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Abstract

For a given emissions inventory, the general levels of air pollutants and the spatial distribution of
their concentrations are determined by the physiochemical state of the atmosphere. Apart from
the the trivial seasonal and daily cycles, most of the variability is associated with the atmospheric
synoptic scale. A simple methodology for assessing future levels of air pollutants’ concentrations
based on synoptic forecasts is presented. At short time scales the methodology is comparable and
slightly better than persistence and seasonal forecasts at categorical classification of pollution
levels. It’s utility is shown for air quality studies at the long time scale of a changing climate
scenario, where seasonality and persistence cannot be used. It is demonstrated that the air quality
variability due to changes in the pollution emissions can be expected to be much larger than that
associated with the effects of climatic changes.
Capsule: Air quality in a changing climate scenario can be studied using air pollution predictions
based on synoptic system forecasts.
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1. Introduction1

Numerous chemicals introduced into the atmosphere by natural and anthropogenic sources2

have harmful effects on living organisms and may damage different aspects of the environment3

through various processes on many time scales (Seinfeld and Pandis, 1998). The adverse effects4

of air pollutants on human health are well known (e.g., World Health Organization, 2006; Pope5

et al., 1995; Schwartz and Dockery, 1992) and short term prediction of their concentrations is6

important in cases where they may reach deleterious levels. Long term predictions of air quality7

are important for better management of the air resources and for estimations of their possible8

long term impacts on the public’s health and on the environment (Vallero, 2007).9

Ambient air quality is closely linked to the prevailing weather conditions (Seinfeld and Pan-10

dis, 1998). Most of the meteorological variables depend to a large extent on the dominating11

atmospheric configuration at the synoptic scale and thus the synoptic patterns are associated12

with the quality of the air (Ganor et al., 2010; Chen et al., 2008; Cheng et al., 2007a; Tanner and13
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Law, 2002; Triantafyllou, 2001). The link between the prevailing meteorology and the quality14

of the air is at many levels. At the small spatial scales, the wind’s direction determines where15

local emissions will go. The local wind speed and the nature of the atmospheric stratification16

determine a pollutant’s dispersion around the main advection axis. Local sun radiation intensity17

(function of cloud cover), temperature and humidity determine the rates of chemical reactions18

and transformations affecting the emissions. Large scale atmospheric flows dictate transbound-19

ary transport of pollutants, with their composition usually strongly affected by aging processes20

(Vallero, 2007). Al these meteorological conditions depend to a large extent on the type of syn-21

optic system dominating a region and thus, the synoptic systems provide very useful information22

for predicting the air quality. The effects of local factors like topography, urbanisation and sea23

breeze cannot be neglected though, and they are superimposed on the synoptic scale conditions24

(Tanner and Law, 2002; Triantafyllou, 2001). The synoptic system dominating a region at a25

certain time is usually defined using the regional pressure and temperature fields, which are de-26

scribed by data observations (Pearce et al., 2011; Cheng et al., 2007a; Alpert et al., 2004). For27

that purpose, point–wise data can be processed and classified by a completely automated math-28

ematical scheme (Pearce et al., 2011; Cheng et al. , 2007a), or by a manual or semi–automatic29

procedure based on a training set of spatial maps classified by experts (Alpert et al., 2004).30

Due to the complexity of the processes governing air quality, air pollution prediction is a31

tough challenge. The difficulties lie in the complication of atmospheric photochemistry and the32

uncertainties due to the inaccuracies in emission inventories, in addition to the uncertainties as-33

sociated with the forecast of the atmospheric state. Even the state of the art of chemical transport34

models require integration of data observations in order to achieve reasonable outputs for short35

term predictions (Carmichael et al., 2008). Moreover, use of chemical transport models becomes36

computationally prohibitive for studies at the very long time scales.37

This study presents a very simple alternative methodology for assessing future air pollutant38

levels, based on forecasted synoptic systems. The use of photochemical model is obviated but39

the trade offmay be a reduced accuracy. The method does compare well with the simple seasonal40

and persistence forecasts benchmark methods for short term predictions. However, unlike these41

benchmarks it can be utilised for studying the long term impacts of climatic changes on future42

air quality, based on existing climate model outputs.43

2. Data44

A 16 years database (1991-2006) of daily classification to synoptic systems of the 12:0045

UTC eastern Mediterranean NCEP data was developed and provided by Alpert et al. (2004).46

A corresponding database for 1950-2099 was also provided based on the ECHAM4/OPYC347

global climate model output (Roeckner et al., 1996, Chou et al., 2006). The ECHAM4/OPYC348

is a coupled ocean–atmosphere model. Its control run until 1990 was based on the observed49

CO2 and other greenhouse gasses emissions. Since 1990, the model was run according to input50

adapted from the IPCC Special Report on Emissions Scenarios scenario B2, where dynamics of51

technological changes continue along the historical trends (IPCC, 2007). The synoptic system52

classification is based on a semi–objective classification of geopotential height, temperature and53

the horizontal wind components at the the 1000 hPa level. Alpert et al. (2004) defined 19 syn-54

optic systems characteristic to the eastern Mediterranean, which can be lumped into six groups.55

The systems names and their group affiliations are given in Table 1.56

The air quality data were observed by the air quality monitoring networks in the Haifa, Gush57

Dan and the southern coast areas of Israel (Fig. 1). The network in Haifa consists of 20 stations.58
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Deployment of the monitoring network commenced during 1985 but the number of stations has59

stabilised only since 2002. This study considers the 2002-2006 data of SO2, NO2, O3, and PM1060

for most of the stations, and the 1997-2006 data for the Nave Shaanan station, which has longer61

records for all the pollutants. The Gush Dan network consists of 22 stations. Monitoring started62

in this region in the mid 1990s and the 1995-2006 data of SO2, NO2, O3, and PM2.5 are used63

in this study. The southern Israeli coast is covered by a network of 24 stations. The 2000-64

2006 data of SO2, NO2, O3, and PM2.5 are used in this study. Every monitoring station usually65

observes only a subset of the pollutants. Many of the stations also observe at least one of the66

following meteorological variables: wind speed and direction, temperature, relative humidity67

and pressure. The observed data in all cases are half–hourly mean values. This work considers68

the daily 12:00 UTC air pollution data so that they are compatible with the 12:00 UTC synoptic69

systems classification.70

3. Methods71

Consider a set of classifications of the atmospheric states in a region to synoptic system types,72

carried out for a certain characterising period. Using this set and the corresponding observed73

air quality data, synoptic pollution coefficients Pi j can be calculated for each pollutant at any74

monitoring location in the region as follows,75

Pi j =
1
N j

N j∑
k=1

Cik, (1)

where Cik is the sample of the pollutant’s observed concentrations at the N j time points when76

one of the i = 1, . . . ,M recognised synoptic systems appeared in a calendarian month j during77

the characterising period. In principle, a coefficient for each system could be produced for the78

whole characterising period (i.e., one coefficient for each system) but the refinement to monthly79

resolution is usually very beneficial. The pollution coefficients can also be characterised by a80

different statistic of the sample of Cik, e.g. using its median instead of the mean. In this study81

the classification to the M = 19 eastern Mediterranean synoptic system of Alpert et al. (2004) is82

used, based on the daily 12:00 UTC NCEP data. A similar classification process can be carried83

out for the output of a numerical weather prediction (NWP) model at its native resolution or84

at any other lower resolution. Such a classification can be also carried out for a climate model85

output that was run for periods in the past for which air pollution observations exist. Due to the86

dominance of the daily cycle in pollutant concentrations variability, in all cases the air pollution87

concentrations Cik should be the ones observed at hours corresponding to the time of the day for88

which the synoptic classification is produced (i.e., if the classifications are for 12:00 UTC, Cik89

should be air pollution data observed at 12:00 UTC or some statistic of the observed data around90

this hour). It must also be emphasised that Pi j pertains to the specific location of the air pollutant91

observations. That way the local conditions that impact the air pollution levels (e.g., topography,92

emission sources, etc.) are taken into account.93

Each pollutant is thus characterised at each monitoring location by an Mx12 matrix of co-94

efficients for each time of the day for which forecasts are desired. Forecasts for the pollutant’s95

concentrations at a given time point can be produced by assigning it a value from the relevant96

matrix of pollution coefficients, given the synoptic system forecasted for this time point and the97

calendarian month in which it falls. In the case of an NWP, the air quality forecast are for the98

selected hours of the day during the forecasting horizon of the NWP. In the case of a climate99
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model, air quality forecasts can be produced for the full forecasting period of the model. Clearly,100

in the case of a climate model the air quality at the specific time points is of no importance.101

However, statistics of the pollutant concentrations during long climate model forecast periods102

(say, years or decades) can be calculated and studied. Changes in the frequency of appearance103

of the synoptic systems captured by the model will manifest themselves as variations in the air104

pollutant concentrations. Assuming current emissions or any emissions trend in the forecasting105

model, this may provide some hints regarding the future air quality variations in the monitoring106

location.107

The lower and upper uncertainty level in the air pollution forecasts can be expressed as,108

Pi j − α(Pi j − Pmin
i j ), (2)

and109

Pi j + β(Pmax
i j − Pi j), (3)

where Pmin
i j and Pmax

i j are the minimum and maximum of the sample Cik, respectively, and α and110

β are coefficients in the range [0 1] that can be selected according to the desired confidence level.111

Alternatively, low and high percentile values of the set Cik can serve as the lower and upper112

limits of the prediction. The most suitable statistics to define the system coefficients and their113

limits may vary between pollutants and regions. They can be determined by a cross–validation114

process in which the level of risk is set in advance by the selection of the α and β parameters115

or the values of the limiting percentiles. For this study, we used the mean value (defined in116

eq. 1) as a system coefficient, and low and high percentiles for uncertainties. It must be noted117

that these uncertainty calculations assume an air pollution emission scenario similar to the one118

during the characterising period. The unknown future variations in the pollution emissions are119

not accounted for in this work and the possible implications are discussed later.120

The process described above of forecasting a pollutant’s concentration and its uncertainty121

range, based on the synoptic system classification, can be carried out for a few monitoring sta-122

tions in a region. This step involves very little additional work and costs, and it results in spatial123

maps of the forecasted pollution levels and their uncertainties.124

4. Results125

4.1. Air pollution characteristics of the synoptic systems126

Alpert et al (2004) discuss in length the meteorological characteristics associated with the127

synoptic systems experienced in the eastern Mediterranean. Figure 2 shows the characteristic128

air pollution concentrations associated with the different synoptic systems, calculated for station129

Tachana Merkazit in Tel Aviv. The mean, and the 10% and 90% percentiles of the concentra-130

tions of SO2, NO2, O3 and PM2.5 are presented. As mentioned in the Methods section, it is131

beneficial to calculate these characteristic concentrations, or pollution coefficients, separately for132

each calendarian months but for brevity’s sake, only the full year coefficients are shown here. In133

some cases there are clear differences between the pollution coefficients of the different synoptic134

systems and between the system groups. For example, the SO2 concentrations associated with135

systems 1-3, the Red Sea Troughs, are much higher than those of systems 4-6 of the Persian136

Trough group. However, the range between the 10th and 90th percentile values can be very wide137

and there is some overlap between the ranges of all four pollutants, for almost all the systems.138

Each synoptic system is associated with a certain typical wind direction that determines the139

main axis of air pollution dispersion and thus, to a certain extent, its spatial concentration pattern.140
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(The levels of the concentrations are mainly determined by the typical wind speed, atmospheric141

stratification conditions and the atmospheric chemistry rates.) Figure 3 shows maps of the spatial142

patterns of the mean SO2 concentrations in the Haifa bay area for a representative system from143

each of the six synoptic system groups. The representative systems were selected as the most144

prevalent in their corresponding groups. The only significant SO2 sources in the region are145

the oil refinery and the power plant, located at its centre (see Fig. 3). When the region is146

dominated by the Persian Trough and the High to the West systems, the typical winds are from147

the northwest. As a result, the mean SO2 concentrations during these systems (Figs. 3a and 3b,148

respectively) are highest southeast of the SO2 sources. The High to the North and the Sharav Low149

systems (Figs. 3c and 3d, respectively) are usually associated with easterly winds. When these150

systems dominate the eastern Mediterranean, Haifa stations that observe high SO2 concentration151

are mostly to the west of the SO2 sources. The Cyprus Low to the North and the Red Sea Trough152

with an Eastern Axis are cyclonic systems that result in wind in the general westerly direction153

(varying according to its stage). The SO2 spatial pattern associated with them (Figs. 3e and154

3f) is of high values east of the sources and low values west of them. The conditions typical155

to each system have impact on the spatial distributions of all the other pollutants as well but as156

these pollutants have many local and scattered sources (e.g. traffic), the differences between the157

associated spatial patterns are not as clear.158

4.2. Short term air pollution prediction159

An example of a short term air quality prediction by the proposed method is shown in Fig. 4.160

In each of the plots the 12:00 PM2.5 true concentrations in station Tachana Merkazit in Tel Aviv161

during 1 December 2005 to 28 February 2006 are shown along with the method’s predictions162

and their specified uncertainties. The predictions in this case are based on the mean values of the163

concentration samples for each synoptic system (eq. 1). The uncertainty limits shown in Figs.164

4a, 4b and 4c span the 5-95, 10-90 and 25-75 percentiles for each synoptic system, respectively.165

Naturally, as the uncertainty limits narrow they include less of the real values within their bounds.166

Eighty five, 75 and 55 out of the 88 valid real data shown in Figs. 4a, 4b and 4c, respectively, are167

within the uncertainty bounds. The large uncertainties shown in Fig. 4 imply that the prediction168

skills of the proposed method cannot be expected to be very high. It is important therefore to169

verify that the predictions are comparable to those achieved by common benchmarks.170

The two benchmark methods we consider are the seasonal and persistence forecast methods.171

The seasonal forecast assigns the pollutant concentration prediction at a certain day to be the172

mean value of the air pollution concentration sample observed at its calendarian day during all the173

years in the study period. Due to the relatively small number of years in the available time series174

(and thus a small number of time points to calculate each calendarian mean), our calculation175

included data of the relevant calendarian day and its adjacent six days (e.g., the calendarian176

mean of 15 January at 12:00 was calculated using the time points on January 12-18 at 12:00177

in all the years in the study period). A second benchmark, may be the simplest one, is the178

persistence forecast. This method assigns as the forecasted pollution concentration the observed179

concentration in some previous day, according to the desired forecast lag time. In spite of its180

simplicity, persistence has a very strong prediction power and was found more powerful predictor181

of air pollution than any meteorological variable by Lam and Cheng (1998).182

Figure 5 provides a comparison between the performance of the proposed method and the two183

benchmarks. As a performance measure we use the Success Rate (SR), defined as the number184

of times, out of the total number of predictions, that the forecast is within the correct categorical185

level of the concentration range of the pollutant. We define for this purpose the Low, Medium186
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and High SR levels to be delimited by the tertiles of the concentration ranges of each pollutant187

in each station. The SR is thus the ratio between the number of times that a forecasting scheme188

predicts a value within the correct concentration range to the total number of predictions. Values189

of the SR fall within zero (complete failure) and one (complete success). The comparison in Fig.190

5 is for the SO2, NO2, O3 and PM2.5 daily 12:00 concentrations in the Gush Dan stations. For a191

more comprehensive review of the proposed method’s performance compared to the benchmarks,192

Table 2 provides the number of stations for which the method achieved the highest SR in each193

of the monitoring networks along the Israeli coast. Table 2 also provides the corresponding194

number of times that the proposed method achieved the highest Pearson correlation coefficient.195

Examining Fig. 5 and Table 2, it can be concluded that the proposed method have a small, but196

clear advantage, compared to the benchmarks, especially in the NO2 and PM2.5 forecasts. It is197

interesting to note that the additional information that the synoptic system forecast provide does198

result in some advantage compared to the simpler methods. However, given the additional efforts199

it requires, the advantage of the proposed method seems marginal for the short term predictions200

and adopting this method for routine air quality forecasts might not be warranted.201

4.3. Application for future climate air quality assessment202

Figure 6 shows the predicted annual mean anomalies (residuals after subtracting the mean)203

of concentrations of SO2, NO2, O3 and PM2.5 for the years 1997-2099, based on synoptic system204

classification of the ECHAM4/OPYC3 model output and the pollution coefficients calculated205

for stations Nave Shaanan in Haifa and Tachana Merkazit in Tel Aviv. Using anomalies of206

the concentrations enables plotting the two forecasts on the same scale (there are significant207

differences in the mean pollution levels between the two stations) and better appreciation of208

the magnitude of the long term variability. The annual variability is relatively small, with an209

amplitude of about 1 µg/m3 for all the pollutant series. The amplitude of the variations in the SO2210

in Nave Shaanan is much larger than that in Tachana Merkazit. The location of Nave Shaanan211

is very close to the local SO2 sources (see Fig. 3), and being situated on a mountain slope at212

the elevation of the stacks leads to large variations in the SO2 concentrations during different213

synoptic systems. Commensurate amplitudes of the annual variations in the two stations exist214

for all the other pollutants.215

The correlation between the two forecasts are 0.77, 0.44, 0.40 and 0.85 for SO2, NO2, O3216

and PM2.5, respectively. The PM2.5 levels in Israel are dominated by transboundary transport of217

sulphates and nitrates from eastern Europe, and by dust particles from the surrounding deserts218

(Erel et al., 2007). The spatial variability of PM2.5 and the associated variability in the PM2.5219

pollution coefficients are thus small and result in similar long term PM2.5 forecast in the two220

stations. Most of the SO2 in Israel is due to large industrial plants, emitting quite constantly221

24 hours a day. The temporal variations in the SO2 concentrations are therefore mainly due222

to the variability in the meteorological conditions which are characteristic to different synoptic223

systems. Thus, the correlation between the SO2 forecasts for the two locations is also relatively224

high. The lower correlation between the forecasts of NO2 and O3 is probably due to the fact that225

the concentrations of these two pollutants depend mainly on the NOx and VOCs emissions of the226

local traffic. Variations in the traffic emissions as a result of changes in the traffic patterns and227

volumes, the weekly cycle, due to holidays, etc. are clearly not related to the dominating synoptic228

system. This results in differences between the NO2 and O3 pollution coefficients calculated for229

different stations for each synoptic system, and to different temporal variability patterns in the230

long term forecasts.231
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An example of the possible importance of long term forecasts is given in Fig. 7. The figure232

shows the 1997-2099 anomalies of the yearly PM2.5 concentrations in Haifa, considering only233

days which were assigned synoptic system belonging to one of two special groups. One group234

includes systems 4, 5, 6 and 8, which transport to Israel PM2.5, mainly sulphates and nitrates,235

from eastern Europe. The second group consists of systems 2, 12, 13, 18 and 19, which transport236

to Israel mineral dust from northern Africa. The shown values are the anomalies from the annual237

means, with the means calculated taking only the concentration values during days when the238

mentioned synoptic system groups were present (other days assigned zero value). No clear trend239

is noted in the levels of the dust–related PM during the 103 years period. However, the levels of240

PM2.5 transported from eastern Europe is increasing with a linear trend that results in additional241

2 µg/m3 during this period. Given that eastern Europe transport is a major contributor to the242

PM2.5 burden in Israel (Asaf et al., 2008; Erel et al., 2007), this is an important and interesting243

finding, suggesting that local control measures to reduce PM emissions may not be sufficient to244

abate the future PM2.5 in Israel.245

5. Discussion and conclusions246

This study proposes a very simple method for assessing the future air quality in a location for247

which historical air pollution records and a corresponding set of classifications of the weather248

to synoptic systems are available. The method was shown to be comparable, and slightly better249

than the seasonal and one–day–lag persistence forecasts in a three air pollution networks along250

the Israeli Mediterranean coast. By its nature, persistence cannot be used for long term air quality251

forecasts and seasonal forecasting is not useful for studies which consider possible climatological252

changes. Given an output of a climate model for the region, the method proposed by this work253

enables studying future air quality in a changing climate scenario. The climate change effect is254

incorporated in the variations in the frequency of the appearance of the various synoptic patterns.255

This assessment can serve as an alternative to the more complicated and expensive approach256

of using chemical transport air pollution schemes driven by climate models (Jacob and Winner,257

2009). However, a major drawback of the proposed approach is its use of constant pollutant258

coefficients. Moreover, the accuracy of our assessment depends to a large degree on the ability259

of the climate model to produce synoptic systems similar to the real ones, and with frequencies260

which are similar to the observed ones.261

The accuracy of the proposed method is a concern in its application for forecasting long term262

trends in the air quality. However, a much larger concern is the caveat hidden in the assumption263

of current air pollution emission levels while calculating the pollution coefficients. The last few264

decades have seen variations in air pollution emissions in the developed world (happily, mainly265

decreasing trends) whose impact on the air quality probably dwarfs the possible variations due266

to different prevalence of the synoptic systems in the future. For example, SO2 levels in Haifa,267

Israel, were reduced by more than an order of magnitude in the last 20 years and are expected to268

drop to almost zero level once the local power plant and refineries switchover from use of fuel oil269

to natural gas. VOC levels in most developed countries experienced a similar drop (Dollard et al.,270

2007) and will probably be further reduced with the on–going improvements in private vehicle271

emission controls. The introduction of electric cars will bring about a decrease in both VOCs272

and NOx emissions and thus also in the O3 levels. The increased use of non–combustive energy273

production sources and better emission controls on industrial plants will result in a decrease in274

PM, NOx and O3.275
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Figure 8 shows a comparison between the real annual average 1997-2006 concentrations of276

SO2, NO2, O3 and PM2.5 in Nave Shaanan, Haifa, and the hindcasting by the proposed method.277

The synoptic system pollution coefficients were calculated using the data during the whole ob-278

servation period and are thus providing information on that period’s mean levels. This results279

in hindcasts for these pollutants which are almost nonvariant in time, in contrast to the very sig-280

nificant trends in the local SO2, NO2 and O3 levels. The sources of PM2.5 in Haifa, much of281

it desert dust and transported sulphates and nitrates from eastern Europe, have not significantly282

changed during 1997-2006. However, even for this pollutant the hindcast is not close to the real283

record, probably due to insufficient accuracy in capturing the yearly variations in the synoptic284

system occurrence by the climate model. Cheng et al. (2007b) assumed three different scenarios285

of air pollution emissions in their assessment of climatic impact on air quality however, there is286

no guarantee that any of these scenarios will materialise. Future air pollutants emissions are an287

unknown but given the examples shown in Fig. 8, it is very probable that their variations will288

have a larger impact on future air pollution levels compared to the relatively small variations289

expected due to any reasonable variations in the occurrence of synoptic systems in a changing290

world climate.291
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Table 1: A list of the synoptic systems, their synoptic system group affiliations and the seasons in which they are most
frequent. The synoptic systems definitions and the group affiliation follow Alpert et al. (2004).

System No. System Name Group Season
1 Red Sea Trough with the Eastern axis Read Sea Trough Autumn/Winter
2 Red Sea Trough with the Western axis Read Sea Trough Autumn/Winter
3 Red Sea Trough with the Central axis Read Sea Trough Autumn/Winter
4 Persian Trough (Weak) Persian Trough Summer
5 Persian Trough (Medium) Persian Trough Summer
6 Persian Trough (Deep) Persian Trough Summer
7 High to the East Siberian High Winter
8 High to the West Subtropical High Spring/Summer
9 High to the North Siberian High Winter
10 High over Israel (Central) Siberian High Winter
11 Low to the East (Deep) Cyprus Low Winter
12 Cyprus Low to the South (Deep) Cyprus Low Winter
13 Cyprus Low to the South (Shallow) Cyprus Low Winter
14 Cyprus Low to the North (Deep) Cyprus Low Winter
15 Cyprus Low to the North (Shallow) Cyprus Low Winter
16 Cold Low to the West Cyprus Low Winter
17 Low to the East (Shallow) Cyprus Low Winter
18 Sharav Low to the West Sharav Low Spring
19 Sharav Low over Israel (Central) Sharav Low Spring
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Table 2: The number of times the synoptic classification method performed best compared to the two benchmark fore-
casting methods in three of the air pollution networks along the Israeli coast. The performance is tested for four common
pollutants and is measured by the success rate of forecasting the correct categorical level (Low/Medium/High) of the pol-
lution, and by the correlation coefficient between the true and predicted concentration values. The numbers in parentheses
are the numbers of monitors of the pollutant in the network.

SO2 NO2 O3 PMa

Success rate
Haifa 3 (20) 7 (10) 7 (9) 9 (9)
Gush Dan 0 (18) 17 (18) 6 (10) 8 (8)
South coast 7 (24) 17 (22) 13 (17) 7 (9)
Correlation
Haifa 17 (20) 9 (10) 6 (9) 7 (9)
Gush Dan 10 (18) 16 (18) 10 (10) 7 (8)
South coast 24 (24) 22 (22) 7 (17) 9 (9)

a PM10 in Haifa and PM2.5 in Gush Dan and the southern coast.
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Figure 1: A map showing the location of the monitoring stations. Stations in Haifa are marked with pentagrams, station
in Gush Dan are marked by diamonds and station in the southern coast are marked by circles. The coordinates are in
kilometres in the New Israel Grid system.
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Figure 2: The annual mean and the 10% and 90% percentiles of the pollutant concentrations for each of the eastern
Mediterranean synoptic systems in station Tachana Merkazit in Tel Aviv, Israel. (a) SO2 (b) NO2 (c) O3 (d) PM2.5.
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Figure 3: Maps of the spatial distribution of the mean 2002-2006 SO2 concentration values in the Haifa region during the
most prevalent system in each of the six synoptic system groups. The colour coded concentrations are normalised such
that their range is zero to one (deep blue to cyan to red to brown, respectively). The continuous blue line is the shoreline.
The two circles denote the locations of the oil refinery and the power plant which are the major SO2 sources in the region.
Station Nave Shaanan is marked with a thick black frame. (a) Persian Trough (Weak), (b) High to the West, (c) High to
the North, (d) Sharav Low over Israel (Central), (e) Cyprus Low to the North (Shallow), and (f) Red Sea Trough with an
Eastern axis.
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Figure 4: Daily prediction of PM2.5 concentrations in Tachana Merkazit station, Tel Aviv, during winter 2005/2006 and
their uncertainties. True values are denoted by a +, the predictions by an x and the uncertainties are denoted by the
solid line envelope. (a) Uncertainties are the 5th and 95th percentile values. (b) Uncertainties are the 10th and the 90th
percentile values. (c) Uncertainties are the 25th and the 75th percentile values. The uncertainty envelope includes 85, 75
and 55 of the 88 true valid values in (a), (b) and (c), respectively.
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Figure 5: The success rate at predicting the correct categorical level (Low/Medium/High) of the true daily 12:00 pollution
concentration by the synoptic system forecast, seasonal forecast and persistence with one day lag. The observations are
from the stations in the Gush Dan network during the study period 1995-2006. (a) SO2, (b) NO2, (c) O3, (d) PM2.5.
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Figure 6: The anomalies of the yearly pollutant concentrations, predicted based on the climate model’s daily forecast of
synoptic systems and the pollution coefficients from stations Nave Shaanan in Haifa (circles) and Tachana Merkazit in
Tel Aviv (x-marks). (a) SO2, (b) NO2, (c) O3, (d) PM2.5.
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Figure 7: The anomalies of the yearly PM2.5 concentrations, considering only days which were assigned synoptic system
belonging to one of two groups. The shown values are the anomalies from the annual means, with the means calculated
taking only the concentration values during days when the mentioned synoptic systems groups were present. The pen-
tagrams denote the mean annual values due to synoptic systems transporting PM2.5 to the eastern Mediterranean from
eastern Europe (systems 4, 5, 6 and 8). The diamonds mark values due to synoptic systems transporting mineral dust
from northern Africa (systems 2, 12, 13, 18 and 19). The solid lines are linear regression lines fitted to the two curves.
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Figure 8: The real 1997-2006 annual mean pollution concentrations in Haifa, Israel (circles) and the corresponding
hindcasting estimates (x-marks) by the synoptic classification method. (a) SO2, (b) NO2, (c) O3, (d) PM2.5.
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