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ABSTRACT

Following the theory of Kusuda and Alpert (Part ), expressions for the eccentricity and tilt angle of the
surface-wind hodograph at different latitudes are derived as functions of the amplitude and phase shift of the
horizontal thermal force and also of some reasonable frictional parameter. Further, analyses of 47 hodographs
in Washington, Oregon and California give the observed tilt angles, eccentricities and senses of rotation. The
tilt angle is nearly linearly dependent on latitude. Eccentricities are in general high (0.9-1) and higher friction
leads usually to higher eccentricity. However, eccentricity may sometimes be very small (giving a circular
hodograph) even with high friction and also very high with low friction; the latter case is primarily due to a
phase shift between the horizontal thermal forces.

It is shown that although in general the frequency of ACR (anticlockwise rotation) hodographs decreases
northward in the Northern Hemisphere, lower friction may lead to a minimum in ACR frequency at some
latitude and this (minimum) latitude moves northward as friction increases. ACR hodographs tend to have
slightly higher eccentricities relative to those with clockwise rotation.

The limitations of the Rayleigh friction parameterization are discussed and the horizontal momentum
equations are solved with the more accurate K-theory friction parameterization. It is shown that near-surface
ACR hodographs turn to become clockwise with increasing altitude.
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1. Introduction

Kusuda and Alpert (1983, Part I) introduced a
simple analytical theory for anticlockwise rotation
(ACR) of the wind hodograph. They showed that the
inclusion of a pressure-gradient force which rotates
diurnally leads to the possibility of ACR. The theory
predicts a much wider group of hodographs, relative
to previous theory, which consequently have a wider
range of eccentricities and hodograph tilt angles, as
well as a different sense of rotation. Those hodographs
are obtained as functions of: 1) friction (measured by
the Rayleigh constant k); 2) relative amplitudes 4/B
of the thermal forces in the x- and y-directions; 3)
the phase shift 6 between the thermal forces; and 4)
the latitude ¢.

It might seem that with the aforementioned four
variables, every shape of hodograph is possible. How-
ever, it will be shown that for realistic values of
friction and forcing amplitudes only a small subgroup
of hodographs emerges. The specific characteristics of
this subgroup are discussed and compared to the
parallel features which are found in observed hodo-
graphs. Comparisons with the complex shapes of
observed hodographs are possible only through de-

© 1984 American Meteorological Society

.

tailed harmonic analyses. These analyses were done
for two different geographical regions: the Pacific
Northwest, including the Columbia Basin of eastern
Washington and Oregon, and western Washington
and southern Vancouver Island (data from Staley,
1957, 1959); and central California (data from Fosberg
and Schroeder, 1967). There are many other hodo-
graph studies for different regions, including those of
Frizzola and Fisher (1963) in the New York City
area, Weber (1978) in southwest lower Michigan,
Barbato (1978) in Boston, Gill (1968) in northeast
Scotland, and Zambakas (1973) in Athens. All of
these studies show ACR, but as we were primarily
interested in studying the variable shapes of hodo-
graphs and their average characteristics within some
restricted region, only the studies in the western
United States were found to be suitable. Staley (1957,
1959) and Fosberg and Schroeder (1967) show rela-
tively large numbers of hodographs, enabling us to
deduce their average characteristics in that region.

In Section 2 the analytical expressions and curves
for hodograph eccentricity and tilt angle are evaluated
and discussed. The analyzed data are presented and
compared with theory in Section 3. In Section 4 the
predicted frequency of ACR for different latitudes is
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introduced, and the few observational results are
related to the theoretical curves. Then, in Section 5
we discuss the limitations of the Rayleigh friction
theory, solve the set of horizontal momentum equa-
tions with the K-theory parameterization, and discuss
an ACR example within this theory.

2. Hodograph shape—eccentricity and til¢

Kusuda and Alpert (1983) solved the following set
of linear horizontal momentum equations in the x
and y directions:

%‘ﬂ+ku=Fx—F1(l), (1)

av

51— +fu+ kv = F, — Fy1),
where F, and F, are forces due to the large-scale
pressure gradient, k is constant for the Rayleigh-
friction force, and

2

Fi(t) = — + — coswt,

(3)

Fyt) = —+

N Al
NI N

cos(wt — 0), 4)
where 4 and B are forcing amplitudes in the x- and
y-directions, « is the angular speed of the earth’s
rotation, and ¢ is the phase shift between the two
forces. Solution of (1) and (2) leads to velocity
components # and v which consist of constant com-
ponents plus components oscillating with time. Of
concern here are the transformed values # and ¥
which exclude the constant components.

The hodograph generated by u and v is always an
ellipse which may be described by (see Appendix A)
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7 = up sin(w? + A,), (5)

(6

where 1y, v9 and A,, A, are velocity and phase
constants, respectively. The angle a; between the axis
of the ellipse and the u-direction is given by

D = vp sinw? + M\,),

2ugvo

tana; = —5—— Cos(A, — Ay).
1 uoz_voz ( u o)

(N

After some algebra it may be shown that
(A% — BY)fk + AB(f? — w® — k?) cost
(A2 — BY(f? — w* — k*) — 44Bfkcosf
(8)
For consistency we shall refer to the tilt angle of
the hodograph, «, as that angle which the major axis
makes with the u-direction (i.e., relative to the east)
and with the smallest absolute value. Following this

definition and the requirement that 0 < a; < 90°, it
can be shown (see Appendix B) that

[cos(A, — Ap)] > O,

tan2a; = 2

& = A, for

o= (al - §> , for [cosOh — A)] <O,

a=0, for

[cos(A, — A)] = 0.

In other words, in the second case the positive angle
«a Is relative to the minor axis of the ellipse and the
transformed negative value « is relative to the major
axis.

Also, the eccentricity of the ellipse e, defined as

e= (a2 _ b2)°‘5/a,

where a and b are the semimajor and semiminor
axes of the ellipse, may be shown to obey the relation

2|[(4% — B?)(f? — «? — k?) — 4AB [ k cosfl] sec2a|

12
¢ {(A2 + BY)(f? + o? + k?) — 44Bfu sinf + |[(4% — B>)(f? — «* — k?) — 44B [k cosb] sec2a1|} - O

The derivation of the expressions for ¢ and « is
described in Appendix C. The values of ¢ and the tilt
angle a of the major axis of the ellipse (as well as the
sense of rotation discussed in the last section), which
are predicted by the theory, may be tested readily
against observed data. In order to do such a test, the
characteristics of « and e will be illustrated by some
figures.

Figure | shows a and e as functions of northern
latitude for k/w = 0, 0.1, 0.5, 1, 2, oo, for the
limiting case where the thermal forcing in the »-
direction vanishes, i.e., B = 0. In fact, this is exactly
the case studied by Haurwitz (1947). Equation (8)
thus simplifies to

tan2a; = 2fk/(f? — o® — K?), (10)

and for the special case, k = w, it simplifies further

to
(11)

Since the sign of {cos(A, — A,)} is negative (see
Appendix B), « = (a; — 7/2) and the tilt angle o
must be negative (positive in the Southern Hemi-
sphere). Another interesting feature is the quasi-linear
dependence of the tilt angle o upon the latitude over
a wide range of friction values. For low latitudes (11)
could be approximated by

tan2q; = tan(—2¢)/cos¢.

a=~—¢, 12) -
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F1G. 1. Eccentricities ¢ and tilt angles a of hodograph major axes as functions of northern latitude for kjw = 0, '
0.1, 0.5, 1, 2, oo, for the case where the second thermal forcing is zero (B = 0, 4 = 0.04 cm s72),

i.e., the tilt angle of the .ellipse « is equal to the
negative value of the latitude angle. This explains
rather clearly why Haurwitz (1947) predicted a value
of about —45° for the tilt angle of a hodograph at
~43° latitude. His values of k/w were ~0.78 or
~1.37, which do not change significantly the latitude
dependence illustrated in Fig. 1.

~Figure 1 also shows, that for reasonable’ values of
k, hodographs are expected to have relatively high
eccentricities. As discussed by Haurwitz (1947), the
~ eccentricity in that simple case became higher as the
friction increased.

Figures 2a-c illustrate the same features for the
more general case with 4 = B # 0, i.e., two thermal
forcings are present in the horizontal, having the
same amplitude but some phase shift .between them..
The three figures correspond to different frictions, k/
w = 0, 1 and 2. Here (8) simplifies to

tan2a; = —(f2 — &* — kH/2f k. (13)

The tilt angle o becomes independent of the phase
shift 6. As before (for B = 0), there is an approximate
linear dependence between « and the latitude ¢ For
k = w we have

! These are based on the range of k-values (0.2-0.8 X 107 s7%)
given by Haurwitz (1947) which correspond to k/w =~ (0.3-1.1),
from which the smaller values of k are found near the coast or
over the ocean. Thus, k/w values over continents should be in the
range of ~0.6-1.1. .

tan2a; = cos¢/tan(2¢), (14)
which in turn yields
a=qa; =~ 45 — ¢. (15)

This approximation is found to be very good for
latitudes up to about 50°N (see Table 1).

Contrary to the former case (B = 0), here the tilt
angle is positive for lower latitudes and even more so
for higher friction (Figs. 2b and c). Again, the eccen-
tricities are relatively high but the increase of friction
does not necessarily increase the eccentricity. In fact,
the opposite happens for large phase shifts, e.g., for §
= 80°. Notice also the circular hodographs (¢ = 0)
for phase shifts of 90°, which are independent of
friction and latitude.

It is interesting to note the discontinuity at 30°
latitude in the limiting case where friction becomes
zero. At that point, i.e. f = w, which is predicted by
the change of sign in cos(A, — A,), the ellipse becomes
a circle, i.e., ¢ = 0. When k = w, the change in sign
of a is continuous (Fig. 2b) and is predicted to
happen at 45° latitude where /2 = 2w’ (see Appen-
dix B). '

The even more general case where A # B # 0 is

" illustrated in Figs. 3a~c for 4/B = 2 with the friction

parameters k/w = 0, 1 and 2. Now the tilt angle of
the hodograph depends upon the shift angle § and
becomes smaller (more negative) for larger §. There
is still a nearly quite linear dependence of o upon
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FIG. 2a. As in Fig. 1 but for k/w = 0 (no friction) and different values of the phase
shift ¢ = 0, 30, 60, 80 and 90. Here, both horizontal forcings have the same amplitude
(4 = B). The heavy line represents the curve when it is independent of 6.

latitude at lower latitudes except for the discontinuity
at 30°N for k = 0. The eccentricities are even higher
here and are usually greater than 0.9 for the viscous
solutions. Notice that unlike the former case (4 = B)
in which a phase shift of 90° led to circular hodo-
graphs, here even that phase-shift leads to high eccen-
tricities.

The effect of any further decrease in the thermal-
forcing amplitude in the y-direction is not illustrated
because the graphs are very similar to the preceding
figures. It should be mentioned, however, that the
phase-shift dependence of both a and e decreases
considerably in this case, and in fact the figures start
to resemble the limiting case for B = 0, i.e., Fig. 1.

To illustrate some of the aforementioned features,
Fig. 4a shows four hodographs predicted for latitude
45°N, a phase shift of 40° and equal horizontal
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forcing amplitudes, i.e., 4 = B, for four different
friction parameters k/w = 0, 0.5, 1 and 2. Of course,
the increase in friction diminishes the average wind
speed but does not necessarily increase the eccentricity.
For example, the eccentricity for the ACR case with
k/w = 2 is lower than the eccentricity with k/w = 1.
Also, the figure shows that higher values of k lead to
larger «. Figure 4b is similar but for 4/B = 2, and
illustrates how it becomes more difficuit to get ACR
as the second forcing becomes smaller.

The strong influence of the phase shift upon the
sense of rotation is shown in Fig. 4c, where k = w, ¢
= 45° and A = B. Notice how the CR hodograph for
a zero phase-shift angle, i.e., § = 0 (dash-dot line),
becomes a line hodograph coinciding with the # axis
for 6 = 45° (eccentricity = 1), and then becomes an
ACR hodograph (full line) at § = 90°. As anticipated

45
.
d_ o. L i 1
o 30° 0’ 90’
- LATITUDE
45t

FIG. 2b. As in Fig. 2a but with k/w = 1.
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FIG. 2¢. As in Fig. 2a but with k/w = 2.

from Fig. 2b, the three hodographs are all oriented
such that the major axes of the ellipses coincide with
the # coordinate. For reference, the CR hodograph
for B = 0 at the same latitude (¢ = 45°N) (double
dot-dash line) and the ACR hodograph at the equator
for 8 = 90° (dashed line) also are shown. The hodo-
graph corresponding to the Haurwitz (1947) theory
with no second forcing (double dot-dash line) has a
tilt & = —45° at ¢ = 45°N as predicted by (12).
However, when a second equal forcing also is taken
into account, the predicted tilt-angle at the same
latitude is very different, i.e., « = 0° as predicted by
(15). Also, the different phase shifts with the second
forcing may lead to variable ellipse eccentricity as
illustrated in Fig. 4c and predicted by the eccentricity
formula (see Fig. 2b).

3. Shapes of observed hodographs in light of the
theory

Average summer hodographs of resultant surface
winds for 26 stations in and near Washington state

TABLE 1. Predicted hodograph tilt angles o as functions of iatitude
¢ for the case where the amplitudes of the horizontal forcings are
equal (4 = B) and the friction parameter k is equal to w. Equation
(14) gives the exact angle predicted by theory, while Eq. (15) is the
approximate formula for low and middle latitudes.

. o a=45—- ¢
¢ [Eq. (14)] [Eq. (15)]
0 45 . 45
10 34.8 35

20 24.1 25
30 13.3 15
40 3.8 5
45 0 . 0
50 -3.2 -5
60 -8 —15
70 —11.1 -25
80 —12.8 =35
90 -133 —45

\

(data from Staley, 1957, 1959) and 21 stations in
central California (data from Fosberg and Schroeder,
1966) were analyzed. In a harmonic analysis for each
hodograph, the first-order ellipse was chosen. -The
spatial fields of the observed eccentricities and tilt
angles are shown in Figs. 5§ and 6, respectively.

The first striking fact shown by Fig. 5 is the very
high observed eccentricity, with averages of 0.898 and
0.946 for the stations in Washington and California,
respectively. Note, however, that the predicted eccen-
tricities for the more realistic cases, i.e., k/w = 1, are
approximately the same (see Figs. 1, 2b and 3b). It is
difficult to relate exactly the small decrease in observed
average eccentricity with latitude based only on these
two regions, i.c., the change from 0.946 to 0.898
moving from ~38° to ~47°. However, a similar
decrease might be found for ¥ = w at small phase-
shift angles (see Fig. 1 for B = 0 and Fig. 2b where
A = B for 8 = 0). It should be stated, however, that
the slight change in average eccentricity between the
two regions might be of no significance for the
latitude dependence since changes in local friction .
and the relative intensities of thermal forcings may
play an important role for such a relatively small
number of observational points. Obviously, as the
data base becomes larger and includes more latitudes,
a more quantitative comparison might be possible.
That comparison will show to what extent the linear
theory could be applied to studies of hodograph
shape.

The data for the tilt angles of the. analyzed hodo-
graphs (Fig. 6) are somewhat more complex, and so
conclusions cannot immediately be drawn. Figure 7
shows histograms for the frequency of tilt angles «
with intervals of 30°. These show that the preferred
interval in Washington (~47°N) is a« = 0 to —30°,
while in central California (~38°N) it is 0 to 30°.
These results again seem to be in agreement with the
predicted tilt angles for £k = w and 4 = B (see Fig.
2b). An increase in the data base should, of course,
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FIG. 3a. As in Fig.

allow a better comparison. These results imply that
on the average, in analyses of observed hodograph
shapes, equal amplitudes of thermal forces in both
horizontal directions (i.e., A = B) might be suitable
in the analytical derivation. We suggest that this is
because the average thermal forcing in areas of ap-
preciable variability in meso- and microscale features
will usually not prefer one direction above the other.

Recently, we analyzed 12 additional hodographs
in central California based upon data for July 1958
from Frenzel (1962). The results (not shown) indicate
a high average eccentricity of 0.94, which is especially
pronounced for the ACR hodographs (see the next
section and Table 2). The tilt angles of the hodographs
are mostly negative, weakening the preference for
positive « values in the California histogram. The
new totals for the 30° intervals of the California
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histogram for 33 hodographs are (from left to right)
1, 8,9, 11, 4 and 0, respectively. Of course, we still
have the maximum of 11 hodographs in the 0 to 30°
interval but more hodographs show negative tilt
angles. This was correctly anticipated by D. O. Staley
(personal communication, 1983), based upon the
orientation of the central valley of California.

Staley (1957) summarized some of the features of
observed hodographs in light of the Haurwiiz (1947)
theory. Two of his main observations are (quoting
from his paper):

1) “Counter-clockwise rotation at certain stations.”

2) “Nearly circular hodographs in the northern
and central Puget Sound. According to Haurwiiz’
theory, the eccentricity of the elliptical hodographs
depends directly on friction, but it is improbable that
this area offers no frictional resistance. Also, topo-

45¢

FIG. 3b. As in Fig. 2b but with 4/B = 2.
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FIG. 3¢c. As in Fig. 2c but with 4/B = 2.

graphical constraint, if any, would be expected to
elongate the hodograph.”

The present theory suggests a simple explanation
of these features through the presence of a rotating
horizontal pressure-gradient force which was in fact
suggested by Staley (1957). The counterclockwise
rotation is predicted by this theory. Also, the nearly
circular hodographs that were observed over Puget
Sound with the low eccentricities of 0.54, 0.68 and
0.60 (see Fig. 6) are possible with realistic values of
friction if a relatively large phase shift exists (see Figs.
2b and c). In fact, as pointed out before, the increase
in friction sometimes might even decrease the eccen-
tricity of the ellipse. This is illustrated by a comparison
of the eccentricity curves for the phase shift § = 80°
in Figs. 2b and c.
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FIG. 4a. Predicted hodographs for latitude ¢ = 45°N, a phase
shift of 40° and equal horizontal forcing amplitudes, i.e., 4 = B,
for four different friction parameters k/w = 0, 0.5, 1 and 2.

4. The frequency of anticlockwise rotation at different
latitudes

An interesting result of this study is that in the
Northern (Southern) Hemisphere, northward (south-
ward) movement does not necessarily increase the
chance of CR (ACR) for reasonable values of friction.
An increase might have been expected since the .
Coriolis effect increases poleward. However, the linear
theory suggests the existence of a minimum probability
for ACR (CR in the Southern Hemisphere) for some
latitude depending upon the local friction. As the
friction increases, this latitude of minimum ACR
(CR) moves northward (southward). Figure 8 shows
the predicted frequencies of ACR (CR) hodographs
as functions of northern (southern) latitude for four
different cases. The numbers of ACR and CR occur-
rences are n; and n,, respectively. Curves 1 and 2
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FIG. 4b. As in Fig. 4a but for A/B = 2.
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FIG. 4c. Some hodographs which illustrate dependence upon phase shift 6. Three
of the hodographs are for 45°N, k/w = 1 and 4 = B as follows: Dot-dashed line:

= 0. Heavy solid line: 8§ = 45°, Light solid line: 8 = 90°. The two additional
hodographs are for 45°N latitude, k/w = 1 and A/B = 2 (dot-dot-dashed line), and
for the equator, k/w = | and A = B (dashed line). ACR and CR hodographs are
indicated by solid dots and squares, respectively.

represent two cases with reasonable values of friction
(k = w) for which 4/B changes from 1 to ~2.4. As
this proportion increases (B — 0, approaching the
Haurwitz case), ACR disappears first in middle lati-
tudes, then in the northern latitudes (not shown in
Fig. 8) and finally in lower latitudes, thus leaving the
Northern Hemisphere free of ACR for B = 0. Curve
3, for A = B but higher friction (k ~ 1.73w), illustrates
(compare to curve 1) how the increase in friction
leads to a gradual decrease in the ACR frequency
with latitude. Curve 4, where 4 = 3.7B and k
= 1.73w, shows a decrease similar to curve 3 but the
absolute values of ACR frequency are considerably
smaller, particularly in northern latitudes; this is due
to the relative reduction of the second forcing. These
curves are based upon the ad hoc assumption of a
constant probability distribution for different phase
shifts in the full region (—180° < # < 180°). It might

-

be argued that the more realistic probability distri-
bution will indicate a maximum at zero phase shift
and a decreasing probability with increasing phase
shifts, i.e., increasing |6]. Such an argument could be
verified only through a comprehensive analysis of the
different thermal forcings observed in as many differ-
ent locations as possible. If that argument is found
to be correct, the predicted frequency for ACR will
be reduced by an appreciable factor because small
phase shifts do not support ACR. In any case, for a
given latitude the curves in Fig. 8 at least suggest
some upper bound to the number of ACR occur-
rences, n,;, relative to the total number of observed
hodographs, (n; + n,).

If we adopt the aforementioned suggestion (see
Section 3) that 4 = B, and choose a reasonable
friction parameter, then curves 1 and 3 would be the
potential curves for comparison with observations.
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FIG. 5. Fields of observed eccentricities for the Pacific Northwest
(top) and California (bottom). Results are based on harmonic
analyses of the observed hodographs of Staley (1957, 1959) and
Fosberg and Schroeder (1966). Hodographs with ACR are denoted
by “A.” Other hodographs show clockwise rotation.

In a recent study in Japan (Mori, 1982) entailing
harmonic analysis of about 100 stations, one third of
the stations showed ACR (j in Fig. 8). (Points C and
W in Fig. 8 represent results for the California and
Washington hodographs, respectively.) Also, the equal
numbers of ACR and CR cases observed near the
equator, i.c., at Batavia, Indonesia (Wexler, 1946),
supports the value of 0.5 predicted at the equator by
all curves. The California point is somewhat distant
from our corresponding curves, while the other points
seem to be within the predicted region of ACR
frequency. Another study by two of the authors (M.K.
and N.A.) of 24 hodographs in the restricted area of
Oita City, Japan has shown 13 stations with ACR, a
relatively high frequency of 0.54. This study was
based upon wind data gathered for air pollution
purposes and was found unsuitable for use here.

’
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Since all of the stations were relatively close to each
other they were influenced by similar thermal forcing
(the sea, a river and topography) which probably
favored ACR. Ratios of ACR to CR frequencies in
Washington and California are given in Table 2. Of
course, analyses of more data at different latitudes
are necessary in order to allow a more extensive
comparison with our curves.

Another question which relates to the occurrence
of ACR is: Do ACR hodographs tend to be more
flattened (have higher eccentricity) than CR hodo-
graphs? Table 2 shows average values and standard
deviations of observed eccentricities for ACR and CR
hodographs in Washington and California. The ACR
eccentricity is higher than CR in Washington and
central California but lower in western California.
The overall picture is that ACR hodographs tend to
be slightly more flattened, for our limited set of
hodographs. :

FIG. 6. As in Fig. 5 but showing tilt angles between hodograph
major axes and positive directions of the u axes. Crosses show
locations of the observations.
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FIG. 7. Histograms showing frequencies of tilt angles o by
intervals of 30° for 26 stations in Washington, 21 stations in
California, and the sum of both regions. Here n represents the
number of observed hodographs at the specific intervals in «.

5. Effects of different parameterizations of the fric-
tional force on the wind rotation

We have dealt here with some of the observed
features of the hodograph that we believe the present
theory, although highly simplified, may explain. Nev-
ertheless, we question the applicability of this theory,
which is based upon parcel dynamics, ignores conti-
nuity, thermodynamic energy, the transient terms
and nonlinear and linear advection, and assumes
simple sinusoidal forcing and a linear Rayleigh fric-
tion. We tend to agree with the reviewers, who believe
that one of the most serious simplifications in the
study of hodograph shape is that of Rayleigh friction.
However, it should be mentioned that, using Rayleigh
friction, Thorpe and Guymer (1977) succeeded in
reproducing some of the basic features of the nocturnal
jet. They justified the use of Rayleigh friction by
citing previous studies, e.g., Clarke (1970), which
showed that for a wide range of situations there exists
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a linear stress profile in, at least, the surface wind
direction. They concluded, therefore, that in general
any deviations from linearity are likely to be of little
importance for a slab-type model during daytime. At
night, however, they concluded that nonlinear effects
may be of greater importance. They also compared
their results with a model in which the more accurate
velocity-square dependence was adopted for the fric-
tional force, and found the results to be an acceptable
approximation for the wind evolution.

J. C. Wyngaard (personal communication, 19$%$)
has recently shown that the frictional contribution to
the evolution of the surface wind angle can be written
as

do f

Z =§(V6Va+ Usu,),

(16)

frictional
where s is wind shear, f the Coriolis parameter, and
(BU, 5V) = 8V = (V = V) — ({(V) = (V).

Averaged quantities through the entire height 4 of
the planetary boundary layer (PBL) are denoted by
angular brackets, and the subscript g denotes the
geostrophic wind.

For a baroclinic, convective PBL, Eq. (16) could
be modified to give

d oavg U
a_Jh (V~§+U—g

0z 0z

7 o5? ) (friction)

i

n.
n+n,

1 L

30 60 90

Latitude (°N)

F1G. 8. The predicted frequencies of ACR (CR) hodographs as
functions of northern (southern) latitude for four different cases: 1)
Friction parameter Kk = w and 4 = B. 2) As in 1) but for 4/B
=~ 2.4.3)k = 1.73w and 4 = B. 4) As in 3 but for A/B ~ 3.7.
The numbers of ACR and CR occurrences are n, and »n;,, respectively.
Case 1 is shown with a heavier line to indicate that it is the most
realistic.
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TABLE 2. Average values and standard deviations of observed eccentricities for both ACR and CR hodographs in Washington and
California. The numbers of stations in each category are shown in parentheses. The frequency of ACR occurrences in these regions is also
shown. Here, n; and n, are the numbers of ACR and CR hodographs, respectively, observed in each region.

n

" Eccentricity

Region m+n ACR CR ACR + CR
W Washington 0.7 {0.24 0.95 + 0.02 (4) 0.85 + 0.15 (13) 0.87 + 0.14 (17)
E Washington “710.33 0.97 + 0.02 (3) 0.93 + 0.05 (6) 0.95 £ 0.05 (9)
(Columbia Basin)
W California 0.48 0.93 + 0.08 (10) 095 = 0.07 (11) - 0.94 = 0.08 (21)
C California 0.50 0.97 £ 0.02 (6) 0.90 = 0.09 (6) 0.94 + 0.07 (12)
Mean (and total) 0.39 10.95 + 0.06 (23) 0.90 £ 0.11 (36) 0.92 £ 0.10 (59)°

_ + é (UUg + VVg) (pressure)

-7 (Coriolis)  (17)
(for the full derivation see Appendix D). Inspection
of (17) suggests that the frictional term can be of the

same order of magnitude as the other terms. Of '

course, a frictional parameterization which assumes
a linear stress profile would neglect this contribution.

In order to assess the effect of a more accurate .

frictional force on hodograph shape, the following set
of equations was solved:

ou *u
a—t_ﬁ)_KE?_F'(t)’ (18)
w v ‘
| 5['+fu‘—K52—2—F2(I), (19)
where
F\(f) = A4 sin(wt — a)} , 20)
F(©) = B sin(wt — B)

K is the eddy viscosity which is assumed constant,
and « and 8 are phase shifts. The following initial
and boundary conditions were assumed:

u(z, 0) = v(z,0) =0,
w0, =v0,1) =0 ’
uh,)=vh,t) =0

where # is the height of the PBL.

The full derivation of the solition was achieved
through Laplace transforms and is beyond the scope
of this paper. The final results in complex notation
may be written as

Viz,t)=u(z, t) + iv(z, 1)

25 1
—;EIZn—I

attime =0
(21

(Elneiwt + EZ"e—iwl

2n — D

= E3ne @ sin % , (22)

where .
: 2n— D
c,=Vr——=
=V h/D
K . . .
D= 7 , frictional height
b - ide™ — Be™® (23)
" Cnt + i+ w)
£ = —ide'™ + Be
TG (- w)
E3n = Eln + E2n

Figure 9 presents six hodographs that were calcu-
lated from (22). Their respective altitudes are 50,
100, 200, 300, 400 and 500 m, and we have assumed
that the PBL height is 1000 m, K = 1 m®*s™!, 4 = B
=48 X 10 ms™2 a =0° 8 =60° and latitude ¢
= 60°N. The results are presented for 24 hours
starting at ¢+ = 500 hours for which transient features
completely disappear. The hodographs become quite
stable after about two to three diurnal cycles. As
illustrated in Fig. 9, ACR is reached at the lower
levels of the PBL below ~300 m. Above this level
the hodographs change to clockwise rotation. Similar
behavior was also found in the numerical simulation
(see Part I, Fig. 5, where the partly ACR surface
hodograph in the lee of the mountain changes at
~200 m to a clearly CR hodograph). This-example
illustrates that, as with the Rayleigh friction, a rela-
tively large phase shift (3 — « = 60° in Fig. 9)
between the horizontal thermal forces favors ACR.
Also, it is interesting to note that the tilt angle is not
much different than that predicted by the Rayleigh
friction theory, i.e., @ =~ 45 — ¢, giving —15° in this
case). The eccentricity of the 50 m hodograph may
be compared to that predicted by the Rayleigh friction
theory for k/w = 1 or 2 (Figs. 2b or ¢, for 6§ = 60°).
It seems more appropriate to compare the .lower
eccentricity value for the second case (k/w = 2), e
~ 0.9, with the result presénted by the K-theory
hodograph (K = 1 m?s™).
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FIG. 9. Predicted hodographs at altitudes of 50, 100, 200, 300, 400 and 500 m with # = { km, K = 1 m®s™/,
A=B=48X10"ms™? a=0,8 =60° and ¢ = 60°. Starting time is S00 h and ending time is 524 h.

A detailed study of eccentricity, tilt angle and sense
of rotation for hodographs using the K-theory, and
_differences of these from Rayleigh friction theory on
‘the one hand, and with a larger data base of observed
hodographs on the other, is now being undertaken.

6. Discussion and conclusions

Zambakas (1973), in a study of 50 cases of diurnal
sea breezes at Athens, concluded that the sea-breeze
wind “backs (rotates in the ACR sense) in disagree-
ment with the theory.” In his discussion he suggested
that the ACR was due to thermal forcing which

arrived later in the day from the open sea (not from
the nearest gulf) and was responsible for the ACR of
the wind at Athens. The ACR rotation due to thermal
forcing was included in the present theory (Part I of
this study) and resulted in various ACR hodographs.
The indented coastline was responsible for the ACR
at Athens and probably also at Wick, northeast
Scotland (Gill, 1968). These are only two additional
examples of many observations that show ACR. In
this work we concentrated on analyses of 47 stations
in Washington and California plus an additional 12
stations in central California for which the sense of
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rotation, eccentricity and tilt angle of the major axis
were calculated and compared to the results predicted
by the theory. The important results were as follows:

. 1) In the Northern Hemisphere, the frequency of
ACR occurrences does not necessarily decrease north-
ward. On the contrary, the linear theory suggests that
there is some latitude, depending upon friction, at
which a minimum ACR exists. As friction increases,
this latitude moves northward. (It is thus true that
for medium to high values of friction the frequency
of ACR decreases northward.) The predicted curves
for ACR frequency as a function of latitude were
constructed, and most of the analyzed data seemed
to be in agreement with them. Analyses of additional
data for higher as well as lower latitudes are necessary
in order to assess more accurately the applicability of
these curves in the study of ACR frequency at different
. latitudes.

2) In linear theory the latitude ¢ has a major
influence on the tilt angle « of the hodograph ellipse.
In fact, the theory predicts a very simple relation at
low and middle latitudes when assuming equal ther-
mal forces in both horizontal directions. It was shown
that in this case o ~ 45° — ¢; this relation was
found to be in accordance with the observed tilt
angles in Washington and California. This result
contrasts with the relation a =~ —¢ which was shown
to hold in the case of one horizontal force (B = 0) at
lower latitudes. The latter case corresponds to the
Haurwitz (1947) theory. Recently we plotted « values

of 68 analysed hodographs as a function of ¢ and -

tried to fit these with the line of least squares in order

to assess the linear relationship between « and ¢.

Unfortunately the hodographs were restricted to lat-
itudes between 36 and 51°N and no significant linear
correlation could be shown with this data base. As
pointed out by D. O. Staley (personal communication,
1983), the most striking variations of tilt angle and
eccentricity with latitude should, if the theory could
be validated, be found at low latitudes, or by com-
parison of low with high latitudes. However, only a
few hodographs were available at high latitudes and
nearly none for low latitudes. Of course, we should
be aware of the highly simplified nature of the theory
and the severe limitations imposed by it. Besides the
simplified friction, the omission of linear advection
due to the large-scale pressure gradient is apparently
an important source of error in the calculation of the
tilt angle of the hodograph. This angle might be
considerably influenced by the different and nonzero
average large-scale pressure gradient at each location.

3) In general, high values of eccentricity were
predicted by the theory and the observed hodographs
supported these results. Although the slight observed
northward decrease in average eccentricity fits the

theory, further data analyses are necessary before we.

can reach a more confident conclusion with regard
to latitudinal behavior.
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4) Nearly circular hodographs found.in regions of
expected high friction were shown by .the present
theory to result from a rotating thermal force. It was
shown that low eccentricities are possible with realistic
values of friction if a relatively large phase shift
(between the horizontal thermal forces) exists. When
a phase shift of § = 90° was reached, circular hodo-
graphs were predicted no matter how large the friction
became in the case of equal horizontal thermal forces
(see Figs. 2b and c).

5) Highly elongated hodographs could be explained
by the present theory even with relatively low friction
depending strongly upon the phase shift . This might
explain some of the very high eccentricities of observed
hodographs at coastal stations which do not seem to
be influenced by strong friction. See, for example,
the July hodograph at Athens of Zambakas (1973),
or the high eccentricity (1.0) at the Farallon Islands
near the California coast (at the extreme bottom left
of Fig. 5). '

6) It was illustrated that the phase shift between
the horizontal thermal forces plays a very important
role in determining the sense. of rotation (Fig. 4c).

7) The explicit contribution of the frictional force
to the rate of wind rotation for a nonlinear stress
profile was presented (following Wyngaard). A sim-
ple expression was given for the baroclinic convec-
tive PBL.

8) The momentum equations were solved with the
height-dependent K-theory parameterization. It was
shown that ACR surface hodographs resulted, with
relatively high phase shifts between the thermal forces.
The eccentricity of the ACR hodograph increased
with height to the point where the hodograph changed
its sense of rotation to become clockwise. With some
typical parameters the conversion height was found
to be ~300 m..

In summary, we would like to clarify the goal of
our work. It is to better understand hodograph shapes
and the physical reasons for them. We believe that
the average wind hodograph can indicate the local
thermal forcings which play a significant role in
determining hodograph shape. The most important
task, but also the most difficult to perform, is to
develop a method which will enable us‘to get an idea
about local thermal forcings based upon the hodo-
graph, along with additional data (like pressure and
temperature) that might be available. The main ad-
vantage of the wind hodograph is that it represents
point data that are relatively easy to calculate but at
the same time reflect, often quite clearly, the local
thermal forcings. Such a method, if available, would
be extremely useful for realistic initializations and
parameterizations of numerical mesoscale models of
the PBL. )

Finally, it should be mentioned that this study was
restricted to the Northern Hemisphere, especially
with regard to hodograph tilt angles and eccentricities,
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since appropriate Southern Hemisphere data were
not available.
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. A= & = kP)wsinwt — (f? + w® + k?)k coswt
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2 (2= & = K% +4Kf
. A2kfwsinwt + (f2 — &® + k?)fcoswt
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2 (f2_w2_k2)2+4k2f2

P. ALPERT, M. KUSUDA AND N. ABE

B(f? — & — K))w sin(wt — 0) — (f? + ® + k*)k cos(wt — 6)

3581

We wish to express our gratitude to Professor
Lindzen for supporting our research at the Center for
Earth and Planetary Physics, Harvard University, and
to Professors J. Neumann, M. Uryu and B. Gelchinsky
for their interest and helpful remarks.

APPENDIX A

Derivation of Relations for # and 9

Kusuda and Alpert (1983) show that

2 : (f2 _ w2 _ k2)2 + 4k2f2

+
2

By some algebra, these expressions could be rewritten
as
@ = ug sin(wt + )\,,)}

D = vo sin(wt + \,)

where
uo = (w2 + w?)'?, tank, = w/u,

u, = AC, — BC; cosf — BC, sinf
u; = AC, + BC; sinf — BC, cosf
Ci = (@/2D)(f? = o — k?)

C, = (k/2DX(f? + w* + k?)

C; = 2fkw/2D

Cs = (J2DXf* — & + k%!
D=(f*-w -k +4f%?

Similar expressions may be derived for vy and A,.

APPENDIX B
Derivation of a Criterion for Defining the Tilt Angle

Let «; be the angle of anticlockwise rotation of the
coordinate system which will put the ellipse into a
canonical form, i.e., major or minor axes coincide
with the i axis. There are only two possibilities if we
require that 0 < «; < 90°: 1) The major axis
coincides with #, so « a,. 2) The minor axis
coincides with #; here, we should define a a
— 90° since it is the minor axis which makes an
angle a; with the positive direction of the # axis.

(fZ _ wZ _ k2)2 + 4k2f2

In order to determine which case applies, let us
turn to the equations (omitting the tildes)

u = uy sin(wt + \,)
v = v sin(w? + )\.,)}
which define the ellipse
vo21? + Ut — 2ug cos(A, — A )uv
= Up*vo? sin® (A, — Ay) = 0.

When transforming this ellipse to a canonical form
it may be shown that there are three cases:

1) a=a,<cos(A, —N;)>0
a=a; —90° & cos(A, — A,) <0

3) a=0e=cos(A\,—A,)=0

2)

On substituting A\, and A, as derived in Appendix
A, it is shown that

A) = {~(4* - B)fk
+ AB(—f? + ? + k?) cos8}/(4Dugvy).

For the special case B = 0, equivalent to the Haurwitz
(1947) theory, we find

sign{cos(\, — A,)} = sign(—4*(k) <0

for northern latitudes. However, when 4 = B # 0 we
get

sign{cos(\, — \y)} = sign{(k? + &* — f?) cosf},

which for £k = w and 90° > 6 > —90° leads further
to

cos(A, —
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+ for |¢| < 45°
— for |¢| > 45°.

This means that a changes sign at +45° (where f~
= 2w?) as illustrated by Fig. 2b.

sgn{cos(h, — \,)} = sgn(2e® — f2) = {

APPENDIX C
Derivation of Expressions for ¢ and o

Following the definition of % and v (omitting the
tildes) as '
u = up sin(wt + )\,,)}

v = vp sin(wt + A,)
the tilt of the ellipse axis is given by

tan2a = 2ugVo [cos(Ny — )]/ (uo> — 1)
and

e= V;/a,
where
r = lug® — vo?l(1 + tan?2a)'? }
a = {V2ugvolsin(\, — \,)[}/(uo® + v’ — N2 '

Further. substitutions for A,, A,, # and v, (see
Appendix A) lead to the final expressions (8) and (9).

APPENDIX D

The Contribution of Frictional Force to Wind
Rotation

The following derivation is due to J. C. Wyngaard
(personal communication, 1984). The equation for

evolution of the surface wind angle «, when advection.-

- and terrain-slope effects can be neglected, is

de 1 (0_ o)
d S*\" at dt
1 3 __ d _ -
=5 (Va—z uw - U Py vw) (friction)
+ -Sj,; (UU, + V) (pressure)
-f (Coriolis).  (D1)
The corresponding equations of motion are
aU 9 __
™ + 35 =flV— V), (D2)
v 9 __
—87+5;vw-f(Ug— U). (D3)

Now we average (D2) and (D3) over the PBL,
between a “surface-wind” height and the ‘PBL top,
where stress vanishes. We denote the PBL depth by
h, averaged quantities by angular brackets, and surface
quantities by subscript s. In quasi-steady conditions
this gives
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- B = FP = (e, (D)
-2 = (U - () (Ds)

We decompose each variable into its layer mean plus
a deviation, e.g.,

o uw -
oW == = OF,, (D6)
V=V, = (V) = (V) +V,. (D7)

Using (D4)—~(D7) in (D2) and (D3) then gives expres-
sions for the stress divergence:

i) UW;

—uw = — Va,

py uw = - P + 16 (D8)
J __ w

Py W = A foU,. (D9)

Thus the stress divergence is a constant plus a z-
dependent deviation. If we parameterize the constant
term through the surface wind, i.e., :

Wi, CpS,U,

PR (D10)
s _ CoS,Vs

PR (D11)

then we see by substitution into (D1) that the constant
term does not contribute to the turning of the surface
wind angle.

The height-dependent part of the stress divergence,
(D8) and (D9), does give a frictional contribution to
(D1):

friction = % Vv, + UsU,). (D12)

In general, we can rotate axes such that one of these
terms, but not both, is zero.

It is thus suspected that the frictional term in (D1)
vanishes if and only if the stress profile is linear; that
is, if and only if the second terms on the right of
(D8) and (D9) vanish. Thus friction should vanish in
the barotropic convective PBL, but not in the neu-
tral PBL, the stable PBL, or the baroclinic, convec-
tive PBL. '

Consider the baroclinic, convective PBL. Assume
that the wind profile remains flat in the presence of
baroclinicity; thus the stress curvature balances the
(constant) vertical shear in the pressure gradient:

* __ av, ’
62 =T ©13)
? __ aUu,

PRl e (D14)
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Integrating these and using the boundary conditions
gives near the surface

2 = - ”wf+f§-V—ﬁ (D15)
oz
3 o W U
=" ez (D16)
Equation (1) then becomes
do V ..
iRETs (V6 g) (friction)
+ L UU, + VY,
§? Uy, 2) (pressure)
-f (Coriolis). (D17)

Inspection of (D17) shows that all three terms can
be of the same order of magnitude. In fact, it can be
written

do _ f
@S

-f (D18)

which means that the friction term acts to make the
layer behave as if it were barotropic, i.e., it senses the
layer-averaged geostrophic wind.

({Uy) + V{¥,)) (pressure plus friction)

(Coriolis),
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