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This appendix contains the nonemptiness characterizations of the sum of the cores
of the individual issues (

∑
Vj∈V̄ C(Vj)) and of the core of the sum of individual issues

(C(
∑

Vj∈V̄ Vj)). These characterizations use systems of multiweights, which makes them

comparable to the nonemptiness characterization of the multicore (Theorem 2 in the
paper). For this purpose, two additional sets of systems of multiweights are presented
together with the systems of multiweights that appear in Definition 6 in the paper.

S1. Definitions

S1.1 Multiweights

A function δ̃ : 2N ×N × V̄ → R+ that assigns a nonnegative real number to every triplet
of coalition, agent, and issue is a system of multiweights.

We concentrate on systems of multiweights that satisfy “Zero to Nonmembers” and
“Resource Exhaustion.”

Definition S1. A system of multiweights, δ̃, satisfies “Zero to Nonmembers” if ∀Vj ∈ V̄ ,
∀i ∈ N , ∀S ∈ 2N\{i}: δ̃(S� i� Vj) = 0.

“Zero to Nonmembers” entails a system of multiweights that assigns zero weight to
all triplets where the agent is not a member of the coalition.

Definition S2. A system of multiweights, δ̃, satisfies “Resource Exhaustion” if ∀Vj ∈ V̄ :∑
i∈N

∑
S∈2N δ̃(S� i�Vj)χ

S = χN .

“Resource Exhaustion” implies that each agent is endowed with one unit of time per
issue. When “Resource Exhaustion” and “Zero to Nonmembers” are imposed, we refer
to a system of multiweights as an unrestricted system of balancing multiweights.1
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1To see that balancedness is imposed in each issue Vj , set δ(S) = ∑
i∈N δ̃(S� i�Vj). Then “Resource Ex-

haustion” implies that in each issue Vj ,
∑

S∈2N δ(S)χS = χN . Observe that the identity of agent i is ignored
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The following two definitions impose across-issue restrictions on systems of multi-
weights. Definition S3 requires that the total weights (over coalitions) assigned to triplets
that include agent i be constant across issues. Definition S4 compels the weights as-
signed to triplets that include agent i and coalition S to be the same across issues.

Definition S3. A system of multiweights, δ̃, satisfies “Constant Shares” if ∀i ∈N ,
∀Vj�Vj′ ∈ V̄ :

∑
S∈2N δ̃(S� i�Vj)χ

S = ∑
S∈2N δ̃(S� i�Vj′)χS .

Definition S4. A system of multiweights, δ̃, satisfies “Constant Allocations” if ∀i ∈N ,
∀Vj�Vj′ ∈ V̄ , ∀S ∈ 2N : δ̃(S� i� Vj)= δ̃(S� i� Vj′).

S1.2 Systems

We concentrate on the following three families of systems of balancing multiweights:

Definition S5. A function δ̃ : 2N × N × V̄ → R+ that satisfies “Zero to Nonmembers”
and “Resource Exhaustion” is one of the following families:

1. A system of unconstrained balancing multiweights (�UC is the set of all systems of
unconstrained balancing multiweights).

2. A system of balancing multiweights if it satisfies “Constant Shares” (� is the set of
all systems of balancing multiweights).

3. A system of balancing multiweights with constant allocations if it satisfies “Con-
stant Allocations” (�CA is the set of all systems of balancing multiweights with con-
stant allocations).

The “Constant Allocations” requirement implies the “Constant Shares” requirement,
but not the opposite. Therefore, �UC ⊇ � ⊇ �CA. The difference between the three defi-
nitions lies in the dependencies they impose on the weights across issues. The elements
of �UC are unrestricted across issues, so that δ̃(·� ·� Vj) poses no restriction on the val-
ues of δ̃(·� ·� Vj′) for every Vj�Vj′ ∈ V̄ . By contrast, for �CA, δ̃(·� ·� Vj) and δ̃(·� ·� Vj′) must
be the same for every Vj�Vj′ ∈ V̄ . The set �, which lies between these two sets, allows
for some variation of δ̃(·� ·� Vj) across issues, as long as they obey the “Constant Shares”
requirement.2

The three sets, �UC, �, and �CA, coincide when the multi-issue problem consists
of only one issue V . The correspondence above between standard weights and multi-
weights, establishes that any collection of coalitions that are assigned positive weights

in δ(S); therefore, when restricting attention to issue Vj , several systems of balancing multiweights are re-
duced to one system of balancing weights. Conversely, every system of balancing weights corresponds to
at least one system of balancing multiweights (e.g., dividing δ(S) equally among the members of S).

2Put differently, consider the set of functions that assign weights to agent–coalition pairs restricted by
two requirements: assigning zero to pairs where the agent is not an element of the coalition and allocating
a total weight of 1 to each agent across coalitions,

F =
{
f :N × 2N →R+

∣∣∣ i /∈ S implies f (i� S) = 0�∀i ∈ N :
∑

S∈{T∪{i}|T⊆N\{i}}

∑
k∈S

f (k�S)= 1
}
�
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in some system of balancing weights can also be assigned positive weights by any one of
the three definitions above.

This observation is still true when concentrating on the weights of a specific issue in
the multigame. However, once these weights are set, Definitions S5.2 and S5.3 confine
the possible weights in the other issues.

S2. Example

Table 1 presents three examples of systems of balancing multiweights with δ̃1, δ̃2, and
δ̃3, corresponding to the three definitions above in a two-issue–three-agent multigame.
A row in this table corresponds to a triplet: coalition, agent, and issue.3 The “Constant
Allocation” condition is satisfied by δ̃3 since for every agent i and for every coalition S,
δ̃3(S� i�V1) = δ̃3(S� i�V2), whereas the two other functions do not satisfy it (e.g., agent 1
and coalition {1�2}). The “Constant Shares” condition is satisfied by both δ̃2 and δ̃3, but
is violated by δ̃1 (agent 1).

S3. Results

Proposition S1. The sum of the cores of the individual issues of V̄ ,
∑

Vj∈V̄ C(Vj), is

nonempty if and only if every δ̃ ∈ �UC satisfies

∑
Vj∈V̄

Vj(N)≥
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)�

Proposition S2. The core of the sum of individual issues of V̄ , C(
∑

Vj∈V̄ Vj), is nonempty

if and only if every δ̃ ∈ �CA satisfies

∑
Vj∈V̄

Vj(N)≥
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)�

For a given Vj ∈ V̄ , δ̃(S� i� Vj) satisfies “Zero to Nonmembers” and “Resource Exhaustion” if and only if it is
an element of F .

Definition S5.1 states that �UC is the set of systems of multiweights where, for each issue Vj , δ̃(S� i� Vj) is
some element of F .

Definition S5.3 states that �CA is the set of systems of multiweights where, for each issue Vj , δ̃(S� i� Vj) is
the same element of F .

Let � be a partition of F such that two functions f and f ′ belong to the same class if, for every pair of
agents i and k, ∑

S∈{T∪{i�k}|T⊆N\{i�k}}
f (i� S) =

∑
S∈{T∪{i�k}|T⊆N\{i�k}}

f ′(i� S)�

Definition S5.3 states that � is the set of systems of multiweights where, for each issue Vj , δ̃(S� i� Vj)
belongs to the same class of �.

3Every triplet that is not specified in the table is assigned zero weight. Notice that both “Zero to Non-
members” and “Resource Exhaustion” are satisfied by all three systems.



4 Gayer and Persitz Supplementary Material

Issue Agent Coalition δ̃1 δ̃2 δ̃3

Issue V1 Agent 1 {1} 0 0 0

{1�2} 1
4

1
4

1
4

{1�3} 1
4

1
4

1
4

{1�2�3} 0 0 0

Agent 2 {2} 1
4

1
4

1
4

{1�2} 0 0 0

{2�3} 0 0 0

{1�2�3} 1
4

1
4

1
4

Agent 3 {3} 1
4

1
4

1
8

{1�3} 0 0 1
8

{2�3} 0 0 1
8

{1�2�3} 1
4

1
4

1
8

Issue V2 Agent 1 {1} 1 1
4 0

{1�2} 0 0 1
4

{1�3} 0 0 1
4

{1�2�3} 0 1
4 0

Agent 2 {2} 0 1
4

1
4

{1�2} 0 0 0

{2�3} 1
2 0 0

{1�2�3} 0 1
4

1
4

Agent 3 {3} 0 1
8

1
8

{1�3} 0 1
8

1
8

{2�3} 1
2

1
8

1
8

{1�2�3} 0 1
8

1
8

Table 1. Three systems of balancing multiweights.

Both proofs rely directly on the Bondareva–Shapley theorem (Theorem 1 in the pa-

per). Theorem 2 in the paper and Proposition S1 show that if there is no solution in the

multicore, the sum of the cores of the individual issues is empty as well, since � ⊆ �UC.

Theorem 2 in the paper and Proposition S2 show that if the core of the sum of individual

issues is empty, so is the multicore, since �CA ⊆ �. These results are also established by

Theorem 3 in the paper. The advantage of Propositions S1 and S2 is that they help iden-

tify the systems of balancing multiweights that violate the conditions above when either∑
Vj∈V̄ C(Vj) =∅ and M(V̄ ) 
=∅, or M(V̄ ) =∅ and C(

∑
Vj∈V̄ Vj) 
=∅.
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S4. Proof of Proposition S1

Proof. First, suppose
∑

Vj∈V̄ C(Vj) 
= ∅. For every system of unconstrained balancing

multiweights, δ̃ ∈ �UC, let us define δj(S) = ∑n
i=1 δ̃(S� i� Vj). For every issue Vj , δj(S) is a

system of balancing weights since by “Resource Exhaustion,”
∑

S∈2N δj(S)χ
S = χN .

Suppose there exists δ̃(S� i� Vj), such that

∑
Vj∈V̄

Vj(N) <
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)�

Then there exists Vj ∈ V̄ such that

Vj(N) <

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)

or

Vj(N) <
∑
S∈2N

δj(S)Vj(S)�

By the Bondareva–Shapley theorem, C(Vj) = ∅ and, therefore,
∑

Vj∈V̄ C(Vj) = ∅. Thus,

every δ̃ ∈ �UC satisfies

∑
Vj∈V̄

Vj(N)≥
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)�

For the other direction, suppose that every δ̃ ∈ �UC satisfies

∑
Vj∈V̄

Vj(N)≥
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)�

For every Vj ∈ V̄ and for every system of balancing weights δ(S), define δ̃(S� i� Vl) as
follows:

1. If Vl 
= Vj and S 
= N , then for every i ∈N , δ̃(S� i� Vl) = 0.

2. If Vl 
= Vj and S = N , then for every i ∈N , δ̃(N� i�Vl)= 1/n.

3. If Vl = Vj , then δ̃(S� i� Vj) = δ(S)/|S| if i ∈ S and 0 otherwise.

Note that δ̃ satisfies the “Zero to Nonmembers” condition. Also, for Vl 
= Vj ,

∑
i∈N

∑
S∈2N

δ̃(S� i�Vl)χ
S =

∑
i∈N

δ̃(N� i�Vl)χ
N =

∑
i∈N

1
n
χN = χN�

and for Vl = Vj ,

∑
i∈N

∑
S∈2N

δ̃(S� i�Vj)χ
S =

∑
S∈2N

∑
i∈S

δ(S)

|S| χS =
∑
S∈2N

δ(S)χS = χN�
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Therefore, δ̃(S� i� Vl) also satisfies the “Resources Exhaustion” condition and, therefore,
it is a system of unconstrained balancing multiweights.

Suppose, there exists an issue Vj ∈ V̄ such that C(Vj) = ∅. Then, by the Bondareva–
Shapley theorem, there exists a system of balancing weights, δj(S), such that Vj(N) <∑

S∈2N δj(S)Vj(S). Consider the corresponding δ̃:

∑
Vl∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vl)Vl(S)

=
∑

Vl∈V̄ \{Vj}

n∑
i=1

∑
S∈2N

δ̃(S� i�Vl)Vl(S)+
n∑

i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)

=
∑

Vl∈V̄ \{Vj}

n∑
i=1

1
n
Vl(N)+

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)

=
∑

Vl∈V̄ \{Vj}
Vl(N)+

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)

=
∑

Vl∈V̄ \{Vj}
Vl(N)+

∑
S∈2N

∑
i∈S

δ(S)

|S| Vj(S)

=
∑

Vl∈V̄ \{Vj}
Vl(N)+

∑
S∈2N

δ(S)Vj(S) >
∑

Vl∈V̄ \{Vj}
Vl(N)+ Vj(N) =

∑
Vl∈V̄

Vl(N)�

Therefore, it must be that ∀Vj ∈ V̄ :C(Vj) 
= ∅ and,therefore,
∑

Vj∈V̄ C(Vj) 
= ∅. �

S5. Proof of Proposition S2

Proof. Suppose C(
∑

Vj∈V̄ Vj) 
= ∅. Assume by negation that there exists δ̃ ∈ �CA such

that

∑
Vj∈V̄

Vj(N) <
∑
Vj∈V

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)

or

∑
Vj∈V̄

Vj(N) <
∑
S∈2N

n∑
i=1

∑
Vj∈V

δ̃(S� i�Vj)Vj(S)�

Since δ̃ is a system of balancing multiweights with constant allocation, for every
agent i, coalition S, and two issues Vj and Vj′ ,

δ̃(S� i� Vj) = δ̃(S� i� V ′
j ) ≡ δ̃(S� i)
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and, therefore,

∑
Vj∈V̄

Vj(N) <
∑
S∈2N

n∑
i=1

δ̃(S� i)
∑
Vj∈V̄

Vj(S)�

Define δ(S) = ∑n
i=1 δ̃(S� i). Due to the “Resource Exhaustion” property of δ̃, δ(S) is a

system of balancing weights

∑
S∈2N

δ(S)χS =
∑
S∈2N

[
n∑

i=1

δ̃(S� i)

]
χS =

n∑
i=1

∑
S∈2N

δ̃(S� i)χS = χN�

Therefore, the inequality above becomes,

∑
Vj∈V̄

Vj(N) <
∑
S∈2N

δ(S)
∑
Vj∈V̄

Vj(S)�

which by the Bondareva–Shapley theorem implies that C(
∑

Vj∈V̄ Vj) =∅, which is a con-

tradiction. Thus, if C(
∑

Vj∈V̄ Vj) 
= ∅, then every δ̃ ∈ �CA satisfies

∑
Vj∈V̄

Vj(N)≥
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)�

For the other direction, suppose C(
∑

Vj∈V̄ Vj) = ∅. Then, by the Bondareva–Shapley

theorem, there exists a system of balancing weights, δ(S), whereby
∑

S∈2N δ(S)χS = χN

such that ∑
Vj∈V̄

Vj(N) <
∑
S∈2N

δ(S)
∑
Vj∈V̄

Vj(S)�

Define δ̃(S� i� Vj) = δ(S)/|S| if i ∈ S and δ̃(S� i� Vj)= 0 otherwise. Obviously, δ̃ satisfies
the “Zero to Nonmembers” condition. Also, for every Vj ∈ V̄ ,

∑
i∈N

∑
S∈2N

δ̃(S� i�Vj)χ
S =

∑
S∈2N

∑
i∈S

δ(S)

|S| χS =
∑
S∈2N

δ(S)χS = χN�

Therefore, δ̃ also satisfies the “Resources Exhaustion” condition. In addition, δ̃ does
not depend on any specific issue and, thus, it is a system of balancing multiweights with
constant allocations:

∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S) =
∑
S∈2N

∑
Vj∈V̄

∑
i∈S

δ(S)

|S| Vj(S)

=
∑
S∈2N

δ(S)
∑
Vj∈V̄

Vj(S) >
∑
Vj∈V̄

Vj(N)�
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Thus, if C(
∑

Vj∈V̄ Vj) =∅ there exists δ̃ ∈ �CA such that

∑
Vj∈V̄

Vj(N) <
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S� i�Vj)Vj(S)�
�
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