and the Dan, Hermon, and Snir streams. (c) The upper catchments of the Jordan River with the
location of rain gauges.
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monitoring of the water level in the stream, and calibrated by peri-
odic measurements of stream velocity profiles. The measured data
were corrected for full natural flow by adding monthly consump-
tions. Then, stream flow time series were separated into base flow
(the slow changing stream flow component, mainly originated
from large karst springs) and surface flow (the quick changing
stream flow component, mainly originated from small springs
and surface runoff) using a procedure which was fully described
and illustrated by Rimmer and Salingar (2006, see Fig. 2).

Methodology

The essence of this study is the operation of the statistical rain-
fall generator, and the hydrological model (Fig. 2), described
herein.

Rainfall generation

Two sets of rainfall shift scenarios were evaluated: (1) a set
consistent with an increase in the number of extreme rainfall
events (3-days or more) but with historical annual amounts and
(2) a set consistent with a drier climate but with the historical
number of annual extreme rain events. These sets were analyzed
separately in order to understand their particular impact on vari-
ations in stream flow. A non-homogeneous hidden Markov model
(NHMM) conditioned on varying state sequences, a vector repre-
senting the order in which one state follows the next, was used to
generate the different scenarios.

Hidden Markov models
Weather generators using chain dependent markov processes

have been used for decades to simulate time series of weather
data (Gabriel and Neumann, 1962; Mason, 2004b; Richardson,
1981). In a Markov model, the probability that there will be rainfall
on a given day Rit is a function of whether or not it rained the day
before PðRitjRit�1Þ where Rit and Rit�1 are the state of rainfall at sta-
tion i at time t and t � 1, respectively. In a hidden Markov model,
the assumption is that there are different hidden states St (typically
persistent weather regimes) each of which has its own probability
of daily rainfall (and its own distribution of daily rainfall rate). The
occurrence of a specific hidden state is dependant upon the state
the previous day. Hence, it is the hidden states that undergo the
Markovian process P(St|St�1) where St, refers to a general vector
variable that defines an underlying weather state, which is then
dependent on the previous weather state, St�1. For each day, the
HMM generates rainfall simulations based on a random sampling
of daily precipitation occurrences Rit from the probability distribu-
tion functions (pdf’s) for the specific hidden state St (Fig. 3).

The extension of the HMM to the NHMM allows one to condi-
tion the transition from one hidden state to the next, known as
the transition probabilities, on exogenous variables. In the NHMM,
the dynamics of the hidden variables can then be expressed as:
P(St|St�1, Xt) where Xi is an exogenous variable vector (Fig. 3). Here
the state transition matrix is treated as a (logistic) function of a
multivariate predictor input time series, as described in Hughes
and Guttorp (1994) and Robertson et al. (2004). In previous works,
the use of exogenous climate factors from large-scale circulation
patterns has improved the representation of both within season
and inter-annual variability (Bellone et al., 2004; Hughes and Gut-
torp, 1994; Hughes et al., 1999b; Robertson et al., 2007, 2004). In
this study, we use modified state sequences to generate rainfall
simulations with the desired persistence and drought trends.

State sequences
Based on the state transition probability matrix from the HMM,

the Viterbi algorithm (Viterbi, 1967) can be used to determine the
most likely sequence of hidden states in the historical data set. Ta-
ble 2 shows the transition probabilities and rainfall amount, per-
cent of days and percent of total rainfall for each of the states in
the HMM.

In the homogeneous HMM, the sequence of states and hence
the occurrence and amount of rainfall is determined by the transi-
tion probabilities between the states, and the intra-seasonal and
inter-annual variability is not captured. By using the viterbi, or his-
torical state sequence as the NHMM input, we are putting back the
historical intra-seasonal and inter-annual variability into the mod-
el. The rainfall simulations generated with the real viterbi se-
quence can be compared to historical data to evaluate the
robustness of the model. Similarly, different state sequences cap-
turing the shifting rainfall trends can be used as NHMM input to
generate the desired rainfall scenarios. In this way, four distinct

Table 1
Station name, longitude, latitude and altitude of selected stations.

Station Longitude Latitude Altitude (m)

Mayan Barukh 35�360 33�150 240
Kefar Szold 35�390 33�120 170
Kefar Blum 35�360 33�100 75
Neot Mordechai 35�360 33�090 75
Malkiyya 35�300 33�060 690
Yiron 35�270 33�040 690
Gadot 35�370 33�010 100
Mahanayim 35�340 32�590 270
Meron 35�260 32�590 680
Har Kenaan 35�300 32�580 934
Golan experimental 35�480 33�070 940
Ein Ziwan 35�470 33�050 948

Fig. 2. Schematic of the sequentially coupled model. The top portions shows the
flow of the rainfall generator while the bottom half depicts the basics of the
hydrological model.
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groups (one validation set and three scenarios) of rainfall simula-
tions were generated:

1. Validation set: NHMM input is the historical estimated state
sequence as identified using the viterbi algorithm. This set of
simulations is compared to the real rainfall data.

2. Baseline scenario: NHMM input is a state sequence generated
based on historical hidden state transition probabilities. This
resulted in rainfall simulations such that Rmean ¼ Rmean real � 5%

and Rwsc ¼ Rwsc real � 5% where Rmean and Rwsc are the annual
mean and number of 3 day wet spells of the simulated time ser-
ies, respectively, and Rmean real and Rwsc real are the annual mean
and number of 3 day wet spells of the historical data,
respectively.

3. Extreme scenario: NHMM input is a state sequence generated
such that Rmean ¼ Rmean real � 5% and Rwsc ¼ Rwsc real þ 25% ð�5%Þ.

4. Drought scenario: NHMM input is a state sequence generated
such that Rmean ¼ Rmean real � 25%ð�5%Þ and Rwsc ¼ Rwsc real � 5%.

For the extreme and drought scenarios, the specific state se-
quences were generated by modifying the transition probabilities
between the different states until it resulted in rainfall simulations
which met the above constraints. Then, from these new transition
matrices, five state sequences were generated and each sequence

was used to generate 10 NHMM simulations, resulting in 50 simu-
lations for each group. A flow chart of the different steps can be
seen in Fig. 2.

These sets of rainfall simulations were then used as input into
the hydrological model. The other input of the hydrological model
– daily potential evaporation – remained similar to Rimmer and
Salingar (2006).

Hydrological model

The main equations for the hydrological model are part of a
conceptual HYdrological Model for Karst Environment (HYMKE)
(Rimmer and Salingar, 2006). In the application to the Mt. Hermon
region it consists of three surface flow catchments, and four regio-
nal phreatic aquifers. HYMKE is made of four modules (Fig. 4): the
surface layer (0), the vadose zone (1), groundwater (2), and surface
flow (3). In the conceptual model, the land surface of the entire
geographical basin is recharged by precipitation and dried by evap-
oration, surface runoff, and percolation to deeper layers. The karst
nature of the landscape was introduced similarly to (Jeannin and
Grasso, 1997), with a surface layer (‘‘epikarst”) composed of both
low- and high-permeability sections that feed the karst network.
The surface layer is drained continuously as a function of moisture
content. Saturation excess is generated when the surface layer is

Fig. 3. Graphical model representation of: (a) hidden Markov model and (b) non-homogeneous HMM (Robertson et al. (2004)).

Table 2
(A) Transition probabilities and rainfall amount, percent of days and percent of total rainfall for historical state sequence from 4-state HMM. Transition probabilities are also used
to generate baseline scenario simulations. (B) Transition probability matrix used to generate state sequence for extreme scenario. (C) Transition probability matrix used to
generate state sequence for drought scenario.

A 1 2 3 4 Average amount (mm/day) Total days (%) Total rainfall (%)

l 0.82 0.43 0.33 0.21 0 64 0
2 0.10 0.19 0.14 0.13 0.6 12 2
3 0.07 0.25 0.27 0.23 4.6 13 19
4 0.02 0.14 0.26 0.43 22.2 11 78

B 1 2 3 4

l 0.85 0.44 0.25 0.09
2 0.06 0.25 0.27 0.16
3 0.06 0.16 0.28 0.32
4 0.03 0.14 0.20 0.43

C 1 2 3 4

1 0.93 0.42 0.22 0.06
2 0.03 0.21 0.22 0.12
3 0.03 0.21 0.33 0.34
4 0.01 0.16 0.23 0.48
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saturated. Part of the excess saturation is then transformed into
surface flow (module 3), while the other part forms a downward
preferential flow component. Therefore, the percolation into the
vadose zone (module 1) includes both ‘‘slow flow” component
through the matrix, and ‘‘quick flow” through the high-permeabil-
ity section, which is effective mainly during the peak of the wet
season. The output from the vadose zone (module 1) feeds the
groundwater reservoir (module 2). However, the differences be-
tween the groundwater discharge patterns require the separation
of module 2 into four groundwater reservoirs. In the case of Mt.
Hermon, three reservoirs feed the Dan, Snir, and Hermon baseflow
component, and one reservoir contributes to the residual of
groundwater to springs in the east part of Mt. Hermon in the area
of Syria. The accumulating output from the surface runoff (module
3) and the baseflow (module 2) for each tributary result in the full
natural flow. The sum of all three tributaries creates the flow in the
main stream, the Jordan River.

Results

Rainfall simulations

The NHMM was used to make spatially disaggregated rainfall
simulations for the 12 stations. Using rainfall simulations from
the validation set as described in ‘‘State sequences” we compared
selected statistics from the modeled rainfall with historical rainfall.
Given the 36 years of data, the NHMM was trained on 30 years of
data and tested on the remaining 6 years. This was repeated six
times, each time leaving out a different set of 6 years. This resulted
in a 36 year out-of-sample time series against which to compare
the historical data and validate the model. Figs. 5a–c show the
averages of the simulated results along with the 50% and 95% con-
fidence limits compared to the observed historical data for annual
amounts, 3-day wet spells and 7-day dry spells. Table 3 summa-
rizes the correlations of the models results with the measured data
for the individual stations for a range of selected statistics. For an-

nual amounts, correlations at individual stations range from 0.56
to 0.95 with an overall correlation of 0.96. Similar correlations
were found for the other selected statistics. These results suggest
that the use of the estimated state sequence is a robust input for
the NHMM. These simulations will also be used to validate the
HYMKE hydrological model.

For baseline, extreme and drought scenarios, as described in
‘‘State sequences”, the transition matrices for each scenario are
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Fig. 4. Schematic description of the Mt. Hermon conceptual hydrological model: module 0 is the surface layer, module 1 is the vadoze zone, module 2 consists of four
groundwater reservoirs, and module 3 simulates the surface flow. The calculated baseflow and the surface flow components of each tributary result in their full natural flow,
and the combined flow creates the Jordan River.

Fig. 5. (a–c): Results from 10 NHMM simulations over the period 1968–2004: (a)
Precipitation amounts; (b) number of 3-day wet spells and (c) number of 7-day dry
spells per season averaged across all 12 stations. Observed, simulated and 50% and
95% confidence limits are shown.
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shown in Table 2A–C. For each case we generated five different
state sequences or NHMM input from the appropriate transition
matrix. We then ran the NHMM model using each of these se-
quences 10 times resulting in 50 model runs (five sets of 10 simu-
lations each). Table 4 shows average annual amounts, dry spell
count and wet spell count from these simulations compared with
the real data. From each of the five sets of 10 simulations, the set
which best captured the desired new trends was chosen as input
into the hydrological model.

Stream flow simulations

Application of the generated rainfall time series with HYMKE
was carried out with the same procedure as described by Rimmer
and Salingar (2006). A ‘‘representative” rainfall gauge of the entire
Hermon region was defined and calculated from the daily gener-
ated precipitation using only four rain gauges out of the 12 stations
at previous stages: Ein Ziwan, Golan Exp. Station, Malkya and
Ma’ayan Barouch. These stations were chosen because a. they are
the (1) most northern gauges, and (2) they represent various eleva-
tions in the northern UCJR. Therefore, the combined application of
the real rainfall from these stations created a ‘‘representing” rain-
fall with good agreement between modeled and measured stream
flows. In each simulation HYMKE created 12 time series: baseflow,
surface flow and full natural flow for the Dan, Snir, Hermon and
Jordan Rivers.

Validation of the combined rainfall and stream flow simulations

First, validation of the effectiveness of the model to capture
stream flow was carried out, using the results of both single simu-
lations, and the average stream flow from the set of 10 simulations
from the validation set. We compare the original rainfall data with
results from the validation set as well as with results from the
baseline scenario. This scenario has the same average annual rain-
fall as well as wet and dry spells as the validation set. However, the
validation set, which is based on the correct historical state se-
quence, captures the true inter-annual and intra-seasonal variabil-
ity of the rainfall time series. In the baseline scenario, this inter-
annual and intra-seasonal timing is randomized. We used three
tests to check whether the integration of the artificial rainfall into
the hydrological model, is valid for both baseflow and surface flow
in all tributaries.

In the first test the distribution parameters (maximum – 100%,
minimum – 0%, median – 50%, and the lower – 25% and upper –
75% quartiles) of each single predicted flow were compared to
the best model results when the measured rainfall data were used
as input, i.e. the ‘‘original model”. In general a single simulation is
not considered representative due to the stochastic nature of the

rainfall series, and therefore averages of the multiple simulations
are often used. However, such averages dampen out the peak val-
ues, so for this test, single simulations were used. Here we exem-
plified the distribution parameters of the calculated full natural
flow in the Jordan River from a single simulation (Fig. 6a) with
the same parameters from the original model (Fig. 6b). The distri-
bution of daily stream flows using the simulations from the valida-
tion scenarios was always similar to the original model.

The second test is the r2, where we expect that the daily pre-
dicted flows (validation set) will be in agreement with the daily
measured flows. As mentioned above, given the stochastic nature
of the rainfall simulations, the average of the 10 simulations from
the validation set and baseline scenario were used for this test. The
test was performed on each of the 12 time series. The results (Table
5) indicated that while the average of the simulations from the val-
idation set result in lower values than the original data, they pro-
vide a much better fit than the average of the simulations from
the baseline scenario, where inter-seasonal variability is random-
ized. This indicates that much of the seasonality is captured in
the validation set. The r2 of surface flow of the Dan River was by
far less accurate than the other components of the model because
it is a small component, subject to large measurement errors.

The third test is the Nash–Sutcliffe (NS) test (Nash and Sutcliffe,
1970), a criterion for evaluating hydrological goodness of fit be-
tween the predicted (simulated) and the measured (observed) dai-
ly values. Specifically, this test evaluates whether the model results
are better (NS > 0), similar (NS = 0), or worse (NS < 0) than using
seasonal averages. In other words, it is a measure of whether the
inter-annual variability is captured. Here, (excluding the Dan sur-
face flow) the original model resulted in NS > 0.2, and for most of
the predicted time series NS > 0.4 (Table 5, ‘‘original”, also Rimmer
and Salingar, 2006), which indicate that this model is much better
than simple seasonal averages. The results of the average predicted
stream flows of the 10 simulations from the validation set, which
resulted in NS ffi 0 (Table 5, ‘‘Validation Set”), indicated that these
time series are similar to the seasonal average of the measured
stream flows, and therefore the inter-annual pattern is well cap-
tured. When the same test was performed on the average simula-
tion of the baseline scenario, it resulted in NS < �0.5 which, as
expected, shows that the baseline scenario does not capture the in-
ter-annual trends.

The overall conclusion from these three tests is that the artifi-
cial rainfall time series of the validation set are a good representa-
tion of the measured rainfall, capturing annual averages as well as
inter-annual trends and seasonality. Their application into the
hydrological model result in well understood and perfectly reason-
able stream flows. This suggests that the artificially generated rain-
fall scenarios can be effectively used to determine the impacts of
changes in rainfall trends on stream flow. Specifically, this sequen-

Table 3
Correlation of real rainfall data with model results for the 12 individual stations and for the combined total.

Amounts 3-day wet 7-day dry Wet days Dry days Wet–wet P Dry–dry P

Mayan Barukh 0.90 0.77 0.75 0.76 0.76 0.83 0.70
Kefar Szold 0.81 0.84 0.63 0.72 0.72 0.82 0.66
Kefar Blum 0.95 0.87 0.93 0.95 0.95 0.95 0.93
Neot Mordechai 0.94 0.86 0.89 0.92 0.92 0.91 0.92
Malkiyya 0.95 0.89 0.91 0.97 0.97 0.94 0.97
Yiron 0.91 0.82 0.81 0.88 0.88 0.88 0.85
Gadot 0.73 0.77 0.40 0.48 0.48 0.64 0.39
Mahanayim 0.56 0.58 0.50 0.47 0.47 0.52 0.44
Meron 0.95 0.82 0.86 0.90 0.90 0.89 0.90
Har Kenaan 0.93 0.91 0.82 0.95 0.95 0.94 0.94
Golan experimental 0.91 0.70 0.85 0.82 0.82 0.73 0.87
Ein Ziwan 0.90 0.72 0.77 0.84 0.84 0.78 0.84
Total 0.96 0.94 0.93 0.94 0.94 0.95 0.94
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tially coupled climate-hydrological model can be used to evaluate
the impacts of an increase in rain spells and a decrease in amounts
independently. We looked at the difference in base and surface
flow of the Snir and the Hermon as well as the total flow of the Jor-
dan River under the two climate change scenarios and compared
them to stream flow under current trends.

Scenarios

The simulated sets of rainfall time series were used as input into
the HYMKE model. In reality, changes in rainfall affect evapotrans-
piration, which might also impact stream flow. However, these
changes are not included in this study. Comparisons were made
between the results of the baseline and the extreme and drought

scenarios. Typical differences between them are demonstrated in
Fig. 7, examining the soil moisture content (or the soil water stor-
age) calculated with HYMKE during a single rainy season. Soil
moisture is the single most important variable that determines
the contribution of rain event to stream flow. If following rain
event moisture exceeds saturation (hs), only then the ‘‘potential”
moisture (hp) is transformed to surface runoff and high preferential
flow recharge to groundwater. According to Fig. 7 in case 1, the soil
in the extreme scenario reached saturation (and therefore contrib-
uted to stream flow) earlier during the rainy season then in the
baseline scenario following higher intensity rainfall event, while
in the drought scenario soil reached saturation much later during
the rainy season. In case 2 the soil from the extreme scenario be-
came drier during the season because of larger rain spells, while

Table 4
Selected statistics from the rainfall simulations.

Mean from 10 simulations Change from real (%)

Average annual amounts
Real 679 555 510 534 625 772 441 556 923 697 883 814 666
Baseline scenario 692 584 534 545 651 787 458 575 944 725 912 847 688 0.03

704 582 546 547 652 777 465 573 949 713 899 838 687 0.03
593 501 464 467 554 674 392 492 821 635 778 723 591 �0.11
682 570 543 535 645 776 460 563 946 721 889 822 679 0.02
679 561 524 535 638 762 443 570 924 703 888 812 670 0.01

Increased spells 719 593 559 561 669 815 483 581 983 739 958 870 711 0.07
657 543 516 516 611 744 429 544 883 700 874 800 651 �0.02
616 510 471 475 562 685 395 498 816 631 801 735 600 �0.10
701 582 545 554 656 782 466 588 970 735 920 859 696 0.05
682 560 529 525 625 760 445 555 916 703 880 815 666 0.00

Reduced amount 501 403 380 395 447 547 330 403 667 501 641 579 483 �0.27
490 398 380 388 456 552 327 411 673 508 638 598 485 �0.27
482 399 371 377 453 548 326 401 663 504 623 582 477 �0.28
521 433 402 411 489 583 351 429 704 545 671 628 514 �0.23
506 418 392 392 462 559 330 415 682 524 644 608 494 �0.26

7-Day dry spell count
Real 11.4 11.4 11.6 12.0 11.0 10.6 12.6 12.3 12.3 9.5 10.4 11.7 11.4
Baseline scenario 11.3 11.5 11.5 11.9 10.7 10.5 12.8 12.3 12.5 9.3 10.3 12.0 11.4 0.00

10.8 11.2 11.0 11.5 10.3 10.1 12.2 11.9 12.0 8.8 9.9 11.6 10.9 �0.04
11.8 12.0 12.0 12.4 11.2 11.2 13.2 12.7 12.9 9.8 10.9 12.6 11.9 0.04
11.3 11.5 11.5 12.0 10.8 10.7 12.6 12.2 12.5 9.4 10.4 12.1 11.4 0.00
11.6 11.8 11.8 12.1 11.0 10.8 12.9 12.4 12.7 9.6 10.5 12.3 11.6 0.02

Increased spells 11.7 11.9 11.8 12.4 11.2 10.9 13.0 12.5 12.6 9.7 10.7 12.4 11.7 0.03
12.0 12.2 12.3 12.6 11.5 11.3 13.2 12.9 13.1 10.1 11.1 12.8 12.1 0.06
13.1 13.3 13.3 13.7 12.5 12.4 14.3 14.0 14.1 11.3 12.1 13.8 13.1 0.15
11.9 12.1 12.3 12.6 11.6 11.5 13.2 12.8 13.0 10.4 11.3 12.8 12.1 0.06
12.5 12.6 12.7 13.1 12.0 11.8 13.8 13.3 13.4 10.6 11.6 13.1 12.5 0.10

Reduced amounts 18.9 19.1 19.3 19.3 18.5 18.1 19.8 19.6 19.7 16.9 18.2 19.7 18.9 0.66
18.7 19.0 19.2 19.2 18.4 18.0 19.5 19.3 19.5 16.9 17.9 19.5 18.7 0.65
18.4 18.5 18.8 18.9 18.1 17.7 19.3 19.0 19.2 16.5 17.5 19.2 18.4 0.62
18.5 18.8 19.0 19.1 18.3 17.9 19.4 19.1 19.3 16.8 17.8 19.3 18.6 0.63
18.5 18.7 18.9 19.0 18.1 17.6 19.4 19.1 19.3 16.6 17.8 19.3 18.5 0.63

3-Day wet spell count
Real 6.5 6.4 6.6 6.0 7.0 6.8 4.7 5.3 5.4 8.0 6.7 5.4 6.2
Baseline scenario 6.9 7.0 7.3 6.7 7.6 7.4 5.4 6.0 6.0 8.6 7.2 6.0 6.8 0.10

7.0 7.0 7.4 6.7 7.8 7.5 5.5 6.0 6.2 8.8 7.6 6.2 7.0 0.12
5.9 5.8 6.0 5.4 6.4 6.2 4.5 4.8 5.0 7.2 6.2 4.9 5.7 �0.08
7.0 7.2 7.3 6.7 7.8 7.5 5.5 6.0 6.2 8.7 7.4 6.0 6.9 0.11
6.7 6.5 6.9 6.3 7.3 7.2 5.0 5.6 5.8 8.4 7.2 5.6 6.6 0.05

Increased spell 8.0 8.0 8.4 7.4 8.7 8.5 6.3 6.7 7.0 9.9 8.5 6.9 7.9 0.26
7.4 7.5 7.8 7.0 8.3 7.9 5.6 6.2 6.4 9.4 7.9 6.3 7.3 0.17
6.6 6.5 6.8 6.1 7.2 6.9 5.1 5.4 5.7 8.2 6.9 5.7 6.4 0.03
7.9 7.9 8.2 7.5 8.6 8.3 6.2 6.6 6.8 9.8 8.3 6.8 7.7 0.24
7.4 7.5 7.7 6.7 8.2 7.8 5.7 6.1 6.3 9.3 7.8 6.2 7.2 0.16

Reduced amount 6.0 5.9 6.2 5.6 6.4 6.3 4.7 5.1 5.3 7.2 6.2 5.1 5.8 �0.06
5.9 6.0 6.0 5.6 6.4 6.3 4.5 5.1 5.3 7.1 6.2 5.1 5.8 �0.07
5.8 5.7 6.0 5.4 6.2 5.9 4.4 4.7 5.0 7.0 5.9 4.9 5.6 �0.10
6.3 6.2 6.5 6.1 6.6 6.5 5.0 5.4 5.6 7.0 6.4 5.3 6.1 �0.02
6.4 6.4 6.6 6.0 6.9 6.6 5.0 5.4 5.5 7.5 6.5 5.5 6.2 �0.01
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in the drought scenario soil was drained even more during the
rainy season. In case 3, a higher rainfall event contributed larger
excess saturation in the extreme than in the baseline scenario,
while in the drought scenario soil was relatively dry prior to the
rainfall event and therefore no excess saturation was formed.

Although there are obvious differences between the extreme
and the baseline scenarios during the season, after averaging 10
scenarios, the only significant difference that remains between
their results is the change in distribution of daily runoff (Fig. 8).
The drought scenario, however, shows significant reduction in
the overall contribution both to surface flow and base flow.

Scenario 1: increased wet spells
The results of the extreme scenario were analyzed for all the 12

stream flow time series. We found clear evidence that it will in-
crease the probability of more intense surface flow, specifically in
the Snir with the large surface area (Fig. 8a), where higher fre-
quency of peaks above 2 million m3/day were found (Fig. 8b). Sim-
ilar changes were observed in the Hermon stream and in the
cumulative surface flow in the Jordan River. However, distribution
of baseflow (Fig. 8c) remained nearly similar to the baseline sce-
narios due to the large ‘‘damping” effect of both the vadoze zone
and especially the ground water reservoirs (Fig. 4). Since �80% of

the Jordan River flow comes from karstic springs (baseflow) the ef-
fect of the change in distribution in surface flow nearly vanished
from the entire Jordan River flow distribution, compared to the
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Fig. 6. Distribution of calculated full natural flow in the Jordan River: (a) Single simulation from the validation set; (b) the best model results using the measured rainfall data
(original model). The largest errors in distribution parameters between validation series and original model were always smaller than ±12%.

Table 5
NS and r2 tests for the surface, base and total flows in the Dan, Snir, Hermon and
Jordan River, compared with real flow measurements during the years 1980–2000,
under three scenarios: original, validation and baseline scenarios (see text for details).

1980–2000 Base flow Surface flow Total flow

NS r2 NS r2 NS r2

Original
Dan 0.26 0.73 �1.55 0.44 0.21 0.68
Snir 0.69 0.84 0.46 0.62 0.55 0.69
Hermon 0.78 0.89 0.42 0.74 0.66 0.83
Jordan 0.77 0.93 0.44 0.70 0.65 0.80

Validation set
Dan �0.42 0.29 �0.45 0.37 �0.37 0.31
Snir 0.08 0.45 0.04 0.25 0.06 0.32
Hermon 0.11 0.54 0.04 0.38 0.10 0.48
Jordan �0.02 0.48 0.03 0.32 0.06 0.41

Baseline scenario
Dan �0.98 0.04 �2.72 0.07 �1.01 0.03
Snir �0.38 0.19 �0.85 0.02 �0.68 0.06
Hermon �0.54 0.25 �1.31 0.06 �0.88 0.14
Jordan �0.63 0.15 �1.19 0.04 �0.84 0.07
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Fig. 7. Modeled soil moisture (h) dynamics in time (t) for a single rainy season
(October–April), and a single run from the baseline (a), extreme (b) and drought (c)
scenarios. Daily rainfall amounts are in mm. The hs is soil moisture saturation and hp

is the excess moisture that forms runoff and high recharge of groundwater. The
dashed areas (1–3) demonstrate typical differences between scenarios in the tested
groups (see text).

520 R. Samuels et al. / Journal of Hydrology 375 (2009) 513–523



Author's personal copy

baseline scenarios (Fig. 8d). This result indicates that more flooding
is expected, however, it will not have a significant impact on the
cumulative annual stream flow in the rivers analyzed as was
hypothesized in the introduction.

Scenario 2: decreased amounts
The results of the drought scenario lead to a comparable

reduction in the stream flow (20–25%). However, the hydrolog-
ical model is not linear by definition, and the reduction in
stream flow is not necessarily similar to the reduction in rain-

fall amounts. A typical relationship between annual surface
(quick) flow and the annual rainfall (Fig. 9) reveal that at the
Hermon karst as long as the annual rainfall exceeds
�400 mm, these relations are nearly linear. However if annual
rainfall is less than �400 mm (very dry year) we expect mini-
mal additional quick flow to the rivers; a stronger reduction
in the surface flow component than the reduction in rainfall
amounts; and a significant deviation from the linear relations.
This characteristic of the system was previously reported by
Rimmer (2008).
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Fig. 8. Comparison of stream flow distribution with scenarios from the baseline (left) and extreme (right) scenarios: (a) surface flow in the Snir tributary; (b) distribution of
the upper 2.5% of the stream flow events; (c) base flow in the Snir tributary and (d) total flow in the Jordan River.
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The water balances of the land surface for the three scenarios
were summarized in Table 6. Evaporation depends on soil mois-
ture, and therefore during dry conditions it was reduced in the
drought scenario. A larger component of the water remaining in
the land surface under unsaturated conditions is also typical of
drought in karst areas, where saturation conditions were reached
less often. The result is a reduction in evaporation, increased per-

centage of water recharging groundwater through slow Darcy flow,
and an obvious reduction in the percentage of water that goes to
surface flow, as well as reduced fast preferential recharge flow to-
wards groundwater.

The expected annual flow in the Jordan River under current
rainfall conditions (baseline scenario) were compared to the flows
under the extreme and drought scenarios (Fig. 10). Given that the
rainfall simulations are generated stochastically, there is one year
(#25 in Fig. 10) where the rainfall in the drier climate is much
higher than the current conditions. While the next year is again
characterized by the new lower rainfall amount, the response of
stream flow in the Jordan River dramatically increases in that year
and then slowly decreases over the next 3 years. This is consistent
with the fact that the entire Jordan River system is mainly affected
by the large baseflow from the Dan Spring. The linear reservoir that
represents this spring in HYMKE (Fig. 7) is known to have a reces-
sion constant of 300 days (Rimmer and Salingar, 2006), which
means that the memory of this system is nearly 2–3 years. Here,
by comparing this result to the real flow data in the extremely
wet seasons of 1991/1992 and 2002/2003 (Rimmer, 2008), we
see again that the combined system of statistically based rainfall
series and hydrological model is in agreement with the real Jordan
River system.

Conclusions

The question of how changes in different rainfall trends will im-
pact stream flow is crucial for effective management and planning
of river systems. The ability to assess the replenishment process of
water supply systems under these scenarios is difficult as it re-
quires both the modeling of the underlying climatic parameters
as well as understanding the response of the aquifer system, nei-
ther of which is at all straightforward. The use of an integrative
model which simulates rainfall with the desired characteristics
as input into a hydrological model which has been shown to cap-
ture the illusive characteristics of a karst aquifer creates a tool that
can effectively be used for assessing impacts of climate change and
changing rainfall trends on the Jordan River System. While some of
the results are expected, such as that decrease in rainfall leads to a
comparable decrease in stream flow (at this level of 20–25%), some
are less so. Much speculation has been made about how an in-
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Table 6
Calculated mass balance of the land surface for three scenarios.

Baseline (%) Extreme (%) Drought (%)

Rainfall 100.00 100.00 100.00
Evaporation 19.41 19.14 18.64
Excess saturation 49.37 49.33 40.97
Darcy flow downward 31.50 31.83 40.92
Error 0.29 0.30 0.53
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crease in intense rainfall trends, with more dry days, will impact
the stream flow. Most of these speculations hypothesized that un-
der such conditions the overall flow of the Jordan River will reduce,
with little evidence supporting it. Here we show that while an in-
crease in extreme rain events will results in changes in surface flow
and lead to an increased risk of flooding, it will have no significant
impact on total stream flow. This is due to the karstic nature of the
Jordan River sources where �80% of the flow originates from
groundwater. The increased risk of flooding is especially high over
the Hula Valley area with potentially destructive effects on agricul-
ture in the region (Litaor et al., 2008). Such information about
changes in rainfall regimes are important for assessing flood risk,
for optimizing irrigation and agriculture and for overall integrated
water management.
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