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Note 

Implicit Filtering in Conjunction with Explicit Filtering 

1. INTRODUCTION 

In the solution of nonlinear systems of equations spurious growth of short waves, 
especially 2dx, takes place frequently (see, for example, Phillips, [ 11). A common 
way of overcoming this noise is by filtering out the short waves. The most basic filter 
for doing this is defined by: 

$j = #j + s<#j- 1 + $j+ 1 - 24j), (1) 

where S is a smoothing element; j i 1 -+ (j f I) Ax; Ax is a space increment. 
For S = b, the filter (1) removes thoroughly the 2Ax wave and damps all the 

longer waves. But for most meteorological purposes the smoothing of the longer 
waves is too strong. In order to prevent this undesired smoothing, Shapiro [2] 
constructed the n-element smoothing operator which consists of IZ basic operators in 
form (1) with the following essential properties: 

(1) Removal of waves of 2 grid intervals 

and 

(2) Damping of all other waves. The damping may be decreased to the 
minimum desired level by choosing a large enough R. 

For the same purpose Long et al. [3] suggested a very selective low-pass filter in 
the form 

(1-S)Jj-,+2(1+6)$j+(1-6)$j+,=~j-,+2~j+#j+,, (2) 

where 4 is the field to be smoothed and 6 the smoothed field. This implicit filter 
completely eliminates the 2Ax waves with each application, while its smoothing effect 
on the longer wavelengths is a function of 6. Since then it has been adopted 
successfully by some authors. Mahrer and Pielke [4] used it in modelling the sea 
breeze and mountain flow. Pepper et al. [5] modeled atmospheric pollution, while 
Kemper et al. [6] reported good results with the implicit filter. We also adopted this 
filter in a mesometeorological model with topography developed at the Hebrew 
University of Jerusalem [7]. The filter’s properties were discussed briefly by the 
above-mentioned authors and investigated by Long. In this note we are interested 
mainly in comparing the implicit filter with the explicit one. 
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2. COMPARISON BETWEEN THE IMPLICIT FILTER 
AND THE IDEAL EXPLICITFILTER SUGGESTED BY SHAPIRO 

The response functions of the implicit filter (2) may be shown (t~~~gb 
substitution of the eigenfunction $j = eiU) to be: 

R(4 2) = ti/!t+J = 1 + 6 t;2(a,2) : (3) 

where A is the wavenumber. Now, the following features of the implicit filter are 
immediately obvious: for 6 = 0 the filtered and unfiltered values are equal; as 6-i 0’ 
the 2Ax waves are eliminated while longer waves are not damped; for 6 = 1 the filter 
becomes the basic smoother (1) with S = b. 

The response function for the n-smoothing operator suggested by Shapiro [2]-his 
formula (24)-is: 

where A = k Ax. 

pII(d) = 1 - sin2”(a/2), (4) 

In order to compare that filter to the implicit filter let us equate both response 
functions, i.e., (3) and (4). In atmospheric dynamic problems we are intereste 
minimum smoothing of the longer waves, i.e., very small 6, thus we may assume 
6 rg2(A/2) Q 1 (excluding the case where A = 71, i.e., the 2Ax wave) then for the 
implicit filter 

I?(&/%)= 1 4hg2;+62tg4+ .-. =I-dtg’$ 

This approximation is better as long as 6 is smaller. Comparison of (5) and (4) yields 

i.e., the implicit filter (2) with 6 = 6,0 smooths the wave denoted by 2, = k,dx, 
approximately the same as an explicit filter of order n, k, being the wave~~m 
corresponding to 2,. 

Formula (6) enables us to choose such a 6 for the implicit filter that the res 
function for any desired wavenumber (excluding the wave 2Ax) will equal that for 2~ 
“ideal” explicit operator with order n. Moreover, in Appendix I we prove that the 
response function for the implicit filter with 6 = 6,0 is greater for all waves between 
2dx to wavenumber k,, and smaller for longer waves (reiative to A,,). 

It turns out that we may choose &, large enough in accordance with our problem 
(and the grid) such that for the largest given n there is always 6&O small enough so 
that the implicit filter suitable is better (more “ideal”?) than the ‘“ideal” explicit filter. 
Let us visualize how easy this procedure is in the following example: 
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EXAMPLE: 

12 = 2 and wavelength L = lOAx; 

i.e., 
wavenumber k, = n/(5Ax), 

then, according to (6) 

/I, = 7c/5; 

a 1 
a,, = cos* $ sin* $= -4-sin2 A0 z 0.08. 

To determine how good approximation (7) is we check by direct application of both 
response functions (3)---with aAO--and (4) for L = lOAx: 

R(L = lOAx) = 0.9909; 

p,(L = 1OAx) = 0.9908. 

Thus, (5) is a reasonable approximation in this case. 

Table I shows the response of both functions for this example as a function of 
wavelength for a single application. 

It is important to note that for long waves (A --f 0) the explicit filter damps less, i.e., 
p,, > R (for the implicit filter R --f 1 - O(A’), whereas for the Shapiro filter 
p,, -+ 1 - U(A2n) [Long, personal communication]). It should be stressed, however, 
that we may choose that point A, below which the reverse relation, i.e., R > pn, exists 
and the implicit filter is less damping. These results are illustrated in Fig. 1 for the 
above example. Note that point I,, -+ L = 1OAx for which the relations are reversed. 

Shapiro [2, p. 3671 indicates four criteria for the “ideal filter”: (1) removing waves 
of 2-grid intervals; (2) damping all other waves; (3) not altering the average value of 
the function; and (4) not changing the phase of any component. Since to our mind 
the implicit filter does as well as, if not better than, that of Shapiro, we find it 
preferable to Shapiro’s ideal filter. 

TABLE I 

The Response Functions of the “Ideal Filter” and the Implicit Filter 
as a Function of Wavelength” 

Number of waves 2 3 4 6 8 10 15 120 50 
Implicit filter R 0 0.795 0.921 0.972 0.985 0.990 0.9961 0.9978 0.9996 
Explicit filter pz 0 0.437 0.750 0.937 0.978 0.990 0.9981 0.9994 0.9999 

- 
’ The implicit filter was chosen through criterion (12), i.e., 6 = 0.08, so that for 1Odx the response 

functions are approximately identical. 
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Fro. 1. Response functions of the implicit filter (solid line) and the “ideal filter” of order E = 2 
(broken line) in two different scales. The illustration in the lower right-hand corner shows the response 
functions for wavelength interval 2-lOAx. The larger illustration shows the response functions up t5 

wavelength 2Od.x. 

Following the comparison of the response functions for the implicit filter and the 
explicit filter of order n it is of interest to compare the filters themselves. To be able 
to do so, let us introduce the explicit filter which is completely equivalent to the 
implicit one. As suggested by Long (personal communication) this filter should be 
infinite, symmetric, and two-sided and thus may be written as 

The exact expressions for the weights of this explicit equivalent filter are derived in 
Appendix II; it turns out that wk creates a geometrical series (starting with wr) which 
drops off with the factor -wO(l - fl) an reverses sign. Returning to Shapiro’s filter d 
of order PZ, we find that it may be written with the same formula, i.e., (8), except that 
the summation is only up to 2”-’ (see Shapiro’s formula (39)). Now, the fo~I~~i~~ 
origin to the sharper’ response possible with the implicit filter, is suggested: for 
Shapiro’s filter to be sharper, higher-order IZ is needed leading to (2” + I) points for 
the filtration of each value, whereas for the implicit filter an infinite number of points 
are involved (when boundaries are far at infinity). Anyhow, solution of the necessary 
tridiagonal system of linear equations required for the implicit implementation is 

’ Sharper response means response function which increases faster to 1 for wavelengths longer than 
2Ax. 

581/44/l-15 
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reasonably efficient, if performed by triangular factorization and back-substitution. 
Thus, when comparing the relative efficiency, it comes out that for a sharper response 
it is more costly2 to use the explicit filter. 

Another advantage of the implicit filters appears to be the relative convenience in 
the process of changing the sharpness of the filter. Making sharper the implicit filter 
means simply reducing 6. But, to use a sharper explicit filter (higher order n) more 
points, i.e. (2” + l), become involved in the calculation of each smoothed value 
leading to further consideration of the boundary conditions necessary. 

3. SUMMARY AND CONCLUDING REMARKS 

We compared two filters usually used for the same purpose which is mainly 
removing two-grid interval waves and minimum damping of all longer waves. It is 
shown that the damping of short waves caused by the implicit filter is less in 
comparison to the explicit filter. Further, it is shown that the upper limit defining 
short waves (i.e. A,) might be chosen sufficiently high (small 1,) that for all the waves 
we are interested in, less damping would occur. 

Finally, it is suggested that the relative sharper implicit filter may be explained 
through the wider string of points involved with the filtration of each value. The exact 
expressions of the explicit filter equivalent to the implicit one are derived and it is 
shown that an infinite string of neighbouring points are involved while in the 
Shapiro’s filter of order n only (2n + 1) neighbouring points participate in the 
filtration of each value. At the same time, it may easily be shown that the implicit 
filter is more eflicient relative to Shapiro’s explicit filter with order n 2 2. 

Let us prove that 

mlo~ AJ > Pn@) 

APPENDIX I 

at 7~ > A 2 1, (i.e., 2 < m < m,) and 0 < 6 < 1, II > 2, 

where 

m = L/Ax, 

1, = k, Ax = 27clm,, 

R(6,A)= 1 +&g$ 
c 1 

-1 

z 1-6tg2$ for 6< l,m>3, 

p,(A) = 1 - sin2n +-. 

* Only Shapiro’s explicit filter of order n = 1 is cheaper in use relative to the implicit one; the latter 
being comparable in efficiency with Shapiro’s filter of order n = 2 (5 point involved). 
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sin 5 > sin Z- and 
n 

cm& cos-=c- 
m m. m m. 

sin n/m 
> 1, 

cos n/m, 
sin n/m, cos n/m > 1. 

(a) If m > 4, then sin 2x/m, < sin h-/m =x $ sin* 2n/m, < -j sin’ 271/m or 
cos' nfmo sin’ njmo c cos27r/m sin2 71/m* 

but 

sin 7t/m 
sin x/m0 

>l* 
[ 

< 
[ 

for YE > 2. 

But 
n/m, = A0 /2, n/m =/2/2, 

1 cos2 2 sin2(n-I) ilo J. I. 
2 

z tg2 -2- < sin2* TT 

or 

* R@, A> > P,(A). 
(b) If 2 < m < 4 the approximation 6 tg’ A/2 < 1 is no longer valid, but it is 

easy to prove numerically for m = 3, m, > 4, and m = 4, m, > 5 so that the inequality 
still holds. 

APPENDIX II. DERIVATION OF EXPRESSIONS FOR wo9wi 

From (8) and (3), 

&j= ( 1 +6tg2+)-1#j. 
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Considering the Fourier component ,I, #j = eiaj, then by equating the last two 
equations we get 

[ 
1 +Stg’; 

I 

-1 

= w. + 2 2 w, cos IA. 
I=1 

Multiplying by cos iA-i an integer-and integrating over all Fourier components 
leads to the following integral relations for wO and wi: 

1 
w, =- 

rc i 
n 1 1 7L cos i/z 
0 1 + 6tg2 A/2 

dk w’=T- I 0 1 +&g’1/2 
dll. 

Upon substituting the following identities: 

c 

-1 

1 +atg2; E 
i 

1 +cosi 
(I + S)(l + a cos /I) ; 

a = (1 - S>/(l + S), 

cos L cos i = O.S(cos(i + 1)3, - cos(i - l)l), 

the integrals can be evaluated (see [8]) to obtain: 

1 - (3112 
wo= l-6 ) wi = (-I)‘+’ i = 1, 2, 3... , 
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