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1 Proofs

1.1 Fact 1.

Let v′ ≤ v. Then: R0
D,v′ ⊆ R0

D,v, P
0
D,v′ ⊆ P 0

D,v and RD,v′ ⊆ RD,v.

Proof. For example, the proof of R0
D,v′ ⊆ R0

D,v is as follows: If x = xi the

statement holds by De�nition 1.1. Otherwise, if xiR0
D,v′x then v′ipixi ≥ pix .

v′ ≤ v implies that for every observation i, v′i ≤ vi . Therefore, vipixi ≥ pix,

meaning xiR0
D,vx.

1.2 Fact 2.

Every D satis�es GARP0.

Proof. For every pair of observed bundles xi and xj, xjP 0
D,0x

i is false since for

every bundle x, pjx ≥ 0 = 0× pjxj (P 0
D,0 is the empty relation).
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1.3 Fact 3.

Let v,v′ ∈ [0, 1]n and v ≥ v′. If D satis�es GARPv then D satis�es

GARPv′.

Proof. By Fact 1, for every pair of observed bundles xi and xj, xiRD,v′xj

implies xiRD,vx
j. By De�nition 2, since D satis�es GARPv for every pair

of observed bundles xi and xj, xiRD,v′xj implies not xjP 0
D,vx

i. By Fact 1,

for every pair of observed bundles xi and xj, xiRD,v′xj implies not xjP 0
D,v′xi.

Therefore, D satis�es GARPv′.

1.4 Theorem 1.

Notation. Let � be a binary relation. Then, � is de�ned as x � y if and only

if x � y and not y � x, while ∼ is de�ned as x ∼ y if and only if x � y and

y � x. Denote by X/ ∼ the set of all equivalence classes on X induced by ∼.
Also, denote by �? the transitive closure of � and by �c the relation where

x �c y if and only if y � x.

De�nition 1. Let v ∈ [0, 1]n. A transitive and re�exive binary relation �
v-rationalizes-by-relation D, if R0

D,v ⊆� and P 0
D,v ⊆�.

Notation. Let x ∈ <K+ and δ > 0. Bδ (x) =
{
y ∈ <K+ : ‖y − x‖ < δ

}
.

De�nition 2. A utility function u : <K+ → < is

1. Locally non-satiated if ∀x ∈ <K+ and ∀ε > 0, ∃y ∈ Bε (x) such that

u(x) < u(y).

2. Continuous if ∀x ∈ <K+ and ∀ε > 0 there exists δ > 0 such that y ∈ Bδ (x)

implies u (y) ∈ Bε (u (x)).

3. Acceptable if ∀x ∈ <K+ , u(0) ≤ u(x).1

1For everyD =
{(
pi, xi

)n
i=1

}
and for every v ∈ [0, 1]n, ∀i ∈ 1, . . . , n : xiR0

D,v0 (where 0 is
the zero bundle). Therefore, a necessary condition for a binary relation� to v-rationalize-by-
relation D is that for every observed bundle x ∈ <K

+ , x � 0. Similarly, for a utility function
u(x) to v-rationalize D it must be that for every observed bundle x ∈ <K

+ , u(x) ≥ u(0).
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4. Monotone if ∀x, y ∈ <K+ , x ≤ y implies u(x) ≤ u(y).

5. Concave if ∀x, y ∈ <K+ and 0 ≤ α ≤ 1: αu (x) + (1− α)u (y) ≤
u (αx+ (1− α) y).

Lemma 1. Let � be transitive and re�exive binary relation on a set X. Then,

there exists a complete, transitive and re�exive binary relation �′ on X such

that �⊆�′ and �⊆�′.

Proof. Construct the mapping Π : X → X/ ∼ where each element of X is

mapped into its equivalence class (the Canonical Projection Map). Consider

the relation �̄ on X/ ∼ where x � y implies Π(x)�̄Π(y). �̄ is re�exive and

transitive since � is re�exive and transitive. Also, �̄ is antisymmetric since if

x ∼ y then Π(x) = Π(y). By Szpilrajn (1930)'s Extension Theorem, there is a

complete, transitive, re�exive and antisymmetric binary relation, �̄′, such that
�̄ ⊆ �̄′. Consider now the relation �′ on X where Π(x)�̄′Π(y) implies x �′ y.
�′ is complete, re�exive and transitive since �̄′ is complete, re�exive and

transitive. Also, suppose x � y, then, by the �rst construction, Π(x)�̄Π(y),

by the Extension Theorem Π(x)�̄′Π(y) and by the second construction x �′ y.
Therefore �⊆�′. Similarly, �⊆�′.

Lemma 2. Let R and P be two arbitrary binary relations on X. The following

statements are equivalent:

1. There exists a transitive and re�exive binary relation � on X such that

R ⊆� and P ⊆�.
2. There exists a complete, transitive and re�exive binary relation �′ on

X such that R ⊆�′ and P ⊆�′.
3. (R ∪ P )? ∩ P c = ∅.

Proof. By Lemma 1, the �rst two statements are equivalent. Next, suppose

(1) holds. Then, (R ∪ P ) ⊆ (� ∪ �) and therefore (R ∪ P )? ⊆ (� ∪ �)?.

Also, P c ⊆�c. Therefore, (R ∪ P )? ∩ P c ⊆ (� ∪ �)?∩ �c. Since �⊆� and

since � is transitive we get (R ∪ P )? ∩ P c ⊆� ∩ �c. But, � ∩ �c= ∅ and
hence (R ∪ P )? ∩ P c = ∅.
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Last, suppose (3) holds. We construct a transitive and re�exive binary

relation � on X such that R ⊆� and P ⊆�. Let � be such that x � y if and

only if x(R ∪ P )?y or x = y. � is re�exive by de�nition and transitive since

(R ∪ P )? is transitive. Moreover, since R ⊆ (R ∪ P )? and P ⊆ (R ∪ P )? then

R ⊆� and P ⊆�. It is left to show that P ⊆�. Suppose xPy. Since P ⊆�
then x � y. Moreover, since xPy then yP cx and since (R ∪ P )? ∩ P c = ∅ we
get that it cannot be that y(R ∪ P )?x. In particular, it cannot be that yPx

and therefore x 6= y. Thus, by the de�nition of �, it cannot be that y � x.

Therefore, x � y and we conclude that P ⊆�.

Lemma 3. Let v ∈ [0, 1]n and let D =
{

(pi, xi)
n
i=1

}
be a �nite data set of

choices from budget sets. The following statements are equivalent:

1. There exists a transitive and re�exive binary relation � on <K+ such

that � v-relation-rationalizes D.

2. There exists a complete, transitive and re�exive binary relation �′ on
<K+ such that �′ v-relation-rationalizes D.

3. D satis�es GARPv.

Proof. By Lemma 2 and De�nition 1 if X = <K+ , R = R0
D,v and P = P 0

D,v

then the �rst two statements are equivalent and both are also equivalent to

(R0
D,v ∪ P 0

D,v)? ∩ P 0
D,v

c = ∅. But, (R0
D,v ∪ P 0

D,v)? ∩ P 0
D,v

c = ∅ holds if and only

if for every pair of bundles x and y, xRD,vy implies not yP 0
D,vx. If x is an

unobserved bundle or y is an unobserved bundle then by De�nition 1 in the

main text, xRD,vy implies not yP
0
D,vx. Therefore, (R0

D,v ∪ P 0
D,v)? ∩ P 0

D,v
c = ∅

holds if and only if for every pair of observed bundles x and y, xRD,vy implies

not yP 0
D,vx. Hence, by De�nition 2 in the main text, (R0

D,v∪P 0
D,v)?∩P 0

D,v
c = ∅

holds if and only if D satis�es GARPv.

Lemma 4. Let D =
{

(pi, xi)
n
i=1

}
be a �nite data set and let{(

zi : <K+ → <
)n
i=1

}
be a family of real functions. De�ne the following two bi-

nary relations on
{

(xi)
n
i=1

}
: xiRxj ⇔ zi(x

j) ≤ 0 and xiPxj ⇔ zi(x
j) < 0. If

there exists a transitive and re�exive binary relation �̄ on
{

(xi)
n
i=1

}
such that

R ⊆ �̄ and P ⊂ �̄ then there exists a function f(x) = mini∈{1,...,n} fi +λizi(x)

such that λi > 0 and f(xi) ≥ fi.

4

Supplemental Material for: Yoram Halevy, Dotan Persitz, Lanny Zrill. 2018. "Parametric Recoverability of Preferences." 
Journal of Political Economy 126(4). DOI: 10.1086/697741. 



Proof. By Lemma 2, there exists a complete, transitive and re�exive binary

relation � on
{

(xi)
n
i=1

}
such that R ⊆� and P ⊂�. Since � is complete

and transitive and
{

(xi)
n
i=1

}
is �nite we can partition the observed bundles

and rank them according to �. Let I = {1, . . . , n}. Then E1 = {i ∈ I|@y ∈
{(xi)i∈I}, y � xi} is the set of indices of those observed bundles that are not

dominated by any other observed bundle according to �. Similarly, from the

remaining observed bundles, E2 = {i ∈ I/E1|@y ∈ {(xi)i∈I/E1}, y � xi}, is
the set of indices of those observed bundles that are not dominated according

to � by any other observed bundle, and so E3 = {i ∈ I/(E1 ∪ E2)|@y ∈
{(xi)i∈I/(E1∪E2)}, y � xi}, etc. Denote the number of classes by l. Transitivity
guarantees that there are no empty classes while completeness assures that for

every k ∈ 1, . . . , l and for every pair of observed bundles x, y ∈ Ek it must be
that x ∼ y.

The following procedure uses this partition and the functions{(
zi : <K+ → <

)n
i=1

}
to construct a mapping (fi, λi) :

{
(xi)

n
i=1

}
→ <2 such

that λi > 0 and f(xi) ≥ fi where f(x) = mini∈I {fi + λizi(x)}:
1. For every i ∈ E1, set fi = 1 and λi = 1. Also, set k = 1. If l = 1 the

procedure terminates, otherwise continue.

2. Set k := k + 1.

3. Denote Bk = ∪k−1m=1Em.

4. Calculate αk = mini∈Bk
minj∈Ek

min

{
fi + λizi(x

j), fi

}
.

5. Choose some f < αk and set fj = f for every j ∈ Ek.
6. Calculate βk = maxi∈Bk

maxj∈Ek

fi−fj
zj(xi)

.

7. Choose some λ > βk and set λj = λ for every j ∈ Ek.
8. If k < l return to step 2, otherwise the procedure terminates.

Stage 1 guarantees that for every i ∈ E1, λi = 1 and fi = 1. Suppose

i ∈ E1, l ≥ 2 and k ∈ {2, . . . , l}. Then i ∈ Bk and for every j ∈ Ek, xi � xj

(since � is complete). Steps 4 and 5 guarantee that xi � xj implies that

fi > fj or fi − fj > 0. In addition, xi � xj implies that zj(x
i) > 0 (otherwise

xjRxi and therefore xj � xi). Therefore, steps 6 and 7 guarantee that for

every observation i ∈ I, λi > 0. It is left to show that for every observation

i ∈ I, f(xi) ≥ fi. That is, minj∈I [fj + λjzj(x
i)] ≥ fi or, equivalently, for every
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pair of observations i, j ∈ I, fj + λjzj(x
i) ≥ fi. First, if x

j � xi steps 4 and 5

guarantee that fj + λjzj(x
i) > fi. If x

j ∼ xi then zj(x
i) ≥ 0 (otherwise xjPxi

and therefore xj � xi) and in addition by step 5, fj = fi. Since for every

j ∈ I, λj > 0 we get that xj ∼ xi implies fj + λjzj(x
i) ≥ fi. Last, if x

i � xj

then zj(x
i) > 0 and fi − fj > 0 and steps 6 and 7 guarantee that λj >

fi−fj
zj(xi)

.

Therefore, xi � xj implies fj + λjzj(x
i) > fi. Thus, for every observation

i ∈ I, f(xi) ≥ fi. If l = 1 then for every pair of observations i, j ∈ I, we

have xi ∼ xj. Therefore, for every pair of observations i, j ∈ I,zj(x
i) ≥ 0.

In addition, for every i ∈ I, λi = 1 and fi = 1. Hence, for every i ∈ I,

f(xi) ≥ fi.

Lemma 5. If u is a locally non satiated utility function that v-rationalizes

D =
{

(pi, xi)
n
i=1

}
, then xiP 0

D,vx implies u (xi) > u (x).

Proof. If xiP 0
D,vx then xiR0

D,vx. Since u (·) v-rationalizes D, xiR0
D,vx implies

u (xi) ≥ u (x). Suppose that u (xi) = u (x). Since vipixi > pix, ∃ε > 0 such

that ∀y ∈ Bε (x) : vipixi > piy. By local non-satiation ∃y′ ∈ Bε (x) such

that u (y′) > u (x) = u (xi). Thus, y′ is a bundle such that vipixi > piy′ and

u (y′) > u (xi), in contradiction to u (·) v-rationalizing D. Therefore, u (xi) >

u (x).

We proceed to the proof of Theorem 1,

Proof. First, suppose there exists a locally non-satiated utility function u(·)
that v-rationalizes D. If, in negation, D does not satisfy GARPv then, by

De�nition 2 in the main text, there are two observed bundles xi, xj such that

xiRD,vx
j and xjP 0

D,vx
i. By De�nition 1.3 in the main text, xiRD,vx

j im-

plies that there exists a sequence of observed bundles
(
xk, . . . , xm

)
such that

xiR0
D,vx

k, . . . , xmR0
D,vx

j. Therefore, by De�nition 3 in the main text, xiRD,vx
j

implies u(xi) ≥ u(xk) ≥ · · · ≥ u(xm) ≥ u(xj), meaning xiRD,vx
j implies

u(xi) ≥ u(xj) . However, by Lemma 5, since u (·) is a locally non-satiated

utility function that v-rationalizes D, xjP 0
D,vx

i implies u (xj) > u (xi). Con-

tradiction. Therefore, D satis�es GARPv.
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Since the third statement implies the �rst statement, it is left to be shown

that if D satis�es GARPv then there exists a continuous, concave, acceptable

and monotone utility function that v-rationalizes D.

By Lemma 3 and by De�nition 1, we have to show that for every data set D

and adjustments vector v, if � is a transitive and re�exive binary relation on

<K+ such that R0
D,v ⊆� and P 0

D,v ⊆� then there exists a continuous, concave,

acceptable and monotone utility function that v-rationalizes D.

De�ne zi(x) = 1
vi
pix− pixi if x 6= xi and zero otherwise. Then, xiR0

D,vx⇔
zi(x) ≤ 0 and xiP 0

D,vx⇔ zi(x) < 0. Thus, by Lemma 4, there exists a function

f(x) = mini∈{1,...,n} fi + λizi(x) such that λi > 0 and f(xi) ≥ fi.

Next we show that f(·) v-rationalizes D. Suppose xiR0
D,vx. By the de�ni-

tion of f we get f(x) ≤ fi + λizi(x). Since, λi > 0 and since xiR0
D,vx we get

λizi(x) ≤ 0 and therefore f(x) ≤ fi. However, f(xi) ≥ fi. Therefore, x
iR0

D,vx

implies f(xi) ≥ f(x), that is f(·) v-rationalizes D.

The functions zi are discontinuous at xi when vi < 1. Therefore, f

is continuous everywhere except maybe at the observed bundles. We use

f to construct a continuous utility function f̂ that v-rationalizes D. Let

ẑi(x) = limy→x zi(y) then ẑi(x) ≥ zi(x) for x = xi and ẑi(x) = zi(x) otherwise.

Construct f̂(x) = mini∈{1,...,n} fi + λiẑi(x) where fi and λi are the same as in

f and therefore λi > 0 and f(xi) ≥ fi. Note that ẑj(x
i) ≥ zj(x

i) = 0 for all

j ∈ {1, . . . , n} implies f̂(xi) ≥ f(xi) ≥ fi. If x 6= xi then zi(x) ≤ 0 implies

ẑi(x) ≤ 0 and therefore f̂(x) ≤ fi. Hence, for every bundle x 6= xi such that

zi(x) ≤ 0 we get f̂(x) ≤ f̂(xi). Thus, for every bundle x such that xiR0
D,vx

we get f̂(x) ≤ f̂(xi), that is f̂ v-rationalizes D. Obviously, ẑi(x) is continuous

and therefore for every observation i ∈ I, fi + λiẑi(x) is continuous. Since the

minimum of any �nite number of continuous functions is continuous we get

that f̂(x) = mini∈{1,...,n} fi + λiẑi(x) is continuous.

For every i ∈ I, since ẑi(x) is linear with positive slope, the zero bundle,

x = 0, minimizes fi + λiẑi(x). Therefore, f̂(0) = min x∈<K
+
f̂(x). Hence, f̂

satis�es acceptability. Also, since ẑi(x) is increasing monotonically, for every

observation i ∈ I, fi + λiẑi(x) is increasing monotonically and therefore f̂ is

monotonic. ẑi(x) is linear and therefore for every observation i ∈ I, fi+λiẑi(x)

7
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is linear. Since the minimum of a set of linear functions is concave, f̂ is

concave.

1.5 Fact 4.

IV (D, f), IA(D) and IHM(D, f) always exist.

Proof. The aggregator function f(·) is bounded. In addition, by Fact 2, the

sets {v ∈ [0, 1]n : D satisfies GARPv}, {v ∈ I : D satisfies GARPv} and

{v ∈ {0, 1}n : D satisfies GARPv} are non-empty. Hence, IV (D, f), IA(D)

and IHM(D, f) always exist.

1.6 Proposition 1.

Let D =
{

(pi, xi)
n
i=1

}
, u ∈ U c and v ∈ [0, 1]n. u (·) v-rationalizes D if

and only if v 5 v?(D, u).

Proof. First, let us show that if u (·) v-rationalizes D then v 5 v?(D, u).

Suppose that v is such that u (·) v-rationalizes D and for observation i, vi >

v?i (D, u). By De�nition 3 in the main text, u (xi) ≥ u (x) for all x such that

vipixi ≥ pix. By De�nition 8 in the main text and since vi > v?i (D, u) we

get that vipixi > m (xi, pi, u) = pix? where x? ∈ argmin{y∈<K
+ :u(y)≥u(xi)}p

iy.

It follows that ∃ε > 0 such that ∀y ∈ Bε (x?) : vipixi > piy. By local non-

satiation ∃y′ ∈ Bε (x?) such that u (y′) > u (x?) ≥ u (xi). Thus, y′ is a bundle

such that vipixi > piy′ and u (y′) > u (xi) contradicting that u (·) v-rationalizes
D.

Next, let us show that if v 5 v?(D, u) then u (·) v-rationalizes D. We

begin by establishing that u(·) v?(D, u)-rationalizes D. Suppose, in nega-

tion, that for some observation (pi, xi) ∈ D there exists a bundle x such

that xiR0
D,v?(D,u)x and u (xi) < u (x). If x = 0 then we get a contradic-

tion by acceptability. If x 6= 0 then by De�nition 1.1 in the main text,

v?i(D, u)pixi ≥ pix. By De�nition 8 in the main text, m (xi, pi, u) ≥ pix.

By continuity of u (·) there exists γ > 0 such that u (xi) < u ((1− γ)x). How-

8
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ever, since pi (1− γ)x < m(xi, pi, u), we reach a contradiction to De�nition 8

in the main text.

Finally, since u(·) v?(D, u)-rationalizes D, for every observation (pi, xi) ∈
D, v?i(D, u)pixi ≥ pix implies u (xi) ≥ u (x). Since v 5 v?(D, u), for every ob-

servation (pi, xi) ∈ D, v?i (D, u) pixi ≥ vipixi. Therefore, for every observation

(pi, xi) ∈ D, vipixi ≥ pix implies u (xi) ≥ u (x). Hence, u (·) v-rationalizes

D.

1.7 Proposition 2.

Let D =
{

(pi, xi)
n
i=1

}
, u ∈ U c and b ∈ {0, 1}n. u (·) b-rationalizes D if

and only if b 5 b?(D, u).

Proof. First, let us show that if u (·) b-rationalizes D then b 5 b?(D, u). Sup-

pose, in negation, that b is such that u (·) b-rationalizes D and for observation

i, bi = 1 while b?i (D, u) = 0. By De�nition 10 in the main text, b?i (D, u) = 0

implies that there exists y ∈ <K+ such that pixi ≥ piy and u (y) > u (xi). Thus,

xiR0
D,bx does not imply u(xi) ≥ u(x), contradicting that u (·) b-rationalizes

D.

Next, let us show that if b 5 b?(D, u) then u (·) b-rationalizes D. Since,

b 5 b?(D, u), for every observation (pi, xi) ∈ D, bi = 1 implies b?i (D, u) = 1.

By De�nition 10 in the main text, this means that bipixi ≥ pix implies u (xi) ≥
u (x). Otherwise, if bi = 0 by the acceptability of u(·), bipixi ≥ pix implies

u (xi) ≥ u (x). Therefore, bipixi ≥ pix implies u (xi) ≥ u (x) and by De�nition

1.1 in the main text xiR0
D,bx implies u(xi) ≥ u(x). Hence, by De�nition 3 in

the main text, u(·) b-rationalizes D.

1.8 Fact 5.

For every U ′ ⊆ U : IM(D, f,U) ≤ IM(D, f,U ′) and IB(D, f,U) ≤
IB(D, f,U ′).

Proof. U ′ ⊆ U implies infu∈U ′ f (v? (D, u)) ≥ infu∈U f (v? (D, u)) and therefore

IM(D, f,U) ≤ IM(D, f,U ′) and similarly for the Binary Incompatibility Index.
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1.9 Theorem 2.

Proof. We begin with the proof of part 1. First, we show that IV (D, f) ≤
IM(D, f,U c). If IV (D, f) = 0 then by de�nitions 4 and 9 in the main

text we get IV (D, f) ≤ IM(D, f,U c). Otherwise, if IV (D, f) > 0, sup-

pose that IV (D, f) > IM(D, f,U c). Then, there exists u ∈ U c such that

f (v? (D, u)) < IV (D, f). By Proposition 1, u(·) v?(D, u)-rationalizes D. By

Theorem 1 D satis�es GARPv?(D,u). However, since D satis�es GARPv?(D,u)

and f (v? (D, u)) < IV (D, f), IV (D, f) cannot be the in�mum of f(·) on the

set of all v ∈ [0, 1]n such that D satis�es GARPv. Contradiction.

For the converse direction note that by Theorem 1, D satis�es GARPv

if and only if there exists u ∈ U c that v-rationalizes D. By Proposition 1,

v 5 v? (D, u). Since f(·) is weakly decreasing f (v? (D, u)) ≤ f(v). Therefore,

by De�nition 9, D satis�es GARPv implies that IM(D, f,U c) ≤ f(v). Since

IV (D, f) = infv∈[0,1]n:D satis�es GARPv f(v) we have IV (D, f) ≥ IM(D, f,U c).
Hence, IV (D, f) = IM(D, f,U c).

To prove part 2 we �rst show that IHM(D, f) ≤ IB(D, f,U c). If

IHM(D, f) = 0 by de�nitions 4 and 10 in the main text we get IHM(D, f) ≤
IB(D, f,U c). Otherwise, if IHM(D, f) > 0 suppose that IHM(D, f) >

IB(D, f,U c). Then, there exists u ∈ U c such that f (b? (D, u)) < IHM(D, f).

By Proposition 2 u(·) b?(D, u)-rationalizes D. By Theorem 1, D satis�es

GARPb?(D,u). However, since D satis�es GARPb?(D,u) and f (b? (D, u)) <

IHM(D, f), IHM(D, f) cannot be the in�mum of f(·) on the set of all

v ∈ {0, 1}n such that D satis�es GARPv. Contradiction.

Second, by Theorem 1, D satis�es GARPb if and only if there exists

u ∈ U c that b-rationalizes D. By Proposition 2, b 5 b? (D, u). Since f(·)
is weakly decreasing f (b? (D, u)) ≤ f(b). Therefore, by De�nition 10 un

the main text, D satis�es GARPb implies that IB(D, f,U c) ≤ f(b). Since

IHM(D, f) = infv∈{0,1}n:D satis�es GARPv f(v) we have IHM(D, f) ≥ IB(D, f,U c).
Hence, IHM(D, f) = IB(D, f,U c).
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We conclude with the proof of part 3. By part 1, since f(v) = 1 −
mini∈{1,...,n} vi is continuous and weakly decreasing then for every �nite data set

D, IV (D, f) = IM(D, f,U c). By De�nition 6, since I ⊂ [0, 1]n then if f(v) =

1−mini∈{1,...,n} vi we get IV (D, f) ≤ IA(D). Suppose that IV (D, f) < IA(D),

then there exists v̂ ∈ [0, 1]n such that D satis�es GARPv̂ and f(v̂) < IA(D).

By Fact 3, for every v ∈ [0, 1]n such that D satis�es GARPv there exists

v′ ∈ I such that D satis�es GARPv′ where v′ = mini∈{1,...,n} vi. Hence, there

exists v̂′ ∈ I such that D satis�es GARPv̂′ and f(v̂) = f(v̂′) < IA (D).

Contradiction.

2 Inconsistency Indices

This appendix provides detailed information regarding inconsistency indices

mentioned or related to this work. Section 2.1 describes the theoretical and

practical computational issues concerning the indices analyzed in Theorem 2.

Three important alternative inconsistency indices based on revealed prefer-

ences are discussed in Section 2.2. A fourth alternative, which is not based on

revealed preferences, is discussed in Section 2.3.2

2.1 Computation

Theorem 2 relates three inconsistency indices to loss functions used in the

recovery of parametric preferences. Since an inconsistency index is constant

(given a data set), its value is inconsequential to the selection of the best

approximating function within a parametric family. However, the value of the

index is necessary in order to determine the decomposition of the loss between

the subject's inconsistency and the researcher's inaccuracy in her choice of

functional form. Therefore, a practical consideration in the choice of a loss

function is the computability of the corresponding inconsistency index.

2We do not discuss indices based on the number of violations of the revealed preference
axioms (see Swo�ord and Whitney (1987); Famulari (1995) and Harbaugh et al. (2001)) or
indices based on the distance of the observed Slutsky matrix from the set of rational Slutsky
matrices (see Jerison and Jerison, 1993; Aguiar and Serrano, 2017, 2015).
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2.1.1 Afriat's Inconsistency Index

Theorem 3 in Afriat (1973) suggests an NP-Hard algorithm to calculate

Afriat's inconsistency index. Based on a similar idea, Smeulders et al. (2014)

provide a polynomial time algorithm to calculate this index. Houtman and

Maks (1987) describe an e�cient binary search routine that approximates

Afriat's inconsistency index with an arbitrary accuracy in polynomial time.

In the supplemented code package we follow Houtman and Maks (1987).

Let GL denote a lower bound on the index (initialized to zero) and let GU de-

note an upper bound on the index (initialized to one). At each iteration we cut

the di�erence between the bounds by half, by testing the data for GARPGU+GL
2

and updating the upper bound in case of a failure and the lower bound oth-

erwise. l iterations guarantee an accuracy of approximately log10 2l ≈ 0.3l

signi�cant decimal digits (we implement l = 30). Finally, we report GL.

2.1.2 Varian's Inconsistency Index

The problem of �nding the exact value of Varian's Inconsistency Index is

equivalent to solving the minimum cost feedback arc set problem.3 Karp (1972)

shows that this problem is NP-Hard and therefore �nding the exact value of

Varian's Inconsistency Index is also NP-Hard (as mentioned in Varian (1990)).4

Moreover, Smeulders et al. (2014) show that no polynomial time algorithm can

achieve a constant factor approximation (a ratio of o
(
n1−δ)). Tsur (1989),

Varian (1993) and Alcantud et al. (2010) suggest approximation algorithms

that overestimate the actual Varian's Inconsistency Index.

Our calculation of Varian's Inconsistency Index in the supplemented code

package attempts to take advantage of the moderate size of the analyzed

datasets (at most 50 observations per subject). Denote the number of GARP

violations by m and the set of all GARP violations byM = {h1, . . . , hm} (each
element is an ordered sequence of observations). For every violation hi, denote

3Given a directed and weighted graph, �nd the �cheapest� subset of arcs such that its
removal turns the graph into an acyclic graph.

4Smeulders et al. (2014) show a similar result for the generalized mean aggregator func-
tion.
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the set of budget line adjustments that can potentially prevent it by Hi (each

element is an ordered pair of an observation and an adjustment percentage).

If
∑m

i=1 |Hi| < K1 then we take a �brute force� approach (we implement

K1 = 26). For each subset of ∪mi=1Hi, we construct the corresponding adjust-

ment vector v and check whether GARPv is satis�ed. We report three versions

of Varian's Inconsistency Index, each minimizing a di�erent aggregator func-

tion - the Minimum aggregator (1 − mini∈{1,...,n} vi), the MEAN aggregator

( 1
n

∑n
i=1 (1− vi)) and the SSQ aggregator (

√
1
n

∑n
i=1 (1− vi)2).

Otherwise, we take advantage of the small commodity space (K = 2).

Rose (1958) shows that in this case WARP is satis�ed if and only if SARP

is satis�ed. Denote the set of WARP violations by W (each element, wi, is

an unordered pair of observations). If |W | ≤ K2 we take a similar approach,

on budget adjustments that can prevent the WARP violations (we implement

K2 = 12). For each of ∪|W |i=1wi, we construct the corresponding adjustment vec-

tor v and check whether GARPv is satis�ed. We report the minimum of the

three aggregators mentioned above. We observe that resolving WARP viola-

tions provides a very good approximation to the actual Varian's Inconsistency

Index.

Finally, if
∑m

i=1 |Hi| ≥ K1 and |W | > K2 we implement Algorithm 3 of

Alcantud et al. (2010). This algorithm initializes the vector of adjustments,

v, to 1. Then, a loop is implemented that ends only when the data satis-

�es GARPv. Inside the loop, the matrix A is maintained where the cell in

the ith row and the jth column contains
pjxi
vjpjxj

if xiRv,Dxj and xjP
0
v,Dxi and

zero otherwise. In each iteration, the maximal element of A is picked and

substituted into the corresponding element in the vector of adjustments. We

report the three aggregators mentioned above operated on the resulted vector

of adjustments v.

For the data collected in the �rst part of our experiment, where each subject

made 22 choices from linear budget lines, we are able to calculate the Varian

Inconsistency Index exactly for 91.6% (186 out of 203) of the subjects. We fail

to calculate a reliable index for only 3 subjects (we provide good approximation

for 14 subjects). Since Choi et al. (2007) collected 50 observations per subject,
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the success rate of our algorithm is somewhat lower. We are able to calculate

the index exactly for 72.3% (34 out of 47) of the subjects and to provide good

approximation for 4 other subjects. We fail to calculate a reliable result for 9

subjects.

2.1.3 Houtman-Maks Inconsistency Index

Boodaghians and Vetta (2015) show that there exists a polynomial time algo-

rithm to calculate the Houtman-Maks Inconsistency Index for the two com-

modities case (K = 2).5 In addition, they follow Houtman and Maks (1985)

and Smeulders et al. (2014) to show that for three commodities or more, cal-

culating the Houtman-Maks Inconsistency Index is NP-Hard. Smeulders et al.

(2014) show that no polynomial time algorithm can achieve a constant factor

approximation (a ratio of o
(
n1−δ)) for this Index (see also the discussion in

Boodaghians and Vetta (2015) following Lemma 2.1).

Our calculation of the Houtman-Maks Inconsistency Index in the supple-

mented code package begins with an exhaustive search approach.6 Given a

dataset D of size n, denote by Dm the set of all subsets of D of size m < n.

Also, denote M = minm∈{1,...,n−1}m s.t. | ∪n−1l=m Dl| < K3. The algorithm

�rst goes over every element in Dn−1, then over every element in Dn−2, etc.

The algorithm terminates either after an adjusted dataset that satis�es GARP

5Rose (1958) shows that in the two commodity case (K = 2) WARP is satis�ed if
and only if SARP is satis�ed. Let G be an undirected graph where each node is a chosen
bundle and two nodes are linked if they constitute a pair that violates WARP. Boodaghians
and Vetta (2015) use Rose (1958) to prove that in the two commodity case calculating the
Houtman-Maks Inconsistency Index is equivalent to �nding the minimal vertex cover of G
(the smallest set of nodes S such that every edge in G has an endpoint in S). Next, a graph
is perfect if the chromatic number (the smallest number of colors needed to color all nodes
where no two adjacent vertices share the same color) of every induced subgraph equals the
size of the largest clique (a set of fully connected nodes) of that subgraph. Boodaghians and
Vetta (2015) show that G is perfect and recall that �nding the minimal vertex cover of a
perfect graph is solvable in polynomial time. Hence, they conclude that the calculation of the
Houtman-Maks Inconsistency Index in two commodities case is also solvable in polynomial
time.

6Algorithm 1 in Gross and Kaiser (1996) is a di�erent, more e�cient algorithm, for an
exact calculation of the Houtman-Maks Inconsistency Index.
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is found, or after every element in DM was checked (we implement K3 = 108).7

If the algorithm terminated without �nding a subset that satis�es GARP, we

use a modi�ed complementary package8 where the Houtman-Maks Inconsis-

tency Index problem for the case of two goods is represented as an integer

linear program which is solved by an approximation algorithm provided by

Matlab. This solution is an upper bound since the removals suggested by the

linear program might not be minimal.9

For the data collected in the �rst part of our experiment, where each sub-

ject made 22 choices from a linear budget line, we are able to calculate the

Houtman-Maks Inconsistency Index for all subjects. For the data collected

by Choi et al. (2007) (50 observations per subject) we failed to calculate the

exact index for 7 subjects (14.9%).

2.2 Alternative Indices Based on Revealed Preferences

The Money Pump Index (MPI, Echenique et al., 2011) and the Minimum Cost

Index (MCI, Dean and Martin, 2015) are recently proposed alternatives to the

Varian, Afriat and Houtman-Maks Inconsistency Indices. In this section we

describe and discuss these indices and their relation to those characterized by

Theorem 2. In addition, we discuss an additional possible inconsistency index,

and highlight the challenges in its application.

7For example, if the data set includes 50 observations then all subsets of size 46 or more
are tested while if the data set is of size 22 then all subsets are checked (in fact for every
dataset of size 23 or less, all subsets will be examined).

8Downloaded from Daniel Martin's personal website on November 5th 2011. The modi-
�cations are mainly due to the simpli�cations enabled by the result of Rose (1958) for the
case of two commodities. The second algorithm in Heufer and Hjertstrand (2015) is closely
related to Martin's implementation.

9Another, more e�cient approximation is implemented by the algorithm suggested by
Algorithm 2 in Gross and Kaiser (1996) and Algorithm 1 in Heufer and Hjertstrand (2015).
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2.2.1 Money Pump Index

The premise of the MPI is that every violation of GARP corresponds to a cycle

of observed bundles.10 Each cycle can be interpreted as a sequence of trades,

resulting in a sure loss of money, that the DM will accept. The MPI of a cycle

is the monetary loss, relative to the total income in the cycle, incurred by one

sequence of these trades. The MPI of a data set is an aggregation of these

losses.11 The MPI is the only inconsistency index mentioned in the current

study that does not minimize any loss function, but rather calculates some

measure of severity for each GARP violation.12 In addition, the MPI takes

into account every link in a cycle, rather than focusing only on the weakest

link as the other indices analyzed here.

2.2.2 Minimum Cost Index

The MCI is based on the fact that SARP is satis�ed if and only if the direct

revealed preference relation is acyclic. Dean and Martin (2015) suggest to

remove direct revealed preference relations between observed bundles until

R0
D,1 becomes acyclic. They calculate the cost of removing the ordered pair

(xki , xki+1) from R0
D,1 by pkixki−pkixki+1∑

k∈1,...,n p
kxk

, and propose the MCI as the minimal

cost of removals that make R0
D,1 acyclic. The MCI does not take into account

that a budget line adjustment required to remove one relation may also remove

additional relations. In comparison, such inter-dependencies between cycles

are accounted for by the Varian Inconsistency Index.

2.2.3 MCI and MPI vs. other Indices

Echenique et al. (2011, Section III.B) and Dean and Martin (2015, Section 2.1)

provide thorough discussions on the relative merits of the MPI and the MCI,

10A sequence of observed bundles xk1 , xk2 , . . . , xkl in dataset D is a cycle of length l if
xk1R0

D,1x
k2 ,...,xkl−1R0

D,1x
kl and xklP 0

D,1x
k1 .

11Echenique et al. (2011) suggest the mean and the median aggregators, while Smeulders
et al. (2013) recommend, due to computational complexity concerns, the minimum or the
maximum aggregators.

12Counting the violations of the revealed preference axioms is a similar approach in this
respect, see Swo�ord and Whitney (1987); Famulari (1995); Harbaugh et al. (2001).
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Figure 2.1: Comparing Inconsistency Indices.

respectively. Here, we provide an example that highlights a property common

to both indices. Note that the MPI is de�ned over cycles of observations and

the MCI over pairs of observations, while the Varian Inconsistency Index is

de�ned observation-by-observation. As a consequence, the latter internalizes

the e�ect of a single adjustment on all cycles or pairs (in which this observation

is involved), while the former two do not. The most important implication of

this property, in the context of parametric recovery of preferences, is that it is

not clear that there exist corresponding measures of incompatibility that can

be decomposed into these inconsistency indices (MPI or MCI) and misspeci�-

cation measures, in the spirit of Theorem 2.

Consider the data set demonstrated in Figure 2.1. This data set is of

size 3, D = {(p1, x1) , (p2, x2) , (p3, x3)} where pixi = 1. The strict direct re-

vealed preference relation P 0
D,1 (and hence also R0

D,1) includes the ordered

pairs (x1, x2), (x2, x1), (x1, x3) and (x3, x1) and therefore the data set is incon-

sistent with GARP. A budget set adjustment vijpixi, where vij is such that

vijpixi = pixj, is the dashed line denoted by vij.

We �rst attend to the Varian Inconsistency Index. There are three pos-

sible minimal adjustment vectors v such that GARPv is satis�ed: vA =

(v12, 1, 1), vB = (v13, v21, 1) and vC = (1, v21, v31). Note that in vA,
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where the budget line of Observation 1 is adjusted to x2, both cycles

((x1, x2, x1) and (x1, x3, x1)), are broken at once. Therefore IV (D, f) =

min{f(vA), f(vB), f(vC)} and if f is the MEAN aggregator of 1− v, then

IV (D, f) = min{1−v12
3
, 2−v

21−max{v13,v31}
3

}. Alternatively, if we use the min-

imum aggregator (f(v) = 1 − mini∈{1,...,n} vi) we get that IV (D, f) =

1 − max {v12,min {v13, v21} ,min {v21, v31}}. By Theorem 2.3, IA(D) = 1 −
max {v12,min {v13, v21} ,min {v21, v31}}, as well. There are two minimal ad-

justment vectors for the Houtman-Maks Inconsistency Index: vA′ = (0, 1, 1)

and vC′ = (1, 0, 0). Therefore, IHM(D, f) = min{f(vA′), f(vC′)}. If f is

anonymous then IHM(D, f) = f(vA′).

The MPI takes into account three cycles - (x1, x2, x1), (x1, x3, x1) and

(x2, x1, x3, x1, x2). For each cycle it accounts for all the links. Therefore,

the measure for (x1, x2, x1) is 2−v12−v21
2

, the measure for (x1, x3, x1) is 2−v13−v31
2

and the measure for (x2, x1, x3, x1, x2) is 4−v12−v21−v13−v31
4

and using the MEAN

aggregator we get MPI = 4−v12−v21−v13−v31
4

≥ IV (D, f).

The MCI ignores the fact that adjusting the budget line of Observation

1 to x2 resolves also the cycle that includes x1 and x3. Therefore, MCI =
2−max{v12,v21}−max{v13,v31}

3
≥ IV (D, f).

2.2.4 Area-based Measures

A natural alternative to the incompatibility indices discussed in the current

study is an Intersection Incompatibility Index, which is based on the area

bounded between the upper contour set of the indi�erence curve passing

through the chosen bundle and the set of feasible alternatives.

A related measure is introduced in the online appendix (Part D.3) of

Apesteguia and Ballester (2015) in which they extend their Minimal Swaps
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Figure 2.2: Modi�ed budget sets

Index to the case of in�nite number of alternatives.13 Their proposal is based

on the Lebesgue measure of the bounded area and the sum aggregator over

observations. They de�ne the Consumer Setting Swaps Index as the in�mum

of this sum over the set of all continuous, strictly monotone and quasi-concave

utility functions.

In light of Theorem 2, one needs to have, in addition, a corresponding mea-

sure of inconsistency, so that when the set of utility functions is restricted, this

index measures the inconsistency embedded in choices, while the remainder of

the Intersection Incompatibility Index represents the misspeci�cation implied

by the chosen parametric family.

One option is to de�ne an index of inconsistency based on the area of inter-

section between the revealed preferred set and the budget set corresponding to

an observed choice. De�ne the revealed preferred set of a given bundle as only

those bundles that are either revealed preferred or those that monotonically

dominate a bundle that is revealed preferred to the given bundle. Hence, as

13For the case of �nite number of alternatives, Apesteguia and Ballester (2015) de�ne
the Swaps Index of a given preference relation to be the minimal number of swaps re-
quired to reconcile the observations with the ranking induced by the given preference. The
Minimal Swaps Index minimizes the Swaps Index over all possible rankings. Applying
the current paper's terminology, the Swaps Index is an incompatibility measure. However,
since Apesteguia and Ballester (2015) domain includes a �nite number of alternatives and
therefore a �nite number of rankings, the Minimal Swaps Index becomes an inconsistency
measure, in the spirit of Theorem 2.
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illustrated in Figure 2.2, violations of consistency are removed by modifying

budget sets so as to eliminate the area of overlap between the budget set and

those bundles which are revealed preferred. These violations can be measured

and aggregated to construct the Area Inconsistency Index.14

Nevertheless, the Area Inconsistency Index is not ideal. First, currently,

there does not exist an elegant theoretical analog to Theorem 1 with respect

to the modi�ed budget sets in Figure 2.2 as there does for the speci�c type of

adjustments utilized in calculating the Varian and the Houtman-Maks Incon-

sistency Indices. Therefore a decomposition result may be di�cult to achieve.

Second, computing the inconsistency index suggested above would not be any

easier than computing the Varian or Houtman-Maks Inconsistency Indices,

problems which are NP-hard (see Section 2.1 above). Third, we conjecture

that any recovery procedure related to the Area Inconsistency Index would

be biased towards non-convex preferences due to the geometric characteristics

of the suggested budget line adjustments. Finally, the Area Inconsistency In-

dex lacks intuitive interpretation that the considered indices enjoy. All these

are surmountable di�culties, that we think are worthwhile pursuing in future

work.

2.3 Distance-based Indices

The common method for parametric recovery of individual preferences mini-

mizes some loss function of the distance between observed and predicted bun-

dles. Similar to the money metric and binary incompatibility measures, the

result of this method can also be decomposed into an inconsistency and mis-

speci�cation measures.

One example of such decomposition can be based on an inconsistency index

suggested by Beatty and Crawford (2011). This index measures the Euclidean

distance between the observed data set and the set of potential data sets

14Heufer (2008, 2009, Section 9.2.3) suggests, in the spirit of of Varian's (1982) non-
parametric bounds, a similar inconsistency index with the additional external assumption
of convexity of preferences. Apesteguia and Ballester (2015) provide a simple example in
their online appendix in which they implement a measure that corresponds to Heufer's
index, assuming its equivalence to their Consumer Setting Swaps Index.
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that satisfy GARP.15 It can be shown that a generalization of the proposed

index equals the in�mum of the appropriate loss function calculated over all

continuous and locally non-satiated utility functions. Therefore, the di�erence

between the minimal loss calculated over a subset of utility functions and the

proposed inconsistency index results in a natural measure of misspeci�cation.

However, this method ignores the fact that making a choice from a menu re-

veals that the chosen alternative is preferred to every other feasible alternative,

not only to the predicted one. In addition, this measure entails an additional

assumption on the ranking of unchosen alternatives. It requires that the closer

is a bundle to the choice, the higher it is ranked. Such ranking can be justi�ed

only by the auxiliary assumption that the choices were generated through a

maximization of convex preferences, which is not part of revealed preference

theory. Therefore, if choices were generated by a maximization of non-convex

preferences then this additional assumption will lead to an erroneous ranking

of unchosen alternatives, as demonstrated by the results of the experiment

reported in sections 6 and 7 of the main text.

3 Decomposition: Graphical Example

Figure 3.1 demonstrates the decomposition graphically. Consider the data

set: D = {(p1, x1) , (p2, x2)}. The data set is inconsistent with GARP since

x1RD,1x
2 and x2P 0

D,1x
1. Note that the dashed line v2p2x2, together with the

original budget line from which x1 was chosen, represent graphically the ad-

justments that lead D to satisfy GARP(1,v2). If v
2 ≥ v1, for any anonymous

aggregator, the Varian Inconsistency Index is IV (D, f) = f ((1, v2)) and the

Houtman-Maks Inconsistency Index is IHM (D, f) = f ((1, 0)).

Now consider the monotonic and continuous function u. Since {(p1, x1)}
is rationalizable by this utility function, then v?1 (D, u) = b?1 (D, u) = 1. In

15Let Ri = {x ∈ <K
+ : pix = pixi} be the set of bundles that cost pixi at prices pi.

Then, the set of all potential data sets given data set D is
{{(

pi, x
)n
i=1

}
: x ∈ Ri

}
. Beatty

and Crawford (2011) propose 1 − d
dmax as an inconsistency index where d is the Euclidean

distance between the data set and the closest element in the set of potential data sets that
satisfy GARP and it is normalized by dmax to restrict the index to [0, 1].
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Figure 3.1: Decomposition

addition, v?2 (D, u) is the minimal expenditure required to achieve utility level

of u (x2) under prices p2, which is represented graphically by the dotted line

v?2p2x2 while b?2 (D, u) = 0 since u does not rationalize {(p2, x2)}.
Thus, IM (D, f, {u}) = f ((1, v?2 (D, u))) and since v?2 (D, u) is smaller

than v2, it implies that IM (D, f, {u}) is weakly greater than IV (D, f). Since

in this speci�c example, no other adjustments are required, the di�erence be-

tween the original budget line from which x2 was chosen and the dashed line

- v2p2x2, represents graphically the inconsistency implied by D, while the dif-

ference between the dashed line and the dotted line - v?2p2x2, represents the

misspeci�cation implied by u. Their sum is the goodness of �t measured by

the money metric index. However, IB (D, f, {u}) = IHM (D, f), meaning that

no misspeci�cation is implied by the binary incompatibility index since u ra-

tionalizes {(p1, x1)} which is the largest subset of D that can be rationalized by

any utility function as suggested by the Houtman-Maks Inconsistency Index.16

16If one considers an alternative utility function u′ such that
{(
p1, x1

)}
is not ratio-

nalizable by u′ (but suppose v?2 (D,u′) = v?2 (D,u)), this would not a�ect the inconsis-
tency indices but would imply weakly higher loss indices than those measured for u (e.g.
IB (D, f, {u′}) = f (0)).
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4 Disappointment Aversion Preferences

Let p = (p1, x1; ...pn, xn) be a lottery such that x1 ≤ · · · ≤ xn. Assum-

ing (for simplicity) that ce (p) /∈ supp (p), the support of p can be parti-

tioned into elation and disappointment sets: there exists a unique j such

that for all i < j : (xi, 1) ≺ p and for all i ≥ j : (xi, 1) � p. Let

α =
∑n

i=j pi. Gul's elation/disappointment decomposition is then given by

r =(x1, r1; · · · ;xj−1, rj−1), q = (xj, qj; · · · ;xn, qn) such that ri = pi
1−α and

qi = pi
α
. Note that p = αq + (1− α) r. Then:

uDA (p) = γ (α)E (v, q) + (1− γ(α))E (v, r)

and ∃ − 1 < β <∞ such that

γ (α) =
α

1 + (1− α) β

where v (·) is a utility index and E (v, µ) is the expectation of the functional

v with respect to measure µ. If β = 0 disappointment aversion reduces to

expected utility, if β > 0 the DM is disappointment averse (γ (α) < α for all

0 < α < 1), and if β < 0 the DM is elation seeking (γ (α) > α for all 0 < α <

1). Gul (1991) shows that the DM is averse to mean preserving spreads if and

only if β ≥ 0 and v is concave. That is, if v is concave then, by Yaari (1969),

preferences are convex if and only if the DM is weakly disappointment averse.

For binary lotteries: Let (x1, p;x2, 1− p) be a lottery. The elation compo-

nent is x2 and the disappointment component is x1 and α = 1− p (in our case

α = 0.5). Therefore:

uDA (x1, p;x2, 1− p) = γ (1− p) v (x2) + (1− γ (1− p)) v (x1)

and since γ (0) = 0, γ (1) = 1 and γ (·) is increasing, γ (·) can be viewed as

a weighting function, and DA is a special case of Rank Dependent Utility

(Quiggin, 1982).
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Figure 5.1: The distribution of the recovered β (upper) and ρ (lower) by MMI
(SSQ), MMI (MEAN) and NLLS in Choi et al. (2007).

5 CRRA Parameters: Distributions

Figure 5.1 provides the distribution of the recovered parameters for the Dis-

appointment Aversion functional form with the CRRA utility index by three

recovery methods - NLLS, MMI (SSQ) and MMI (MEAN). Both distributions

provide some evidence as to the extreme values recovered by NLLS.

Consider for example, the distribution of the disappointment aversion pa-

rameter (upper panel of Figure 5.1). The NLLS recovers β < −0.9 or β > 1.3

for 11 subjects, while the MMI methods recover such extreme values only

once. Similar pattern can be easily observed in the lower panel for the CRRA

parameter.
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6 The Experiment

6.1 Instructions

Welcome

Welcome to the experiment. Please silence your cell phone and put it away

for the duration of the experiment. Additionally, please avoid any discussions

with other participants. At any time, if you have any questions please raise

your hand and an experiment coordinator will approach you.

Please note: If you want to review the instructions at any point during

the experiment, simply click on this window (the instructions window). To

return to the experiment, please click on the experiment icon on the task bar.

Study Procedures

This is an experiment in individual decision making. The study has two parts

and the second part will begin immediately following completion of the �rst

part. Before Part 1, the instructions will be read aloud by the experiment

coordinator and you will be given an opportunity to practice. The practice

time will allow you to familiarize yourself with the experimental interface and

ask any questions you may have. We describe the parts of the experiment in

reverse order, beginning with Part 2 now.

Part 2

You will be presented with 9 independent decision problems that share a com-

mon form. In each round you will be given a choice between a pair of alloca-

tions of tokens between two accounts, labeled x and y. Each choice will involve

choosing a point on a two-dimensional graph that represents the values in the

two accounts. The x-account is represented by the x-axis and the y-account is

represented by the y-axis.
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For all rounds, in Option 1 the amount allocated to the x-account and y-

account will di�er, and in Option 2 the amount allocated to each account will

be the same. For both options, the values allocated to each account will be

displayed beside the point corresponding to each option on the graph, as well

as, in the dialog box labeled �Options� on the right-hand side of the screen.

Figure 6.1 illustrates some examples of types of choices you may face.

Figure 6.1: Pairwise Choices
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For the round that is selected for payment, your payment is determined by

the number of tokens allocated to each account. At the end of the experiment,

you will toss a fair coin to randomly select one of the two accounts, x or y. For

each participant, each account is equally likely to be chosen. That is, there

is a 50% chance account x will be selected and a 50% chance account y will

be chosen. You will only receive the amount of tokens you allocated to the

account that was chosen. The round for which you will be paid will be selected

randomly at the conclusion of the experiment and each round is equally likely

to be chosen. Remember that tokens are valued at the following conversion

rate: 2 tokens = $1.

Please Note: Only one round (from both parts combined) will be selected

for payment and your payment will be determined only after completion of

both parts.

Each round begins with the computer selecting a pair of allocations. For

example, as illustrated in Figure 6.2, Option 1, if selected, implies a 50%

chance of winning 32.0 tokens and a 50% chance of wining 58.0 tokens, where

as Option 2, if selected, implies winning 43.0 tokens for sure.

Figure 6.2: Pairwise Choices - Example
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In some cases, the two options will be so close to each other that it will be

di�cult to distinguish between them graphically. In this case, you may refer

to the �Options� box on the right-hand side of the screen where the values

associated with each option are listed. Additionally, it may be di�cult to

select your preferred option by clicking on the graph itself, so instead you may

use the radio buttons in the �Options� box to make you selection. Figure 6.3

provides an example of this situation.

Figure 6.3: Pairwise Choices - Overlapping Points

In all rounds, you may select a particular allocation in either of two ways:

1) You may use the mouse to move the pointer on the computer screen to the

option that you desire, and when you are ready to make your decision, simply

left-click near that option, or 2) You may select your preferred option using

the radio buttons on the right-hand side of the screen, and when you are ready

to make your decision, simply left-click on the radio button that corresponds

to your choice. In either case, a dialog box, illustrated in Figure 6.4, will ask

you to con�rm your decision by clicking �OK�.
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Figure 6.4: Pairwise Choices - Con�rmation Screen

If you wish to revise your choice simply click �Cancel� instead. After you

click �OK�, your choice will be highlighted in green and the screen will darken,

as illustrated in Figure 6.5, indicating that your choice is con�rmed. You may

proceed to the next round by clicking on the �>�>� button located in the lower

right-hand corner of the screen in the box labeled �Controls�. Please note

that you will be given an opportunity to review and edit your choices upon

completion of Part 2 of the experiment.

Figure 6.5: Pairwise Choices - Con�rmed Choice
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Next you will be asked to make an allocation in another independent deci-

sion problem. This process will be repeated until all 9 rounds are completed.

At the end of the last round, you must click the �Finish� button, located in

the lower right-hand corner of the screen in the box labeled �Controls�, and

you will be given an opportunity to review your choices. You may use the

navigation buttons to move between choices or the �Jump to� feature in the

�Edit Panel� to navigate to a speci�c round. If you are content with your

choices, you may exit the review by clicking on the �Finish� button. At this

stage you may no longer go back to review and/or edit your choices. Instead,

click �OK� to complete the experiment.

Part 1

In Part 1, you will be presented with 22 independent decision problems that

are very similar to those in Part 2. However, rather than selecting an allocation

from among only two options, now you will have many options to choose from.

In each round your available options will be illustrated by a straight line on

the graph and you will make your choice by selecting a point on this line. As

in Part 2, your payo� in the round that is selected for payment is determined

by the number of tokens allocated to each account. Examples of di�erent lines

you may face are illustrated in Figure 6.6.
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Figure 6.6: Budget Lines
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Figure 6.7 illustrates the di�erences and similarities between the problems

in Part 1 and Part 2. In Part 2, you are o�ered the choice between only

two options, A and B. On the other hand, if we were to draw a straight line

between these options and allow one to choose any point on this line, then this

would increase the number of available choices. Notice, however, that the two

original options are still available as well as many more. Hence, the problems

in Part 1 are conceptually the same as in Part 2, but with many more possible

allocations.

Figure 6.7: Budget Lines - Relationship to Pairwise Choice

The following two examples further illustrate the nature of the problem.

If, in a particular round, you were to select an allocation where the amount in

one of the accounts is zero, for example if you allocate all tokens to account

x and $0 to account y (or vice versa), then in the event that this round is

chosen for payment there is a 50% chance you will receive nothing at all, and

a 50% chance you will receive the highest possible payment available in that

round. In contrast, if you were to select an allocation where the amount in

accounts x and y are equal, then in the event that this round is chosen for

payment you will receive this amount regardless of which account is chosen
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by the coin toss.

Each round begins with the computer selecting a line. As in Part 2, the

lines selected for you in di�erent rounds are independent of each other. For

example, as illustrated in Figure 6.8, choice A represents an allocation in which

you allocate approximately 9.4 tokens in the x-account and 60.7 tokens in the

y-account. Another possible allocation is choice B, in which you allocate 22.6

tokens in the x-account and 33.6 tokens in the y-account.

Figure 6.8: Budget Lines - Examples
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To choose an allocation, use the mouse to move the pointer on the computer

screen to the allocation that you desire. On the right hand side of the program

dialog window you will be able to see the exact allocation where the pointer is

located. Please note that, in each choice, you may only choose an allocation

which lies on the line provided. Additionally, if you select an allocation that

is close to the x-axis or the y-axis, you will be asked if you would like to

select an allocation on the boundary or if you intended for your choice to be

as originally selected. Similarly, if you select an allocation that is close to

the middle, (roughly the same amounts in each account), you will be asked if

you would like to select an allocation where the amounts in both accounts are

exactly equal or if you intended for your choice to be as originally selected.

The dialog boxes associated with these scenarios are illustrated in Figure 6.9.

Figure 6.9: Budget Lines - Special Cases
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The controls to con�rm your choices and navigate between rounds are

identical to those described above for Part 2. Once you have �nished with all

22 rounds, you will be given an opportunity to review your choices. You may

conclude your review by clicking on the �nish button in the �Edit Panel� at

any time. Once complete, please click on the instructions window in order to

move on to Part 2.

Please remember that there are no �right� or �wrong� choices.

Your preferences may be di�erent from other participants, and as

a result your choices can be di�erent. Please note that as in all

experiments in Economics, the procedures are described fully and

all payments are real.

Compensation

After completing both parts of the experiment you will be informed of your

payment via an on-screen dialog box. Payments are determined as follows:

The computer will randomly select one decision round from both parts

(combined) to carry out. The round selected depends solely on chance and it

is equally likely that any particular round will be chosen. The payment dialog

box will inform you of which round was randomly chosen as well as your

choice in that round. At this point please raise your hand and an experiment

coordinator will provide you with a fair coin, e.g. a quarter. To determine

your �nal payo�, please �ip the coin. If it lands heads, you will be paid

according to the amount of tokens in the x-account and if it lands tails, you

will be paid according to the amount of tokens in the y-account. For both

parts of the experiment, tokens are valued at the following conversion rate:

2 tokens = $1

You will receive your payment, along with the $10 show-up bonus, privately
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Figure 6.10: Subset of the budget lines shown in Part 1

before you leave the lab. You will be asked to sign a receipt acknowledging

receipt of your payment, after which time you may leave.

6.2 Choice of Budget Lines

Section 6.2 of the main text describes the set of budget sets chosen for the

�rst part of the experiment as a result of two considerations: su�cient power

and �rst-order risk aversion/seeking identi�cation. The 22 budget lines were

divided into two subsets of 11 budget lines such that each subset was composed

of the same price ratios, where the only di�erence was the wealth level. For

each of the two subsets, 5 of the 11 price ratios had relatively moderate slopes,

where as the other 6 were much steeper. Figure 6.10 shows the set of 11 budget

lines for the higher wealth level.

To corroborate that this set of budget sets submits the subjects to a suf-

�ciently powerful test of consistency, we conducted a power test (following

Bronars (1987)) by constructing 1000 simulated data sets.17 First, not a sin-

gle simulated data set passed GARP while in the experimental data 44.4%

were found to be consistent. Second, in the simulation, 1.3% (4.5%) of the

data sets had Afriat Inconsistency Index below 0.05 (0.1) while in the experi-

mental data 86% (93.7%) of the subjects exhibited this level of inconsistency.

17The results of the power test are available in a separate Excel �le named �Halevy et al
(2017) Part 1 - Power Test�.
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Third, the Houtman-Maks Inconsistency Index (calculated exactly) suggests

that 91.9% (57.9%) of the simulated data sets require at least 4 (6) obser-

vations to be discarded to satisfy GARP. However, in the experimental data,

only 8.7% (0.05%) of the data sets require as many observations to be dropped

to achieve consistency. Finally, while we were able to calculate the Varian In-

consistency Index exactly (or with very good approximation) for 98.6% of the

experimental data sets, this was feasible for only 25.9% of the simulated data

sets. In fact, even within this set, using the MEAN aggregator, while 57.1% of

the simulated data sets exhibited Varian Inconsistency Index greater than 0.05,

only 2.9% of the experimental data sets showed similar levels of inconsistency.

6.3 The Construction of the Pairwise Choices

In Section 6.3 of the main text we describe the basic logic behind the algorithm

used to construct the pairwise choices for Part 2 of the experiment. Here, we

provide a more detailed description of this algorithm.

Each pairwise choice is constructed using the following search algorithm.

First, we �x an expected value for the risky portfolio. Then, we search over

the line that connects all the portfolios with the same expected value until

a risky portfolio, xR, is found that satis�es certain stopping conditions. The

starting point for the search as well as the stopping conditions are chosen to

construct a su�ciently rich set of choices that are appropriate for addressing

the research questions.

To investigate the nature of local risk attitudes across subjects we desig-

nated 6 out of the 9 pairwise choices to this task by beginning our search for

xR at certainty and progressing along the equal expected value line in the di-

rection of increasingly variable portfolios until the stopping rule is satis�ed. In

the case where both methods recover β ≥ 0, the stopping rule requires that the

di�erence in certainty equivalents exceeds one token. Hence, to construct these

low-variability portfolios we search for the lowest variance portfolio among all

those with the same expected value such that there is su�cient di�erence in

certainty equivalents between recovered parameters. For sets of parameters
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where the di�erence between certainty equivalents does not exceed one token

for all low-variability portfolios we reduce this threshold incrementally until a

valid pairwise comparison is chosen. In all cases the safe portfolio, xS, is cho-

sen as the mid-point between the certainty equivalents of the risky portfolio,

xR (see Section 6.3 of the main text).

For subjects where either or both methods recover β < 0, we use a di�erent

stopping rule. In these cases the search terminates as soon as a risky portfolio is

found such that the certainty equivalent corresponding to one method exceeds

the expected value of the portfolio and the certainty equivalent corresponding

to the other method is less. Here we choose the safe portfolio as the expected

value of the risky portfolio, i.e. xS = E[xR].

The remaining 3 out of 9 pairwise choices are constructed such that the

risky portfolio is close to, but not literally on, the axis. We refer to these pair-

wise choices as high-variability portfolios. We avoid o�ering corner choices as

they can be di�cult to rationalize with the CRRA functional form. We choose

risky portfolios as close to the axis as possible by starting with a portfolio that

includes a minimum payo� of two tokens and searching towards the certainty

line. The stopping condition is that the di�erence in certainty equivalents is

at least one token. High-variability portfolios are chosen in the same manner

regardless of the recovered values for β.18

7 Part 1: Comparison to Choi et al. (2007)

This section compares the results of Part 1 of the experiment and the data

collected by Choi et al. (2007). Table 1 summarizes the inconsistency indices

and the parameters recovered for the Disappointment Aversion with CRRA

utility index. We attribute the slight di�erences to the di�erence in instruc-

tions, interface, the number of rounds and to the variability and range of the

price ratios.

18The six low-variability portfolios have expected values of 50, 45, 40, 35, 30, and 25
tokens, where as the three high-variability portfolios have expected values of 50, 40, and 30
tokens.
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Choi et al. (2007) Part 1 of the Experiment

Consistent Subjects 12 (25.5%) 91 (44.8%)
Median (mean) Afriat Inconsistency Index* 0.045 (0.0881) 0.0126 (0.0374)

Median (mean) Houtman-Maks Inconsistency Index* 0.06 (0.079) 0.0909 (0.097)
Median (mean) Varian Inconsistency Index (SSQ)** 0.006 (0.007) 0.0027 (0.0084)

MMI (SSQ) NLLS MMI (SSQ) NLLS
β ρ β ρ β ρ β ρ

Complete Sample (Median) 0.3326 0.3559 0.171 0.5799 0.39 0.3764 0.3343 0.3674
Consistent Subjects Only (Median) 0.4121 0.7319 0.0058 1.277 0.4065 0.4137 0.3443 0.5597

# Subjects with Non-Convex Preferences 8 (17%) 15 (31.9%) 37 (18.2%) 45 (22.2%)
Subjects with β ≥ 0 (Median) 0.3759 0.295 0.4058 0.3404 0.4668 0.3022 0.4654 0.1964
Subjects with β < 0 (Median) -0.1047 0.8691 -0.3275 3.8642 -0.1575 0.8008 -0.8941 4.0782

* Computed on inconsistent subjects.

** Computed on inconsistent subjects with reliable index.

Table 1: Choi et al. (2007) vs. Part 1 of the Experiment.

Figure 7.1: Disappointment Aversion Parameter: NLLS vs. MMI (SSQ).

Figure 7.1 replicates Figure 5.2 in the main text for the data collected in

Part 1 of the experiment. Also here, when the NLLS recovery method recov-

ers convex preferences then in most cases the MMI method recovers convex

preferences as well, while when the preferences recovered by the NLLS are

non-convex, there seem to be no qualitative relation between the recovered

parameters by the two methods.

8 Pairwise Choice: Re�ned Results

The complete sample includes subjects and choices that arguably should not be

included in a comparison between the MMI and the NLLS recovery methods.
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In Section 7 of the main text we report the results using the full sample while

here we re�ne the sample and recalculate the results reported in the main text

using the re�ned sample.

8.1 The Re�nement

We �nd two reasons to consider dropping an observation from the sample.

First, the subject's choices may be too inconsistent to believe that there ex-

ists some underlying stable preference that guides her choices. Second, since

the pairwise choices the subject encountered in Part 2 of the experiment were

generated automatically, in some cases the two proposed portfolios were too

similar for the subject to be able to thoughtfully distinguish between them.19

Hence, our re�nement scheme applies two criteria - inconsistency and similar-

ity.

The inconsistency re�nement removes two subjects whose Afriat Inconsis-

tency Index is greater than 0.2.20

The similarity re�nement removes observations for which there is little

di�erence between the portfolios constructed in Part 2 of the experiment. We

consider a pairwise choice to be inde�nitive if the two sets of parameters imply

similar local risk attitude (either min
{
CEMMI(x

R), CENLLS(xR)
}
> E

[
xR
]

or max
{
CEMMI(x

R), CENLLS(xR)
}
< E

[
xR
]
) and the di�erence in implied

certainty equivalents is very small (|CEMMI(x
R)− CENLLS(xR)| < 0.5).
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# of Observations Correct Predictions by MMI (%) p-value

Re�nement 1489 804 (54.0%) 0.0011

Table 2: Preliminary Results - Aggregate Level Analysis (re�ned sample)

Re�ned Sample
X≥7 X≤2 p-value
41 25 0.032

Table 3: Preliminary Results - Individual Level Analysis (re�ned sample)

8.2 Results: Re�ned Sample

Table 2 recalculates the aggregate level analysis reported in Table 2 in Section

7 of the main text for the re�ned sample. These results are almost identical

to the results reported for the complete sample.

In the individual level analysis, for the similarity re�nement we remove

all subjects who confronted one or more inde�nitive pairwise comparison in

Part 2. Thus, the remaining 131 subjects are deemed su�ciently rational and

exhibit a su�cient di�erence in predictions between recovery methods to admit

a reasonable comparison.

Table 3 recalculates the individual level analysis reported in Table 3 in

Section 7 of the main text for the re�ned sample. As the results reported for

the complete sample, Table 3 also provides statistically signi�cant evidence for

the predictive superiority of the MMI recovery method over the NLLS recovery

method.

19While in some of these cases, the similarity can be traced back to the NLLS and the
MMI recovering very similar parameters, in other cases it may be a consequence of the
substitutability between the two parameters, β and ρ, with respect to the subject's local
risk attitude.

20In fact, these two subjects also have the highest number of GARP violations. Moreover,
we provide an exact calculation of the Varian Inconsistency Index for all but three subjects
(for whom we report overestimates, see Section 2.1.2). These three subjects include the pair
with the extreme Afriat Inconsistency Index values. The approximated Varian Inconsistency
Index values for these two subjects are substantially greater than 0.1 for the minimum,
MEAN and the SSQ aggregators. No other subjects have Varian Inconsistency Index greater
than 0.1.
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# of Observations # Correct Predictions % Correct Predictions p-value
by MMI by MMI

DDA 1025 528 51.5% 0.1744
IDA 464 276 59.5% <0.0001

Table 4: Re�ned Sample Results by Group - Aggregate Level Analysis.

DDA IDA
X≥7 X≤2 p-value X≥7 X≤2 p-value
19 16 0.3679 22 9 0.0147

Table 5: Re�ned Sample Results by Group - Individual Level Analysis.

8.3 Disappointment Aversion: Re�ned Sample

The De�nite Disappointment Averse (DDA) group is composed of those sub-

jects for which both methods recover β ≥ 0, whereas Inde�nite Disappoint-

ment Averse (IDA) group is composed of those subjects for which β is negative

for one or both recovery methods. After the inconsistency re�nement we are

left with 148 subjects in the DDA group and 53 subjects in the IDA group.

In the aggregate analysis we treat the whole set of observations as a single

data set with 1332 observations for the DDA group and 477 for the IDA

group. Then we remove all the inde�nitive pairwise comparisons. Table 4

demonstrates that, also when using the re�ned sample, the MMI recovery

method remains a better predictor in both cases, but while its advantage is

insigni�cant in the DDA group, it is highly signi�cant in IDA group.

In the individual level analysis, using the re�nement we are left with 84

subjects in the DDA group and 47 subjects in the IDA group. Table 5 demon-

strates that also here, although the MMI recovery method predicts better than

the NLLS recovery method in both DDA and IDA, the di�erence in predic-

tive accuracy within the DDA group is insigni�cant. However, this di�erence

within the IDA group is substantial and statistically signi�cant.

Next, consider the De�nite Elation Seeking (DES) group that includes

those subjects for whom both recovery methods recover β < 0. After the

re�nement is applied, for the aggregate analysis the DES group includes 248

observations. The MMI recovery method predicted correctly 156 of the choice
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Figure 9.1: MMI vs NLLS - Non-convex Preferences Recovery

problems, which amount to 62.9% of the observations. Hence, the di�erence

between the recovery methods within the DES group is even more substantial

than in the whole IDA group and it is highly statistically signi�cant (p-value

smaller than 0.0001).

The individual results for the DES group are similar - for 16 out of the

25 subjects that survive the re�nement one method predicted correctly more

than two thirds of the pairwise choices. It turns out that in 13 of the 16 cases,

it was the MMI (81.3%, p-value 0.0106).21

9 Recovery of Non-Convex Preferences

Figure 9.1 demonstrates how the MMI and NLLS may recover di�erent sets of

parameters for the same data set. Suppose we take two observations, x1 and

x2, and try to determine which of two utility functions � u and u′, is a better

�t for the data. De�ne x̂iv as the utility maximizing choice from budget line i

given utility function v.

The left panel shows that the NLLS recovery method selects u′ over u, as

21We exclude Subject 1702 from the DES group since βNLLS ≈ 0. For similar reason
we excluded also the de�nitive observations of Subject 604 from the previously mentioned
aggregate analysis.
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the distance between the utility maximizing bundle and the observed choice

is identical at x1, and smaller for u′ at x2. This arises from the lower price

elasticity (higher non-convexity) implied by u′. The right panel demonstrates

that the MMI selects u over u′ using minimal budget set adjustment. The

farther the observed portfolio is from the certainty line, the smaller is the

adjustment required for the ��atter� (less non-convex) u compared to u′.
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