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Abstract. The Supercomputer Toolkit constructs parallel computation
networks by connecting processor modules. These connections are set
by the user prior to a run and are static during the run. The Technion’s
Toolkit prototype was used to run a simplified version of the PSU/NCAR
MM5 mesoscale model [9]. Each processor is assigned columns of the
grid points of a square in the (x,y) space. When n × n columns are
assigned to each processor its computation time is proportional to n2

and its communication time to n. Since the Toolkit’s network computes
in parallel and communicates in parallel, then, for a given n, the total
time is independent of the size of the two dimensional array or the area
over which the weather prediction takes place. A mesoscale forecast over
the eastern Mediterranean was run and measured; it suggests that were
the Toolkit constructed from ALPHA processors, 10 processors would
do a 36 h prediction in only about 13 minutes. A 36 hours prediction
with full physics for the whole earth will require 2 hours for 80 ALPHA
processors.

1 Introduction

This is a joint work of two groups: a group that developed the prototype of the
Supercomputer Toolkit and a group that studied numerical weather prediction.
We started from the question “How many processors are required to predict the
weather over the east Mediterranean?” We ended with an estimate for the num-
ber of processors to predict the weather over the whole earth. Our cooperation
began once we realized that there is a match between the computational struc-
ture of a domain decomposition numerical weather prediction scheme and the
architecture of a Supercomputer Toolkit computational network. It is proper,
therefore, that we start the introduction with this match. Moreover, our main
results, in particular, time and performance estimations, follow readily from this
match and from the performance of the Toolkit processor.

The Supercomputer Toolkit [2] constructs special purpose computers by in-
terconnecting standard modules. The main module is a processor (including
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MPCU

Fig. 1. The abstraction of the Toolkit processor and its interconnection graphs. Each
Toolkit processor is a memory-CPU (MCPU) unit with two bidirectional I/O ports.
Any graph can be formed as long as the cardinality of each node is less than 8. A ring,
a communication cluster and the covering of 2D space are illustrated.

CPU and memory) that has two I/O ports. Processors modules are intercon-
nected to networks by physical connection of ports. Figure 1 depicts a graphical
abstraction of such a processor and some networks generated by interconnection
of ports. Processors whose ports are connected together are called neighbors;
neighbors can exchange information between them through the connected ports.

Processors of such a computational network can compute in parallel. More-
over, a processor can read/write through its left- and right-port simultaneously.
Thus, considering the ring structure of Fig. 1, a processor can send information
to its left neighbor while at the same time read information sent from its right
neighbor; each of its neighbors can do the dual action with its own neighbors.
In other words, the network’s processors can communicate in parallel as well as
compute in parallel.

Consider the numerical weather prediction problem. As is well known,
weather prediction is a 3D partial differential equation problem. The height
z corresponds to the atmospheric height and is often taken as 15-20km. The
sizes of the other two dimensions, call them x and y, depend on the area to
be covered and it can range from 50-5000 km, for mesoscale modeling. A grid
is defined over the 3D space. Typically, the height is sampled (unevenly) 30-50
times; the x and y dimensions are sampled evenly each 10 to 60 km, depending
on the area and the detail to be covered.

The partial derivatives with respect to x, y and z are replaced by differences
resulting in ordinary differential equations in time with the state variables being
the values of the pressure, velocity, etc., at the grid points. These equations are
integrated numerically in what can be considered as a mixed method: The grid
points along the z direction at each given xi, yj form a column that is considered
a ‘cell’. A time increment ∆t is chosen to satisfy the CFL criterion1.

1 Courant-Friedrichs-Levy stability criterion; see, for example, [10] p.442, with respect
to the speed of sound (3 sec per km) and with respect to the x,y distance between
grid points.
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Each cell calculates the value of the state at each of its vertical sample points
at time t+∆t using an implicit integration formula taking into account the states
of the neighboring cells at time t as constants. Finally, the result obtained at
t + ∆t is declared as the state for t + ∆t and the process repeats for the next
time increment.

Since the speed of sound, which together with the grid step determines the
integration time step, does not change significantly with the weather, the CFL
criterion implies a constant bound on the time step size and (when the grid is
fixed in space) the above step can be performed by any cell independently of
time or place2.

Thus, the 3D weather prediction problem has the following computational
structure: it is a two dimensional array of cells in which each cell communicates
with its neighbors only and calculates the next state from its previous one plus
the states of all its neighbors3.

If we assign each cell a Toolkit processor and connect the processors to a
grid that covers the 2D region (see the right most part of Fig. 1), then the
computation can be performed by each processor doing the computation of a
cell and, once values are computed, the processor exchanges the results with its
neighbors (only!) and starts working on the computation for the next time step.

It is easy to see that if we partition the 2D space to regions, say squares, each
containing n × n cells, the property that a cell communicates with its neighbors
only is preserved or, inherited by the region. I.e., the processor with the cells of a
region has to communicate only with its neighbors for the state of the cells that
are on the region’s boundary. Even on this level of abstraction one can deduce
two major properties of the above Toolkit’s computation network, i.e., a network
for which the 2D space is partitioned to squares and each processor contains
n × n cells: (a) Since the computation is done in parallel and the computing
time of each processor is a function of the number of cells ‘residing’ in it, the
total network computation-time does not increase with the size of the network.
(b) Since the communication is done in parallel and the communication-time of
each processor is proportional to n, the total network communication-time does
not increase with the size of the network.

Section 2 describes the Toolkit in somewhat more detail; it explains how
the implementation supports (a) and (b) above. Section 3 describes the MM5
model that we ported to the Toolkit and whose performance we measured. The
actual porting of the MM5 program to the Toolkit appears in section 4. The
experimental results relevant to prediction over the East Mediterranean and
over the complete earth is described in section 5. The last section compares the
Toolkit with numerical weather prediction programs running on other computing
systems and summarizes our conclusions.

2 Actually, to reduce the truncation error the ∆t derived from the CFL criterion and
the x, y grid step is divided by some integer n, typically 4, and ∆t

n
is used as the

integration time step. In our program results were accumulated each ∆t only.
3 One might call MM5 a 2 1

2D problem.
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Fig. 2. A general description of the Technion’s Toolkit system and its modules. The
host is a conventional UNIX workstation. Four memory-CPU modules are shown; they
are connected in a ring via wide-band links. The Pablo is an standard extension card
connecting one of the memory-CPU modules (called the master) with a standard con-
nector of the host. Each memory-CPU module has a relatively slow connection with
the host through a RS232 link that connects to a concentrator and the Ethernet.

2 The Supercomputer Toolkit

Introduction: The Supercomputer Toolkit is a family of hardware modules
(processors, memory, interconnect, and input-output devices) and a collection of
software modules (compilers, simulators, scientific libraries, and high-level front
ends) from which high-performance special-purpose computers can be easily con-
figured and programmed. Although there are many examples of special-purpose
computers, see [5], the Toolkit approach is distinguished by constructing these
machines from standard, reusable parts. These parts are combined by the user;
especially, the connections are set by the user prior to a run and remain static
throughout the run. Thus, the Toolkit is a general method for building special-
purpose computers for heavy scientific/engineering computing. The following is a
brief description of the Toolkit system. It presents the minimum information for
an application programmer. The Technion’s Toolkit description appears in [2].
Description: Figure 2 is a general description of the Technion’s Toolkit sys-
tem. The system consists of a host, which is a conventional workstation, Toolkit
processor boards (memory-CPU boards; four in the figure) and communication
components. Fast communication links connect the Toolkit boards. These links
are user connected ribbon cables. The fast links are used for communication at
computing time. The user uses the host for program development, for loading the
network of Toolkit boards, for starting the system and for collecting the results.
The memory-CPU board contains an Intel i860 processor (60 advertised Mflops
double precision arithmetics), memory, a special communication controller and
two ports. The Toolkit processor (board) is considered as a device with two ports.
Processors can be connected by connecting their ports together. Figure 1 illus-
trates such connections. Thus, arbitrary graphs can be formed where processors
are the branches and the nodes are the actual connections.
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Fig. 3. Programming model – the user’s image of the Toolkit processes is illustrated
with three processors A, B and C. The synchronization implies a programming model
that features asynchronous programs, between synchronization barriers in which the
communication among processors takes place, i.e. sync-point in the graph.

Communication: The connections, or the fast links of Figure 2, use a com-
munication method modified from the MIT Toolkit [1][2]. For communication,
processors synchronize their instructions (using a synchronization line, see [1][2])
and deliver/accept blocks whose sizes are known a priori. This yields a fast trans-
fer rate between neighboring processors – 0.5 giga bit per second per port. The
maximum information rate that this method can deliver is half the memory
speed per port as there are two ports that operate simultaneously sharing the
same bus and the same memory. The synchronization is needed even when run-
ning the same programs on all processors since the i860 arithmetic unit timing
is data dependent.

The above synchronization implies a simple yet powerful programming model
that features asynchronous programs, written in, say, C or FORTRAN, between
synchronization barriers in which the communication among processors takes
place. This model of computation is illustrated in Figure 3. According to this
model, each processor program looks like a ‘normal’ program in a high level
language that has calls to synchronization routines embedded within it. The
calls in different processors have to correspond. For example, to implement the
first synchronization barrier (sync-point) each processor program has to have a
procedure-like call at an appropriate place. If, for example, processor A has to
send information to its neighbor, processor B, at a certain point, then processor
B must have a call accepting the information at the same point. This scheme
should be repeated for all sync-points and all processor programs.

Referring to standard computer architecture terminology the Toolkit network
forms a distributed memory computer; each processor accesses its own memory
only; the Toolkit is certainly a MIMD (multiple instruction multiple data) ma-
chine; it is not inherently a VLIW (very large instruction word) machine even if
it can run as such. Its processor is conventional while its communication method
is unique and attains extreme speed for communication between neighbors due
to synchronization and the use of properly terminated ribbon cables.
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3 A Brief Description of the MM5 Model

The MM5 mesoscale model was developed at the National Center for Atmo-
spheric Research (NCAR) and Penn State University (PSU). The model is based
on the integration of primitive hydrodynamic equations [7] and was originally
developed for CRAY computers as a FORTRAN program. The MM5 is the fifth-
generation model; it is the latest in a series of mesoscale models developed in
NCAR starting from the early 70’s [7]. A complete model system consists of the
preprocessing programs as well as the calculation routines. The MM5 model is
the first non-hydrostatic model in the NCAR series, but has also the hydrostatic
option [9]. Second-order centered differences are used for spatial finite differenc-
ing for most equations. A fourth order scheme is applied for the diffusion terms.
A second-order leapfrog time-step scheme is used for temporal finite differenc-
ing. The fast terms in the momentum equation that are responsible for sound
waves have to be calculated on a shorter time step. The horizontal grid is an
Arakawa–Lamb B grid, where the velocity variables are staggered with respect
to the scalar variables [8]. A large number of physical parameterization schemes
is used in the MM5 model. However, for simplicity, in the runs presented here,
only the dry model without the boundary layer physics is employed.

4 Porting MM5 to the Toolkit

General: The code of the MM5 model was modified in order to adapt it to the
Toolkit. This modification was done in a semi-automatic way: macros defined
the partition of the grid of the domain into symbolic sub-domains. Loops along
the domain were identified by hand and their ranges changed according to the
sub-domains. The resulting program and a sub-domain index were submitted
to a macro processor that yielded the program to be run on the corresponding
Toolkit processor. During a time step of integration each processor calculates
over its own sub-domain, taking into account at most two auxiliary rows (the
number of rows depends on the variable; only one of them requires two auxiliary
rows; all the rest require one row only) of cells attached to each sub-domain along
its boundary whose values are taken from its neighboring sub-domains. Although
for most finite difference algorithms of the model only one neighboring row of
cells (in each direction) is required, here, two neighboring rows were necessary
because of the fourth-order diffusion scheme.

After the state at time t + ∆t is calculated, the local communication phase
takes place; i.e., the communication among the processors is performed. Proces-
sors that were assigned neighboring sub-domains are directly connected to each
other (consider again Fig. 1 for covering a 2D space by a network of Toolkit
processors). Since the MM5 system with full physics is a very large system, in
order to try it out, we removed some options such as the handling of humidity
in the air (including convection and micro-physics) and the planetary boundary
layer. We had some code modified because the MM5 was written to run on the
CRAY with a large amount of memory, and with a dialect of Fortran that we
did not have.
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Fig. 4. Sub-domains and data communication in the Toolkit simulation of the Antalya
cyclogenesis, (a) The model structure where the cell represents a column of grid-points
in meteorological nomenclature. (b) The horizontal model domain and its four sub-
domains; The dark shading area consists of four rows of cells. The left two rows belongs
to the left domain but their state is used by the right domain; the right two rows belong
to the right domain and their state is used by the left domain. The total number of
cells is 31x34. (c) Parallelization: two rows of cells, shadow cells, are added to each side
of sub-domain to hold the state of the two external rows of the adjacent sub-domain.

Fig. 5. The covering of a square area by square sub-domains and the cells and shadow
cells of a sub-domain.

The case of the Antalya shallow lee cyclogenesis described by [6], was chosen
for the Toolkit run. Figure 4 illustrates the overlapping of the sub-domains and
the data communication in this particular run. Figure 5 illustrates the covering
of a 2D space and the shadow cells.

Simulation: The simplified MM5 program was flow analyzed by hand. We found
a fair amount of dead code, and a generous amount of arrays used as storage for
intermediate results. The dead code was eliminated but for lack of time we did
nothing about the intermediate arrays. This extra storage was a problem: the
example for which we prepared the initial data had a grid of 31 × 34 × 23 (the
last number is the number of vertical levels) partitioned between four processors
(8 × 34 × 23, 8 × 34 × 23, 8 × 34 × 23, 7 × 34 × 23, these numbers are without
the overlapping), see Fig. 5.When the code was ready we found that it required
about 25% more memory than we had on a Toolkit processor. Since re-writing
the code to reduce its volume significantly is a considerable amount of work,
we decided to take advantage of the computational structure of the MM5 and
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get an estimate of the computation time and communication time by running
the code on simulators. Thus, instead of re-writing the code, it was decided to
run the resulting program on our simulators4. The run of the i860 instruction
level simulator resulted in the time measurement for running the problem on
the current Toolkit. Running the process level simulator (Fortran source) gave
a good indication of the amount of time that is required to run the problem on
an ALPHA 200 (166 MHz) based Toolkit.

5 MM5 over the East Mediterranean

To get insight into the ability of the Toolkit to run the MM5 we return to the
following question: How many processors are required to predict the weather
over the east Mediterranean?

The model domain for the ‘East Mediterranean’ is taken to be an area of
3480km by 2700km, i.e. 59×46 grid-points with 60 km grid interval. The vertical
domain is about 16 km, i.e. top-pressure of 100 hPa, with highly-nonuniform
spacing (50 meter near ground and 1 to 2 km at the top; total of 23 levels). The
forecasting time was taken to be 36 hours.

Using the instruction level simulator, we found that each Toolkit processor
(33MHz clock) did one problem-cycle (i.e., calculating the state at t + ∆t from
the state at t), with 272 (i.e., 34×8) columns, in 14.3 second; running one column
for one cycle required 52.6 mili-second. The amount of communication time was
about 2% of the total time and in the sequel it is ignored. According to the CFL
criterion, the number of problem-cycles for 36 hours is:

T

∆t
≈T ∗ c

∆x
=

36 ∗ 3600
60 ∗ 3

= 720

where T and ∆x are the time interval and the horizontal grid distance, respec-
tively and c is the speed of sound. The time to predict the weather for 36 hours
is: 720 ∗ 14.3 = 2h51 minutes. If one can use processors with 272 columns per
processor to cover the 59 × 46 = 2714 grid points needed for this problem, one
needs approximately 10 Toolkit processors.

The process-level simulator was then run with the same structure as described
before. Since this was an ALPHA 200 processor running native code generated
4 We use two simulators, [3]: The first simulator simulates Toolkit system processes by

running corresponding host processes. For example, to simulate a Fortran program
running on, say, three Toolkit processors, the program is translated using the host’s
Fortran translator and run, by the simulator, as three host processes that commu-
nicate via send/receive, etc. This simulator enables finding bugs in the programs
and, most importantly, in the communication between the processes. The second
simulator is an i860 instruction-level simulator extended to include the communi-
cation system as well as to run a Toolkit system, i.e., several processors and their
communication. The simulator includes the timing of instructions and the timing of
the communication. It is the kind of simulator used to debug kernel code and we
judge the accuracy of its timing to be pretty good.
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from Fortran, the measured performance can be considered as the amount of time
the problem would have taken if the Toolkit were constructed from ALPHA
processors. The time for one cycle, with 272 columns, was found to be 1.06
seconds. That means that with an ALPHA 200 based system, 10 processors
using 272 column each will do the prediction in 720 ∗ 1.06 = 763 seconds or 12
minutes and 43 seconds. We believe that the above are conservative estimates
and that the program could be speeded-up considerably. We attribute the fifteen
fold speed up of the ALPHA to a faster processor (166 MHz clock versus 33 MHz
clock) and to a better compiler.

6 Summary and Conclusions

The Toolkit’s computation network most significant qualitative property rele-
vant to this application is that the Toolkit’s computation network computes in
parallel and communicates in parallel; with equal number of cells per processor
computation time, communication time and the total computation time are in-
dependent of the size of the two dimensional array or the area over which the
weather prediction takes place.

The dependency of the number of computers on the distance of the XY grid
is another qualitative property. Assume that the domain area is given, and the
grid distance is divided by two. Clearly, the number of columns is increased four
fold. From the CFL condition follows that the integration step, ∆t, has to be
halved. Thus, if the number of cells per processor is kept and the number of
processors is increased fourfold, the total time is doubled. If it is assumed that
the time per step is linear with the number of cells per processor (which is not
quite so, see below), to achieve the same run time the number of processors has
to be increased by eight. This is a property of the problem expressed in terms
of processor numbers.

Some detailed qualitative properties are the comparison of the Toolkit system
with other parallel processing systems suitable for running the MM5 [12] [14] [13]
and the role of the microprocessor cache in such computation [4]. This discussion
in not included here for lack of space.

Conservative estimates performed for a typical mesoscale 36 hour forecast
over the eastern Mediterranean suggest that were the Toolkit constructed out
of ALPHA processors, 10 processors would do the prediction in only about 13
minutes.

This estimate can be extended to a global General Circulation Model (GCM)
run covering the whole earth that is about 40 times larger then our eastern
Mediterranean model region. Hence, a Toolkit system with 80 ALPHA proces-
sors will do a global mesoscale (i.e. 60 km grid interval and 23 vertical levels) 36
hours prediction within about 1 hour only. Another factor of 2 in the computing
time is required in order to account for the full physics that was not incorporated
in our MM5 Toolkit experiments. The factor of 2 was determined by indepen-
dent simulations with and without the full physics on other computers (CRAY
and SP2) using the same structure as on the Toolkit. In other words, 80 ALPHA
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processors will do a prediction over the whole globe in about 2 hours with a res-
olution comparable to the finest grid achievable today with GCMs in the largest
operational weather prediction centers. The Toolkit application performed here
uses the MM5 explicit schemes in the horizontal plane.

In summary, the unique property of the Toolkit that computes and commu-
nicates in parallel with communication time being negligible, indicates thst the
long sought goal of numerical weather prediction with high resolution depends
only on the number of available processors with a proper communication scheme
and that the number of processors is not that large.
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