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Motivation

A common practice for firms wishing to collaborate is to
form a joint venture.

A new firm is established.
The collaborating firms are the owners.
But, the new firm is granted the sole responsibility for the
joint activity.

When interested in collaborating on several independent
projects, firms could form either:

A separate joint venture for each project.
A single joint venture that is responsible for all projects
(linkage).

Example for linkage: Viiv Healthcare

This work is concerned with cooperation and issue linkage
in similar settings.

https://www.viivhealthcare.com/about-us/who-we-are.aspx
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The General Problem

A group of agents is aspiring to reach an agreement on
several independent issues simultaneously.
An agreement is a single contract that divides the
aggregate payoffs of all issues.
The agents are aware of the potential gains from each
issue.
The agents are informed only of aggregate payoffs keeping
them ignorant of the payoffs breakdown by issues.
Can such an agreement promote cooperation?
Additional Example - Wage bargaining: An employer and a
worker sign a single contract regulating the performance
on several tasks.
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Methodology

Reduced form approach to bargaining by modeling the
multiple issues problem as a set of cooperative games with
transferable utility.
Protocol-independent setting, as opposed to the
non-cooperative approach. Literature
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A Cooperative Game

A cooperative game G = (N; V ) is:
A set of players N = {1,2, . . . ,n}.
A characteristic function V : P(N)→ R where
P(N) ≡ {S 6= φ|S ⊆ N}
Pi (N) ≡ {S ∪ {i}|S ⊆ N\{i}}, P−i (N) ≡ P(N)\Pi (N).
V (S) is interpreted as the value attained by coalition S
when operating independently.
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The Core

Definition (The Core)

C(V ) =

{
x ∈ Rn

∣∣∣∣∑
i∈N

xi = V (N),∀S ∈ P(N) :
∑
i∈S

xi ≥ V (S)

}
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Multi Game

Definition (Multi Game)

An m-issue multi-game Ḡ is a pair Ḡ = (N; V̄ ) where V̄ is a set
of characteristic functions V̄ = {V1,V2, . . . ,Vm} such that for
every j ∈ {1, . . . ,m}, Vj : P(N)→ R.

If no confusion arises, we denote the multi-game
Ḡ = (N; V̄ ) by its set of characteristic functions V̄ .
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Example - Independent Issues

v1(S) =


0 if |S| = 1
3
4 if |S| = 2
1 if |S| = 3

; v2(S) =


0 if |S| = 1
0 if |S| = 2
1 if |S| = 3

Issue 1 - “hard”, the core is empty:
Each pair must receive at least 3

4 .
But, the total payoff is less than 9

8 .

Issue 2 - “easy”, every non-negative payoff vector whose
elements add up to one is in the core.
It is impossible to reach an agreement on all issues when
they are solved independently.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Example - Independent Issues

v1(S) =


0 if |S| = 1
3
4 if |S| = 2
1 if |S| = 3

; v2(S) =


0 if |S| = 1
0 if |S| = 2
1 if |S| = 3

Issue 1 - “hard”, the core is empty:
Each pair must receive at least 3

4 .
But, the total payoff is less than 9

8 .

Issue 2 - “easy”, every non-negative payoff vector whose
elements add up to one is in the core.
It is impossible to reach an agreement on all issues when
they are solved independently.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Example - Independent Issues

v1(S) =


0 if |S| = 1
3
4 if |S| = 2
1 if |S| = 3

; v2(S) =


0 if |S| = 1
0 if |S| = 2
1 if |S| = 3

Issue 1 - “hard”, the core is empty:
Each pair must receive at least 3

4 .
But, the total payoff is less than 9

8 .

Issue 2 - “easy”, every non-negative payoff vector whose
elements add up to one is in the core.
It is impossible to reach an agreement on all issues when
they are solved independently.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Example - Independent Issues

v1(S) =


0 if |S| = 1
3
4 if |S| = 2
1 if |S| = 3

; v2(S) =


0 if |S| = 1
0 if |S| = 2
1 if |S| = 3

Issue 1 - “hard”, the core is empty:
Each pair must receive at least 3

4 .
But, the total payoff is less than 9

8 .

Issue 2 - “easy”, every non-negative payoff vector whose
elements add up to one is in the core.
It is impossible to reach an agreement on all issues when
they are solved independently.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Example - Linkage

v1(S) =


0 if |S| = 1
3
4 if |S| = 2
1 if |S| = 3

; v2(S) =


0 if |S| = 1
0 if |S| = 2
1 if |S| = 3

Consider the payoff vector (2
3 ,

2
3 ,

2
3).

Its “justification matrices” are:

y1 =

 2
3 0
1
6

1
2

1
6

1
2

 ; y2 =

 1
6

1
2

2
3 0
1
6

1
2

 ; y3 =

 1
6

1
2

1
6

1
2

2
3 0


Every element of

{
x ∈ [1

2 ,1]3
∣∣x1 + x2 + x3 = 2

}
is a solution

(and there are no other solutions).
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Beliefs

The agents do not know the breakdown of payments by
issues.
Therefore they form a belief.
If, by this belief, there is a coalition that is
under-compensated:

By deviating on the agent’s total payoff increases.
True for all other members of the coalition.
Hence, every member has a belief that supports such a
deviation.
The agent can rationalize the cooperation of the other
members on deviating (a-la Rationalizability).
Therefore, the agent will not comply with the grand coalition
on all issues.

Otherwise, the agent has no reason to block the formation
of the grand coalition on any one of the issues.
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Efficient Decomposition Matrices

Definition (Efficient Aggregate Payoff)

The allocation x ∈ Rn is an efficient aggregate payoff vector of

V̄ if
n∑

i=1

xi =
∑
Vj∈V̄

Vj(N).

Definition (Efficient Decomposition Matrix)
The set of efficient decomposition matrices of an aggregate
payoff vector x is

Ŷ (V̄ , x) =

{
y ∈ Rn×m

∣∣∣∣∀i ∈ N :
∑
Vj∈V̄

yi,j = xi ,

∀Vj ∈ V̄ :
n∑

k=1

yk ,j = Vj(N)

}
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The Multi Core

Definition (The Multi Core)
An efficient aggregate payoff vector x is in the multi-core,
x ∈ M(V̄ ), if for every Agent i there exists an efficient
decomposition matrix y i ∈ Ŷ (V̄ , x) such that
∀Vj ∈ V̄ , ∀S ∈ Pi(N) :

∑
k∈S y i

k ,j ≥ Vj(S).
We refer to y i as a justification matrix of Agent i with regard to
the payoff vector x .
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Story

Each agent i forms a belief regarding the decomposition
(denoted by y ∈ Ŷ (V̄ , x)).
If the total payment entailed in belief y to coalition S in
issue Vj is lower than Vj(S) (

∑
k∈S y i

k ,j < Vj(S)):
By deviating on Vj the agent’s total payoff is her share of
Vj (S) and her payments (by y ) on the remaining issues.
The total is greater than xi .
True for all other members of S as well. Hence, every
member of S has a belief that supports such a deviation.
Agent i can rationalize the cooperation of the other
members of S in deviating on Vj .
Hence, given such a belief y , Agent i will not comply with
the grand coalition on all issues.

Otherwise, Agent i has no reason to block the formation of
the grand coalition on any one of the issues.
When x ∈ M(V̄ ), Agent i has a justification for supporting
x and she reasons that x will be accepted unanimously.
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Alternative Solution Concepts

In the Multi-Core agents know the individual games but are
ignorant of the breakdown of payoffs.
Agents know the individual games and the breakdown of
payoffs:

A natural candidate - the sum over the solutions in the
cores of the single issues.∑
Vj∈V̄

C(Vj ) =

{ ∑
Vj∈V̄

x j
∣∣x j ∈ C(Vj )

}
.

Agents ignorant of the individual games (and the
breakdown of payoffs):

A natural candidate - the core of the sum of the
characteristic functions.
C(
∑
Vj∈V̄

Vj ) .

In many cases the solution concept reflects the information
structure rather than being an implementation choice.

Relevant Literature
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Proposition∑
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A matrix whose columns are allocations in the cores of the
corresponding games serves as a common justification.
The Multi-Core is strictly weaker. Example

The gap is due to linkage.
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Is Issue Linkage Worthwhile?

1 We say that the multi-core is effective when it is strictly
larger than

∑
Vj∈V̄

C(Vj), and ineffective when the sets are

the same.
2 We are interested in two cases:

1 Can the Multi-Core provide a solution if all the problems are
“hard”?

2 Can the Multi-Core provide a new solution when all the
problems are “easy”?
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All the problems are “hard”

Back

V1(S) =


9 if S ∈ {S ⊂ N|{1, 2} ⊆ S}

10 if |S| = N
1 if otherwise

V2(S) =


9 if S ∈ {S ⊂ N|{3, 4} ⊆ S}

10 if |S| = N
1 if otherwise

x =


5
5
5
5

 ; y1 = y3 =


4 1
5 0
1 4
0 5

 ; y2 = y4 =


5 0
4 1
0 5
1 4
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All the problems are “easy” - Definitions

Definition

A subgame of G = (N, v) is a game (T ,V T ) where T ∈ P(N)
and V T (S) = v(S) for all S ⊆ T .

Definition
A game G = (N,V ) is

superadditive if for every pair of disjoint coalitions
S,T ⊆ N, V (S) + V (T ) ≤ V (S ∪ T ).
balanced if it has a non-empty core.
totally balanced if every subgame has a non-empty core.
convex if ∀S,T ⊆ N, V (S) + V (T ) ≤ V (S ∪ T ) + V (S ∩ T )
(increasing marginal contribution).

Diagram
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All the problems are “easy” - Linkage is Ineffective

Proposition

Let V̄ be a multi-game where every Vj ∈ V̄ is convex. The
multi-core of V̄ is ineffective.

Dragan et al. (1989) and Bloch and de Clippel (2010) show
that if V is a set of convex issues,

∑
Vj∈V̄

C(Vj) = C(
∑
Vj∈V̄

Vj).

Proposition

Let V̄ be a multi-game of 3 players where every Vj ∈ V̄ is
balanced and superadditive. The multi-core of V̄ is ineffective.

Proof
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The Multi Core is Effective - Example

V1(S) =


0 if |S| ≤ 2,S /∈ {{2, 4}, {3, 4}}
1
2 if S ∈ {{2, 4}, {3, 4}}
1
2 if |S| = 3,S 6= {1, 2, 3}
1 if S ∈ {{1, 2, 3}, {1, 2, 3, 4}}

V2(S) =


0 if S /∈ {{2, 3, 4}, {1, 2, 3, 4}}
3
4 if S = {2, 3, 4}
1 if |S| = 4

A multi-game with two totally balanced issues and four
players.

Every x ∈
∑
Vj∈V̄

C(Vj) must satisfy x1 ≤ 1
4 .

The allocation where all the agents get 1
2 is in the

multi-core. Diagram



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

The Multi Core is Effective - Example

V1(S) =


0 if |S| ≤ 2,S /∈ {{2, 4}, {3, 4}}
1
2 if S ∈ {{2, 4}, {3, 4}}
1
2 if |S| = 3,S 6= {1, 2, 3}
1 if S ∈ {{1, 2, 3}, {1, 2, 3, 4}}

V2(S) =


0 if S /∈ {{2, 3, 4}, {1, 2, 3, 4}}
3
4 if S = {2, 3, 4}
1 if |S| = 4

A multi-game with two totally balanced issues and four
players.

Every x ∈
∑
Vj∈V̄

C(Vj) must satisfy x1 ≤ 1
4 .

The allocation where all the agents get 1
2 is in the

multi-core. Diagram



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

The Multi Core is Effective - Example

V1(S) =


0 if |S| ≤ 2,S /∈ {{2, 4}, {3, 4}}
1
2 if S ∈ {{2, 4}, {3, 4}}
1
2 if |S| = 3,S 6= {1, 2, 3}
1 if S ∈ {{1, 2, 3}, {1, 2, 3, 4}}

V2(S) =


0 if S /∈ {{2, 3, 4}, {1, 2, 3, 4}}
3
4 if S = {2, 3, 4}
1 if |S| = 4

A multi-game with two totally balanced issues and four
players.

Every x ∈
∑
Vj∈V̄

C(Vj) must satisfy x1 ≤ 1
4 .

The allocation where all the agents get 1
2 is in the

multi-core. Diagram



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

The Multi Core is Effective - Example

V1(S) =


0 if |S| ≤ 2,S /∈ {{2, 4}, {3, 4}}
1
2 if S ∈ {{2, 4}, {3, 4}}
1
2 if |S| = 3,S 6= {1, 2, 3}
1 if S ∈ {{1, 2, 3}, {1, 2, 3, 4}}

V2(S) =


0 if S /∈ {{2, 3, 4}, {1, 2, 3, 4}}
3
4 if S = {2, 3, 4}
1 if |S| = 4

A multi-game with two totally balanced issues and four
players.

Every x ∈
∑
Vj∈V̄

C(Vj) must satisfy x1 ≤ 1
4 .

The allocation where all the agents get 1
2 is in the

multi-core. Diagram



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

The Multi Core is Effective - Example

V1(S) =


0 if |S| ≤ 2,S /∈ {{2, 4}, {3, 4}}
1
2 if S ∈ {{2, 4}, {3, 4}}
1
2 if |S| = 3,S 6= {1, 2, 3}
1 if S ∈ {{1, 2, 3}, {1, 2, 3, 4}}

V2(S) =


0 if S /∈ {{2, 3, 4}, {1, 2, 3, 4}}
3
4 if S = {2, 3, 4}
1 if |S| = 4

A multi-game with two totally balanced issues and four
players.

Every x ∈
∑
Vj∈V̄

C(Vj) must satisfy x1 ≤ 1
4 .

The allocation where all the agents get 1
2 is in the

multi-core. Diagram



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

The Multi Core is Effective - Example

V1(S) =


0 if |S| ≤ 2,S /∈ {{2, 4}, {3, 4}}
1
2 if S ∈ {{2, 4}, {3, 4}}
1
2 if |S| = 3,S 6= {1, 2, 3}
1 if S ∈ {{1, 2, 3}, {1, 2, 3, 4}}

V2(S) =


0 if S /∈ {{2, 3, 4}, {1, 2, 3, 4}}
3
4 if S = {2, 3, 4}
1 if |S| = 4

A multi-game with two totally balanced issues and four
players.

Every x ∈
∑
Vj∈V̄

C(Vj) must satisfy x1 ≤ 1
4 .

The allocation where all the agents get 1
2 is in the

multi-core. Diagram



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

The Multi Core is Effective - Example

V1(S) =


0 if |S| ≤ 2,S /∈ {{2, 4}, {3, 4}}
1
2 if S ∈ {{2, 4}, {3, 4}}
1
2 if |S| = 3,S 6= {1, 2, 3}
1 if S ∈ {{1, 2, 3}, {1, 2, 3, 4}}

V2(S) =


0 if S /∈ {{2, 3, 4}, {1, 2, 3, 4}}
3
4 if S = {2, 3, 4}
1 if |S| = 4

A multi-game with two totally balanced issues and four
players.

Every x ∈
∑
Vj∈V̄

C(Vj) must satisfy x1 ≤ 1
4 .

The allocation where all the agents get 1
2 is in the

multi-core. Diagram



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

System of Balancing Weights

Definition

For all S ∈ P(N), let χS ∈ {0,1}n denote the characteristic
vector of S, so that χS

i = 1 if i ∈ S and χS
i = 0 otherwise.

Definition
A function δ : P(N)→ R+ is a system of balancing weights if∑

S∈2N δ(S)χS = χN .

Interpretation:
Each agent is endowed with one unit of time.
A system of balancing weights is an allocation of the
agents’ time among the different coalitions, where δ(S) is
the fraction of time devoted to coalition S.
δ(S)v(S) is the amount produced by coalition S when its
members devote δ(S) of their time to it.
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Bondareva-Shapley Theorem

Theorem (Bondareva-Shapley Theorem)
The core of V is non-empty if and only if every system of
balancing weights, δ(S), satisfies V (N) ≥

∑
S∈P(N)

δ(S)V (S).

Interpretation: The core is non-empty if and only if a
production-maximizing planner instructs all agents to
devote their entire time to the grand coalition.
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Systems of Balancing Multi-weights

Definition

A function δ̃ : P(N)× N × V̄ → R+ is a system of balancing
multi-weights if it satisfies the following requirements,

1 Zero to Non-members:
∀Vj ∈ V̄ ,∀i ∈ N, ∀S ∈ P−i(N) : δ̃(S, i ,Vj) = 0.

2 Resource Exhaustion:
∀Vj ∈ V̄ :

∑
i∈N

∑
S∈2N

δ̃(S, i ,Vj)χ
S = χN .

3 Constant Shares:
∀i ∈ N,∀Vj ,Vj ′ ∈ V̄ :

∑
S∈2N

δ̃(S, i ,Vj)χ
S =

∑
S∈2N

δ̃(S, i ,Vj ′)χ
S.

Denote the set of all systems of balancing multi-weights by ∆.
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Interpretation of Systems of Balancing Multi-weights

Each agent is endowed with one unit of time per issue.
In every issue Vj , the planner is in charge of allocating the
time resources among the agents - {α1j , . . . , αnj} where
αij ∈ [0,1]n.
Such allocations must satisfy

∑
i∈N αij = χN (Resource

Exhaustion).
Agent i in issue Vj then chooses the amount of time,
δ̃(S, i , j) to be devoted to the various coalitions S in which
she participates (Zero to Non-members).
αij =

∑
S∈P(N) δ̃(S, i , j)χS implies that the agent exhausts

the resources allocated to her (Resource Exhaustion).
The planner’s allocations are identical across issues
(Constant Shares).
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Non-emptiness Theorem

Theorem

The multi-core of V̄ , is non-empty if and only if every δ̃ ∈ ∆
satisfies

∑
Vj∈V̄

Vj(N) ≥
∑
Vj∈V̄

n∑
i=1

∑
S∈P(N)

δ̃(S, i ,Vj)Vj(S)

Proof
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Types of Systems of Balancing Multi-weights

Definition

A function δ̃ : P(N)×N × V̄ → R+ is a system of unconstrained
balancing multi-weights if it satisfies Zero to Non-members and
Resource Exhaustion. (∆UC).

Definition

A system of multi-weights, δ̃, satisfies Constant Allocations if
∀Vj ,Vj ′ ∈ V̄ : δ̃(S, i ,Vj) = δ̃(S, i ,Vj ′).

Definition

A function δ̃ : P(N)× N × V̄ → R+ is a system of constrained
balancing multi-weights if it satisfies Zero to Non-members,
Resource Exhaustion, and Constant Allocations. (∆CA).

∆CA ⊂ ∆ ⊂ ∆UC



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Types of Systems of Balancing Multi-weights

Definition

A function δ̃ : P(N)×N × V̄ → R+ is a system of unconstrained
balancing multi-weights if it satisfies Zero to Non-members and
Resource Exhaustion. (∆UC).

Definition

A system of multi-weights, δ̃, satisfies Constant Allocations if
∀Vj ,Vj ′ ∈ V̄ : δ̃(S, i ,Vj) = δ̃(S, i ,Vj ′).

Definition

A function δ̃ : P(N)× N × V̄ → R+ is a system of constrained
balancing multi-weights if it satisfies Zero to Non-members,
Resource Exhaustion, and Constant Allocations. (∆CA).

∆CA ⊂ ∆ ⊂ ∆UC



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Types of Systems of Balancing Multi-weights

Definition

A function δ̃ : P(N)×N × V̄ → R+ is a system of unconstrained
balancing multi-weights if it satisfies Zero to Non-members and
Resource Exhaustion. (∆UC).

Definition

A system of multi-weights, δ̃, satisfies Constant Allocations if
∀Vj ,Vj ′ ∈ V̄ : δ̃(S, i ,Vj) = δ̃(S, i ,Vj ′).

Definition

A function δ̃ : P(N)× N × V̄ → R+ is a system of constrained
balancing multi-weights if it satisfies Zero to Non-members,
Resource Exhaustion, and Constant Allocations. (∆CA).

∆CA ⊂ ∆ ⊂ ∆UC



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Types of Systems of Balancing Multi-weights

Definition

A function δ̃ : P(N)×N × V̄ → R+ is a system of unconstrained
balancing multi-weights if it satisfies Zero to Non-members and
Resource Exhaustion. (∆UC).

Definition

A system of multi-weights, δ̃, satisfies Constant Allocations if
∀Vj ,Vj ′ ∈ V̄ : δ̃(S, i ,Vj) = δ̃(S, i ,Vj ′).

Definition

A function δ̃ : P(N)× N × V̄ → R+ is a system of constrained
balancing multi-weights if it satisfies Zero to Non-members,
Resource Exhaustion, and Constant Allocations. (∆CA).

∆CA ⊂ ∆ ⊂ ∆UC



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Generalized Non-Emptiness

Definition (Extended Bondareva-Shapley condition)

A system of balancing multi weights δ̃(S, i , j) satisfies the
Extended Bondareva-Shapley (EBS) condition if

∑
Vj∈V

Vj(N) ≥
∑
Vj∈V

n∑
i=1

∑
S∈P(N)

δ̃(S, i , j)Vj(S)

Proposition
1
∑

Vj∈V̄ C(Vj) 6= ∅ iff every δ̃ ∈ ∆UC satisfies the EBS condition.

2 M(V̄ ) 6= ∅ iff every δ̃ ∈ ∆ satisfies the EBS condition.
3 C(

∑
Vj∈V̄ Vj) 6= ∅ iff every δ̃ ∈ ∆CA satisfies the EBS condition.
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Interpretation of Non-Emptiness Results

The available information in the problem is mapped to the
restrictions placed upon the planner and the agents.
Ignorance regarding the structure of the game corresponds
to restricting agents to choose among identical allocations.
Ignorance regarding the decomposition of payoffs
corresponds to restricting the planner to choose among
identical allocations.
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Variations on the Multi-Core

Constrain the agents to have identical beliefs over
coalitional payoffs.

A mediator may wish to avoid incompatibilities.
Falls strictly between the sum of the cores and the
multi-core.

Constrain a subset of agents to hold the same beliefs.
A subset of agents employs a single representative.
Falls strictly between the sum of the cores and the
multi-core.

Consent can be achieved even if the justification matrices
are such that for each issue and for each coalition only one
member is satisfied.

If its the same member across issues, it falls between the
multi-core and core of the sum of games.
Otherwise it may be weaker than the core of the sum of
games.
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Code

We provide a Matlab code that implements all above
mentioned solution concepts:

Check for non-emptiness.
Verify that a given payoff vector supports the formation of
the grand coalition.
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Concluding Remarks

Linking the issues together is often proposed as a
mechanism for successful negotiations.
The Multi-Core allows linkage while retaining the
knowledge of the structure of the individual games.
However, the agents are ignorant of the issue-by-issue
decomposition of the aggregate payoffs.
The Multi-Core lies between two extreme solution
concepts.
The Multi-Core may not be useful for very “easy” problems.
However, it is useful for a wide set of “hard” problems.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Concluding Remarks

Linking the issues together is often proposed as a
mechanism for successful negotiations.
The Multi-Core allows linkage while retaining the
knowledge of the structure of the individual games.
However, the agents are ignorant of the issue-by-issue
decomposition of the aggregate payoffs.
The Multi-Core lies between two extreme solution
concepts.
The Multi-Core may not be useful for very “easy” problems.
However, it is useful for a wide set of “hard” problems.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Concluding Remarks

Linking the issues together is often proposed as a
mechanism for successful negotiations.
The Multi-Core allows linkage while retaining the
knowledge of the structure of the individual games.
However, the agents are ignorant of the issue-by-issue
decomposition of the aggregate payoffs.
The Multi-Core lies between two extreme solution
concepts.
The Multi-Core may not be useful for very “easy” problems.
However, it is useful for a wide set of “hard” problems.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Concluding Remarks

Linking the issues together is often proposed as a
mechanism for successful negotiations.
The Multi-Core allows linkage while retaining the
knowledge of the structure of the individual games.
However, the agents are ignorant of the issue-by-issue
decomposition of the aggregate payoffs.
The Multi-Core lies between two extreme solution
concepts.
The Multi-Core may not be useful for very “easy” problems.
However, it is useful for a wide set of “hard” problems.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Concluding Remarks

Linking the issues together is often proposed as a
mechanism for successful negotiations.
The Multi-Core allows linkage while retaining the
knowledge of the structure of the individual games.
However, the agents are ignorant of the issue-by-issue
decomposition of the aggregate payoffs.
The Multi-Core lies between two extreme solution
concepts.
The Multi-Core may not be useful for very “easy” problems.
However, it is useful for a wide set of “hard” problems.



Introduction Preliminaries Example Definition Comparison Usefulness Non-Emptiness Comments Summary

Thanks



Non Cooperative Literature

Agenda setting in Rubinstein (1982):
Fershtman (1990, 2000), Busch and Horstmann (1997,
1999a) and Winter (1997) show that issues’ order matters.
Inderst (2000), In and Serrano (2003, 2004) and In (2006)
focus on settings where the agenda is endogenous.
Bac and Raff (1996) and Busch and Horstmann (1999b)
discuss incomplete information regarding time preferences.

Repeated games:
Blonski and Spagnolo (2003); Spagnolo (2001) and Perez
(2005) show that linkage sustains cooperation.
Conconi and Perroni (2002) discuss the relation between
the set of linked issues and agreements’ stability.

Mechanism design of private-values buyer-seller problem:
McAfee et al. (1989), Avery and Hendershott (2000), Eilat
and Pauzner (2011) and Fang and Norman (2010)
demonstrate that with linkage the designer has more
enforcement power. Back
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Relevant Cooperative Literature

Back

Bloch and de Clippel (2010) - Characterizing the relation
between C(

∑
Vj∈V̄ Vj) and

∑
Vj∈V̄ C(Vj).

Fernández et al. (2002, 2004) - weighted sum of
characteristic functions.
Nax (2014) and Diamantoudi et al. (2013) - externalities
between the issues (deviation in all issues at once).
Assa et al. (2014) - multiple issues, one membership.
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Multi-Core and the Core of Sum - Proof

Back

Proposition

M(V̄ ) ⊆ C(
∑
Vj∈V̄

Vj).

If M(V̄ ) = ∅ the statement is vacuously true.
Otherwise, let x ∈ M(V̄ ),∑n

i=1 xi =
∑

Vj∈V̄ Vj (N). x is an efficient payoff vector in∑
Vj∈V̄

Vj .

Denote the justification matrix of Player i by y i .
For every coalition S, every i ∈ S satisfies∑

k∈S

xk =
∑
k∈S

∑
Vj∈V̄

y i
k,j =

∑
Vj∈V̄

∑
k∈S

y i
k,j ≥

∑
Vj∈V̄

Vj (S)
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Example - Core of Sum

Back

V1(S) =


0 if |S| = 1
3
4 if |S| = 2
1 if |S| = 3

; V2(S) =


0 if |S| = 1
0 if |S| = 2
1 if |S| = 3

M(V̄ ) =
{

x ∈ [1
2 ,1]3

∣∣x1 + x2 + x3 = 2
}

.

C(
∑
Vj∈V̄

Vj) =
{

x ∈ [0, 5
4 ]3
∣∣x1 + x2 + x3 = 2

}
.

An agent can get less than 1
2 since she ignores the

structure of issue 1 (e.g. x = (0,1,1)).
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Non Emptiness - Proof (Part 1)

Linear program:

min
x∈Rn

n∑
i=1

xi

subject to: ∀i, l ∈ N :
∑
Vj∈V̄

y i
l,j = xl

∀i ∈ N, ∀Vj ∈ V̄ ,∀S ∈ Pi (N) :
∑
l∈S

y i
l,j ≥ Vj (S)

The multi-core is non-empty iff
∑n

i=1 x̄i ≤
∑

Vj∈V̄ Vj (N).
Some Algebra to eliminate the payoff vector.
The asymmetric dual problem:

max
z∈Rnm2n−1

b′z

subject to: A′z = c , z ≥ 0

By the Strong Duality Theorem, the multi-core is non-empty iff
every z ∈ Rnm2n−1

+ such that A′z = c satisfies b′z ≤
∑

Vj∈V̄ Vj (N).
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Non Emptiness - Proof (part 2)

Back

Let Z = {z ∈ Rnm2n−1

+ |A′z = c}.
It turns out that Z is identical to ∆.
b is a vector of characteristic functions’ values.
Therefore, the multi-core is non-empty if and only if every
system of balancing multi-weights satisfies

∑
Vj∈V̄

Vj (N) ≥
∑
Vj∈V̄

n∑
i=1

∑
S∈2N

δ̃(S, i,Vj )Vj (S)
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3 Agents Balanced Superadditive - Proof (Part 1)

Definitions:
Let F : P(N)→ R+ be a system of weights.
Let W F =

∑
S∈2N F (S)χ

S.
F1 and F2 are W-equivalent if W F1 = W F2 .
Γ is the set of all W-equivalence classes.
For every γ ∈ Γ, the agents’ weights are denoted by W γ .
For every V and γ, T γ

V ≡ maxF∈γ
∑

S∈P(N) F (S)V (S).

Insight 1:
Let F ∈ γ.
Construct F ′ by subtracting weight α from S and from T
(S ∩ T = ∅) and add weight α to S ∪ T .
Then, F ′ ∈ γ.
If V is superadditive:

∑
t∈P(N)

F ′(t)V (t) ≥
∑

t∈P(N)

F (t)V (t).
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3 Agents Balanced Superadditive - Proof (Part 2)

Insight 2 (specific to 3 agents):
Let γ be such that W γ [1] ≥W γ [2] ≥W γ [3].
Let F ∈ γ be such that F ({1}) = 0.
Construct F ′ by subtracting F ({2,3}) from coalitions of size
2 and add 2F ({2,3}) to the grand coalition.
Then, F ′ ∈ γ.
If V is superadditive and balanced:∑
t∈P(N)

F ′(t)V (t) ≥
∑

t∈P(N)

F (t)V (t).

Insight 3 (uses insights 1 and 2)
Let V be a balanced, superadditive, three agents game.
Let γ be such that W γ [1] ≥W γ [2] ≥W γ [3].
We can construct F ∈ γ such that

∑
S∈P(N)

F (S)V (S) = T γ
V

and F ({2}) = F ({3}) = F ({2,3}) = 0.
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Back

W.L.O.G: Let γ be such that W γ [1] ≥W γ [2] ≥W γ [3].
Let x ∈ M(V̄ ).
Using Insight 3 and the existence of a justification matrix
for Agent 1 we show that

∑
i∈N

W γ [i]xi ≥
∑
Vj∈V̄

T γ
Vj

.

This is true for every class of systems of weights.
By a result from Gayer et al. (2014), x can be decomposed
to elements in the cores of the individual games.

x ∈
∑
Vj∈V̄

C(Vj).

The multi-core is ineffective.
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