Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results	Conclusions

Is Consistency Procedure Invariant

Vered Kurtz¹ Dino Levy² Dotan Persitz¹

¹Faculty of Management Tel Aviv University

²Faculty of Management and Sagol School of Neuroscience Tel Aviv University

November 2017

Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results	Conclusions
000000						

Procedure Invariance

• The Procedure Invariance requirement: Recovered preferences (or heuristics) should be independent of the elicitation method.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

 Necessary condition for general external validity of experiments.

Choices from Linear Budget Sets

- Choice from linear budget set is fundamental in Economics.
- Samuelson (1938), Afriat (1967) and Varian (1982) provide a formal nonparametric theory of revealed preferences in this context.
- Laboratory experiments where subjects are asked to make choices from multiple budget sets, provide relatively large individual level data sets natural for the application of the theory of revealed preferences.

Three Experimental Designs

- Three setups are used in those studies.
- **The Textual methodology** subjects are faced with a sentence that describes a budget set and are asked to plug in their preferred bundle.
- **The Graphical methodology** subjects are required to choose their preferred bundle from a visually presented budget set.
- **The Discrete methodology** subjects are asked to choose from a small set of images (or sentences) that represent the available bundles.
- These methodologies are used to investigate:
 - Preferences over goods (bundles of various food items)
 - Risk preferences (bundles of Arrow securities).
 - Other-regarding preferences (bundles of Dictator game outcomes).
 - Time preferences (bundles of payments at different dates).

esign RP Terminology

inology Results

s Seco

Second Wave

Results Conclusions

Experimental Literature

Andword and Weshinking (2002), Andword and Miller (2002) Oking 14 (11 (76) 8 (11) 3 (4) 992% (18) %() 0.997 (28) %() Exists and Grossman (2001) Oking 1181 12 2 NAA NA Heritron and Johnson (2009) Oking 173 10 4 NA NA Andrease (2007) (n - 1) Oking 172 10 4 NA 0.998 Obstram: (2009) Oking 152 11 4 0.997 (08) 0.996 Obstram: (2009) Oking 152 1 4 0.997 (08) 0.996 Obstram: (2009) Oking 152 1 4 0.997 (08) 0.996 Obstram: (2009) Oking 152 1 4 0.997 (08) 0.996 Obstram: (2009) Oking 152 1 4 0.997 (08) 0.996 Obstram: (2009) Oking 152 1 4 0.997 (08) 0.996 Vision and Ondersitig (2011) Oking 155 3
Editation Grossman (2003) Guing 181 12 2 NA NA Heartiss and Junion (2006) Guing 173 10 4 NA NA Andraro (2007) (n = 1) Guing 120 5 4 96.27% 0.996 Didextrass (2007) (n = 1) Guing 152 11 4 826% NA Dataset at (2017) Guing 152 11 4 826% (WARP) NA Values and Reading (2011) Guing 106 5 3 94% (WARP) NA Product and Densition (2011) Guing 108 5 3 NA NA
Heritican ad Johnson (2006) Okivig 172 10 4 NA NA Advatess (2007) 0-10 Okivig 120 5 4 987-10 0.986 Dolsmon (2008) Okivig 132 1 1 4 095-100-198 Dameset al. (2011) Okivig 132 1 1 4 095-100-199 Visions and Photols (2011) Okivig 132 5 3 945-100-199 NA Visions and Photols (2011) Okivig 106 5 3 945-100-199 NA Packet ad. (Jose 2011) V/P Okivig 108 5 3 945-100-199 NA
Androam (2007) (n - 1) Guing 120 5 4 957% 0.996 Didulstom (2008) Guing 152 11 4 89% (WARP) NA Dameted Lig (2011) Guing 224 5 3 95% (WARP) NA Values and Resolut (2011) Guing 106 5 3 NA NA Rodor and Lines (2011) WP Guing 108 3 NA NA
Disference (2005) Oulving 152 11 4 80% (WARP) NA Dames et al. (2011) Oulving 224 5 3 94% (WARP) NA Vacar and Resolut; (2011) Oulving 105 5 3 94% (WARP) NA Packdar and Lender (2011) Oulving 105 5 3 NA NA Packdar and Lender (2011) WP Oulving 105 5 3 NA NA
Daves et al. (2011) Giving 224 5 3 94% (WARP) NA Vasse and Rootors (2011) Giving 106 5 3 NA NA Rooton and Liveine (2011).WP Giving 196 8 3 NA NA
Visser and Roelofs (2011) Giving 106 5 3 N/A N/A Riodon and Levine (2011). WP Giving 189 8 3 N/A N/A
Biodon and Levine (2011), WP Giving 189 8 3 N/A N/A
9
Dawes et al. (2012) Giving 20 5 3 N/A N/A
Textual Andreoni and Sprenger (2012a) Time 86 5*9 2 N/A N/A
Andreoni and Sprenger (2012b) Time 80 7*2 1.43 N/A N/A
Jakiela (2013) Giving 144 10-12 3 N/A N/A
Korenok et al. (2013) Giving 178 18 4 66% (MI) 0.979
Kuhn et al. (2014), WP Time 143 5*11 2 N/A N/A
Ashton (2015), WP Time 149 5'9 1.5 N/A N/A
Porter and Adams (2015) Giving 190 11 4 88.4%-90.5% 0.990-0.995
Hong et al. (2015) Social 144 20 10 56.9% 75% >0.9
Engle-Warnick and Mishagina (2016), WP Giving 156 20 10 30.1% (WARP) Approx. 0.92
Schumacher et al. (2017) Giving 581 3 2 N/A N/A
Carvalho et al. (2016) Time 1191 4*3 1.03 N/A N/A
Choi et al. (2007a) (p = 1/2) Risk 47 50 unbounded 25.5% 0.934
Fisman et al. (2007) (two person) Giving 76 50 unbounded 10.5% 0.892
Hammond and Traub (2012), WP Risk 41 16-48 unbounded < 48.7% N/A
Choi et al. (2014) Risk 1182 25 unbounded 22.8% 0.881
Chow (2014) Risk 180 20 7 N/A 0.74; 0.90
Graphical Fisman et al. (2015a) Giving 72 50 unbounded N/A 0.944
Fisman et al. (2015b) Giving 208 ; 309 50 unbounded N/A 0.95 ; 0.86
Cappelen et al. (2015), WP Risk 126 ; 110 ; 106 50 unbounded 23.8% ; 10%-25%, 10.4% 0.95 ; 0.856 ; 0
Augenblick et al. (2015) Time 80 5 2 N/A N/A
Halevy et al. (2017) Risk 203 22 4 45.3% 0.979
Müller et al. (2017), WP Giving 116 50 unbounded N/A 0.96
Carvalho et al. (2016) Risk 3110 25 unbounded 83% 0.81
Castillo and Cross (2008) Giving 112 4 3 N/A N/A
Discrete Banerjee and Murphy (2011) Goods 69 10 5 53.6% (WARP) N/A
textual Andreoni et al. (2015) Time 86 6*4 2.22 N/A N/A
Owens (2016) Giving N/A 50 10 N/A N/A
Giné et al. (2017) Time 2142 5°2 2 N/A N/A
Harbaugh and Krause (2000) Giving 40 11 4 55% 0.87
Harbaugh et al. (2001) Goods 31;42;55 11 4 26%;52%;55% 0.93;0.96;0
Discrete Camille et al. (2011) Goods 9 ; 22 11 4 11.1% ; 68% 0.9 ; 0.95
Visual Bruyneel et al. (2012), WP Goods 39;31;30 9 9 31%;48%;53% 0.604;0.737;0
Burghart et al. (2013) Goods 101 11 4 58.4% 0.967
Bruyneel et al. (2014), WP Goods 42 ; 24 ; 34 9 9 N/A N/A

ign RP Terminology

Results

Second Wave

Results Conclusions

Contradicting Experimental Evidence (Giving)

	Trials	Price Ratios	No. of subjects	% of GARP satisfiers	Average Afriat index
Fisman, Kariv and Markovits (AER 2007)*	50	Unbounded	76	10.5%	0.108
Andreoni and Miller (ECMT 2002)	8 (8 or 11)	T=3 (T=4)	142 (176)	90.8% (89.8%)	0.003 (0.002)

(*) only two-person treatment.

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

• *Power* (informally, the probability that random choice fails GARP): affected by the number of intersections between budget lines.

- Problem Variability: affected by the variability in slopes and endowments.
- *Fatigue*: affected by the number of repetitions and the complexity of the implemented choice rule.
- The methodology we test textual vs. graphical. Caution: the effect of the methodology on preferences is irrelevant to consistency (is that indeed correct???).

Very Brief Literature Survey

- Most of the literature that is concerned with visual presentation methodologies is focused on risk communication:
 - Some papers consider optimal information presentation (e.g. probabilities in health contexts, managerial data).
 - Other (related) studies show that graphical presentation of lotteries increases risk aversion compared to numerical presentation.
- Harless (1992) claims that some regret effects in the context of binary choice of lotteries are format dependent.
- As far as we know, the literature is restricted to binary choice.

Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results 00000000	Conclusions
The S	Setting					

- Choice from linear budget sets in the context of other regarding preferences.
- In each decision problem the subject encounters a "modified" dictator game with an anonymous other subject.
- Each token that she allocates to herself is multiplied by α points while a token she allocates to the other is worth β points.

Graphical Interface

Hebrew
 Original

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- At the beginning of the experiment each subject was randomly assigned with:
 - A number of repetitions (between 10 and 50).
 - An upper bound on the price ratio *T* (between 3 and 12).
- In each trial the subject was randomly assigned with:
 - Price ratio (between $\frac{1}{T}$ and *T*).
 - Tokens endowment (between 40 and 100).
- Each session was implemented either using the textual methodology (following Andreoni and Miller (2002)) or the graphical methodology (following Fisman et al. (2007) for n = 2).
- Monotonicity was imposed in both methodologies.
- Pairs were randomly matched before the experiment, but not revealed to the subjects.

Conversion to Prizes

- Textual Interface:
 - Endowment is tokens.
 - Tokens are converted to points after the DM had made her choice.
 - Points are converted to NIS at the end of the experiment.
- Graphical Interface:
 - The DM chooses a bundle of tokens to hold and to pass.
 - Tokens are converted to NIS at the end of the experiment.
- The conversion rate to NIS was decreasing in *T* to keep the average prize comparable across treatments.
- The subject's conversion rate was revealed at the beginning of the experiment.
- Participation fees: 25NIS (\approx 7*USD*).

Motivation experimental Design RP Terminology Results Second Wave Results Conclusions

Subjects and Rewards

- The subjects are 272 undergrads from TAU and BGU.
- The experiments took place between mid March and the end of May, 2016.

	Graphical interface	Textual interface
TAU	52	78
BGU	85	57
Total	137	135

Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results	Conclusions
	000000					

Reconstruction

	Trials	Price Ratios	No. of subjects	% of GARP satisfiers	Average Afriat index
Fisman, Kariv and Markovits (AER 2007)*	50	Unbounded	76	10.5%	0.108
Andreoni and Miller (ECMT 2002)	8 (8 or 11)	T=3 (T=4)	142 (176)	90.8% (89.8%)	0.003 (0.002)
Graphic interface	41-50	T>8	8	12.5%	0.067
Textual interface	10-29	T=3	10	90%	0
(*) only two-person treatment.					

Motivation Experimental Design RP Terminology Results Second Wave Results Conclusions

Revealed Preference Relations with Adjustments

The DM chooses bundles $x^i \in \Re_+^K$ $(i \in 1, ..., n)$ from budget sets $\{x : p^i x \le p^i x^i, p^i \in \Re_{++}^K\}$. Let $D = \{(p^i, x^i)_{i=1}^n\}$ be a finite data set, where x^i is the chosen bundle at prices p^i .

Definition

Let $\mathbf{v} \in [0, 1]^n$. An observed bundle x^i is

- **v** Directly Revealed Preferred to a bundle x, denoted $x^i R_{D,\mathbf{v}}^0 x$ if $v^i p^i x^i \ge p^i x$.
- **2 v** Strictly Directly Revealed Preferred to a bundle *x*, denoted $x^i P_{D,v}^0 x$ if $v^i p^i x^i > p^i x$.

v - Revealed Preferred to a bundle x, denoted xⁱR_{D,v}x if there exists a sequence of observed bundles (x^j, x^k,...,x^m) such that xⁱR⁰_{D,v}x^j, x^jR⁰_{D,v}x^k,...,x^mR⁰_{D,v}x.

gn RP Terminology

Results Sec

Second Wave

Results Conclusions

Consistency and Rationalizability

Definition

Let $\mathbf{v} \in [0, 1]^n$. *D* satisfies *GARP*_v if $x^i R_{D, \mathbf{v}} x^j$ implies not $x^j P_{D, \mathbf{v}}^0 x^i$.

Definition

Let $\mathbf{v} \in [0, 1]^n$. A utility function $u(x) \mathbf{v}$ -rationalizes D, if for every observed bundle $x^i \in \Re^{\mathcal{K}}_+$, $x^i R^0_{D,\mathbf{v}} x$ implies that $u(x^i) \ge u(x)$.

n RP Terminology

Results S

Second Wave

Results Conclusions

Afriat's Theorem (1967)

Theorem

The following conditions are equivalent:

- There exists a non-satiated utility function that 1-rationalizes the data.
- 2 The data satisfies GARP₁.
- There exists a non-satiated, continuous, concave, monotonic utility function that 1-rationalizes the data.

In RP Terminology

Results Se

Second Wave

Results Conclusions

Varian Inconsistency Index

Definition

 $f_n : [0, 1]^n \to [0, M]$, where *M* is finite, is an *Aggregator Function* if $f_n(1) = 0$, $f_n(0) = M$ and $f_n(\cdot)$ is continuous and weakly decreasing.

Definition (Varian Inconsistency Index)

Let $f : [0, 1]^n \rightarrow [0, M]$ be an aggregator function. *Varian's Inconsistency Index* is,

$$I_V(D, f) = \inf_{\mathbf{v} \in [0,1]^n : D \text{ satisfies } GARP_{\mathbf{v}}} f(\mathbf{v})$$

うせん 正則 スポットボット 白マ

gn RP Terminology

Results Se

Second Wave

Results Conclusions

Other Inconsistency Indices

Definition (Afriat's Critical Cost Efficiency Index)

Let
$$\mathcal{I} = \left\{ \mathbf{v} \in [0, 1]^n : \mathbf{v} = v\mathbf{1}, \forall v \in [0, 1] \right\}.$$

Afriat's Index is, $I_A(D) = \inf_{\mathbf{v} \in \mathcal{I}: D \text{ satisfies } GARP_{\mathbf{v}}} 1 - v$

Definition (Houtman-Maks Inconsistency Index)

Let $f : [0, 1]^n \rightarrow [0, M]$ be an aggregator function. *Houtman-Maks Inconsistency Index* is,

$$I_{HM}(D, f) = \inf_{\mathbf{v} \in \{0,1\}^n : D \text{ satisfies } GARP_{\mathbf{v}}} f(\mathbf{v})$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Motivation	Experimental Design	RP Terminology ○○○○○●	Results	Second Wave	Results 00000000	Conclusions
Powe	er					

Bronars (1987):

- Power is the probability that a DM that chooses randomly (uniformly) on the budget line will fail GARP.
- Bronars (and others) fail to provide a closed form expression for power in the general case.
- While understudied, the general intuition is that the power is highly correlated with the number of budget line intersections (which are, in turn, related to the number of trials, the range of slopes and the range of endowments).
- Bronars (1987) suggests to simulate a large number of such DMs and report frequencies of violations and indices.

Consistency is NOT Procedure Invariant

We use two definitions for consistency:

- Narrow: Those subjects that satisfy GARP.
- Broad: Those subjects that satisfy GARP and those with Afriat inconsistency index equal to epsilon.

	Narrow o	lefinition	Broad definiton		A Cui - A in d	Houtman
	num. of subs.	% of subs.	num. of subs.	% of subs.	AIriat Index	Maks index
Textual interface	62	45.9%	69	51.1%	0.11 (0.204)	0.051 (0.094)
Graphical interface	79	57.7%	87	63.5%	0.027 (0.063)	0.029 (0.069)
Total	141	51.8%	156	57.4%	0.068 (0.141)	0.04 (0.083)

Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results	Conclusions
			000000000000000000000000000000000000000			

Measuring Power

For each subject we ran 10,000 simulations according to Bronars (1987).

- For each simulation we recorded consistency, number of violations and Afriat inconsistency index.
- We use the median of the number of GARP violations (as percentage of the maximal number).

sign RP Terminology

Results S

Second Wave

Results Conclusions

Does Power Affect Consistency?

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Second Wave

Results Conclusions

Power Affects Consistency in both Interfaces

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation	Experimental Design	RP lerminology	Results ○○○○●○○○○○○○○○○○○○	Second Wave	Results	Conclusions

• We measured the reaction time for each trial.

l ime Measures

• Fatigue: Total RT - the time measured from the beginning of the first trial upto the completion of the last trial (correlation of 0.276 with the number of trials).

• Subjective Complexity: Mean (Median) RT - the Mean (Median) time measured per trial.

RP Terminology

Results

Second Wave

Results Conclusions

The Effect of Total Time

(num. or subs.)							
nower quint 5	100.0%	44.4%	57.1%	35.3%	38.5%		
power_quint_5	8	9	7	17	13		
	75.0%	80.0%	11.1%	11.1%	26.3%		
power_quint_4	8	10	9	9	19		
manual autor 2	63.6%	60.0%	36.4%	60.0%	41.7%		
power_quint_s	11	10	11	10	12		
nouse suint 2	71.4%	69.2%	68.4%	70.0%	20.0%		
power_quint_2	7	13	19	10	5		
nouse suint 1	95.2%	75.0%	75.0%	77.8%	60.0%		
power_quint_1	21	12	8	9	5		
	time_quint_1	time_quint_2	time_quint_3	time_quint_4	time_quint_5		

Consistency (broad def.) by time and power

Consistency (broad def.) by time and power thirds

(Textual, Graphical)								
power_third_3	63.6%, 80.0%	53.8%, 50.0%	23.8%, 31.8%					
power_third_2	77.8%, 66.7%	33.3%, 55.0%	14.3%, 56.3%					
power_third_1	72.7%, 95.2%	63.6%, 80.0%	60.0%, 57.1%					
	time_third_1	time_third_2	time_third_3					

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

25.0%

4

8.3%

12

53.8%

13

55.6%

9

81.3%

16

med rt guint 5

The I	Effect of	Time per	[.] Trial
0000000	0000000	000000	00000

power_quint_5

power quint 4

power quint 3

power quint 2

power_quint_1

Motivation

Experimental Design RP Terminology

75.0%

16

58.8%

17

66.7%

12

75.0%

4

83.3%

6

med_rt_quint_1

46.2%

13

55.6%

9

52.9%

17

55.6%

9

100.0%

6

med_rt_quint_2

Results Seco

23.1%

50.0%

6

42.9%

7

64.3%

14

71.4%

14

med_rt_quint_3

Second Wave

62.5%

8

18.2%

11

20.0%

5

72.2%

18

84.6%

13

med rt quint 4

Results Conclusions

Measuring Problem Variability

 In the experiment, a maximal slope was randomly assigned to each subject.

Conclusions

- This implies heterogeneity in the variability of the slopes the subjects encounter.
- We measure the problem variability per subject by the mean of the slopes the subject encounters (highly correlated, 0.92, with the standard deviation, by design).

Motivation Experimental Design **RP** Terminology

Results

Second Wave

Results Conclusions

Does Problem Variability Affect Consistency?

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Second Wave

Results Conclusions

The Effect of Problem Variability by Interface

gn RP Terminology

Results ○○○○○○○○○●○○○○○○○

Second Wave

Results Conclusions

Consistency Regressions

Narrow Definition

PROBIT				
	(1)	(2)	(3)	(4)
VARIABLES	cons. broad ²	cons. broad ²	cons. broad ²	cons. broad ²
	only textual	only graphical	all subs.	all subs.
Interface ²			-7.437***	-8.529***
			(2.844)	(2.492)
Power	2.337**	2.303	2.486	2.251**
	(1.086)	(1.624)	(1.583)	(0.890)
Power * Interface			-0.264	
			(1.865)	
Average slope	1.654***	0.561	0.515	0.0402
	(0.598)	(0.507)	(0.495)	(0.0921)
Average slope * Interface			1.050	1.519***
			(0.743)	(0.566)
Average slope square	-0.157**	-0.0608	-0.0547	
	(0.0657)	(0.0575)	(0.0561)	
Average slope square * Interface			-0.0936	-0.147**
			(0.0827)	(0.0614)
Median RT	-0.0514	-0.00934	-0.00941	-0.0149
	(0.0437)	(0.0443)	(0.0441)	(0.0337)
Median RT* Interface			-0.0368	-0.0301
			(0.0600)	(0.0458)
Time	0.00442***	0.00321*	0.00306*	0.00325**
	(0.00152)	(0.00173)	(0.00169)	(0.00134)
Time * Interface			0.000985	0.000746
			(0.00216)	(0.00170)
Gender	-0.438	-0.232	-0.320*	-0.317*
	(0.286)	(0.263)	(0.191)	(0.191)
Age	0.174***	-0.0451	-0.0422	-0.0461
	(0.0656)	(0.0551)	(0.0541)	(0.0548)
Age * Interface			0.213**	0.217***
			(0.0829)	(0.0830)
Observations	135	137	272	272
Loa Likelihood	-62.536	-70.409	-134.77	-134.278
-				

Standard errors in parentheses including controls for economics background, lab, academic major, use of calculator (Textual only) and constant

*** p<0.01, ** p<0.05, * p<0.1

10- consistent, 1 - inconsistent

² 0= graphical interface, 1 = textual interface

gn RP Terminology

Results Se

Second Wave

Results Conclusions

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Inconsistency Indices Regressions

TOBIT						
	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	AI	HM	AL	HM	AL	HM
	only textual	only textual	only graphical	only graphical	all subs.	all subs.
Interface ¹					-1.156**	-0.361**
					(0.457)	(0.147)
Power	0.395	0.118*	0.287	0.199*	0.356**	0.134**
	(0.249)	(0.0698)	(0.187)	(0.108)	(0.172)	(0.0577)
Average slope	0.427***	0.0558	0.0718	-0.00630	0.00626	0.00332
	(0.138)	(0.0367)	(0.0598)	(0.0316)	(0.0196)	(0.00640)
Average slope * Interface					0.359***	0.0473
					(0.109)	(0.0349)
Average slope square	-0.0426***	-0.00556	-0.00752	0.00128		
	(0.0149)	(0.00402)	(0.00678)	(0.00353)		
Average slope square * Interface	((,		(,	-0.0363***	-0.00506
					(0.0117)	(0.00377)
Median BT	-0.00428	-0.00245	0.00148	0.00200	-0.00110	0.000513
	(0.00927)	(0.00258)	(0.00505)	(0.00296)	(0.00693)	(0.00234)
Median BT * Interface	(0.00021)	(0.00200)	(0.00000)	(0100200)	-0.00188	-0.00251
mediamiti interjace					(0.00992)	(0.00209)
Time	0.000444*	0.000209***	0.000194	0.000159	0.000414	0.000212**
THINE	(0.000361)	(7.220.05)	(0.000197)	(0.000111)	(0.000357)	(8.800.0E)
Time # Interface	(0.000201)	(7.526-05)	(0.000187)	(0.000111)	9 910 05	1 520.06
Time Interface					10.0002971	(9.910.05)
Candar	0.0205	0.00712	0.05228	0.0142	0.0002077	0.0129
Genuer	+0.0500	-0.00712	=0.0322	(0.0143	(0.0403	(0.0138
	(0.0616)	(0.0179)	(0.0300)	(0.0174)	(0.0368)	(0.0126)
Age	0.0145	0.00842**	-0.00787	-0.00393	-0.0113	-0.00470
	(0.0126)	(0.00372)	(0.00636)	(0.00382)	(0.0119)	(0.00373)
Age * Interface					0.0207	0.0122**
					(0.0154)	(0.00505)
Observations	135	135	137	137	272	2/2
Log Likelihood	-46.384	35.633	-2.649	28.282	-66.261	61.591

Standard errors in parentheses including controls for economics background, lab, academic major, use of calculator (Textual only) and constant *** p<0.01. ** p<0.05. * p<0.1

¹0= graphical interface, 1 = textual interface

Second Wave

The Interface Effect

- The interface has an adverse effect on consistency. Consider a subject of age 24.6 years (average in the sample):
 - For the average slope of 4.2, moving from the graphical interface to the textual interface increases the probability of being inconsistent by 27.1%.
 - For average slopes smaller than 2.42 and larger than 7.415, moving from the graphical interface to the textual interface reduces the probability of being inconsistent.

Holding everything else equal:

- Power (proxy to objective complexity) has an adverse effect on consistency.
- Time spent on the experiment (proxy to fatigue) is negatively correlated with consistency.

- Time spent per trial (proxy to subjective complexity) is not correlated with consistency.
- Accountants are highly consistent ...

Does the Interface Affect Preferences or Heuristics?

- Consistency analysis cannot reveal changes in the distribution of behavior.
- Such analysis requires exploring actual choices rather than their internal consistency.
- We focus on focal types selfish, altruist, welfare maximizer and egalitarian.
- In addition, we looked into two heuristics based on rounding.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We naively classify the subjects into these types (or to other).

RP Terminology

Results

Second Wave Results

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Conclusions

Focal Types

			Our experiment				
	Andreastand	Fisman,	Text	tual	Graphical		
T	Anareoni ana Millor	Kariv and	100% of trials,	90% of trials,	100% of trials,	90% of trials,	
Types	miller	Markovits	up to 10%	up to 10%	up to 10%	up to 10%	
	(ECMT 2002)*	(AER 2007) ²	deviation from	deviation from	deviation from	deviation from	
		Ì.	pure behavior ³	pure behavior ³	pure behavior ³	pure behavior ³	
Selfish	22.7%	26.3%	19.3%	27.4%	27.0%	32.1%	
Max. social welfare	6.2%	2.6%	1.5%	5.2%	0.7%	3.6%	
Egalitarian	14.2%	2.6%	3.0%	6.0%	0%	1.5%	
Altruistic	0%	0%	0%	0%	0%	0%	
Round number to self ⁷	N/A	N/A	1.5%	$7.4\%^{4,5}$	0%	$0.7\%^{4}$	
Round number to other	N/A	N/A	0%	0%	0%6	0% ⁶	
Other	58.9%	69.5%	74.7%	54%	72.3%	62.1%	
Total no. of subjects	176	76	135	135	137	137	

¹ both 8 and 11 trials session.

² two person treatment only.

³ in the rounding class..., deviation was calculated as 1 token from pure behavior

⁴ another subject was classified as exhibiting both round to self behavior and max. social welfare behavior

⁵ about 2/3 of these subjects gave the other subject the remainder from the nearest round number, and another 1/3 gave them larger amounts

⁶ one subject always gave 1 token to the other subject, and hence was also classified as selfish.

⁷ 54.5% of these subjects were consistent (broad def.)

Motivation Experimental Design RP Terminology Results Second Wave Results Conclusions

Focal Types - Parametric Classification

 In addition, we recover the parameters of a CES utility function for each subject:

$$u(\mathbf{x},\mathbf{y}) = [\alpha \times \mathbf{x}^{\rho} + (1-\alpha) \times \mathbf{y}^{\rho}]^{\frac{1}{\rho}}$$

where $\alpha \in [0, 1]$.

- Extreme Altruism: $\alpha = 0$.
- Extreme Selfishness: $\alpha = 1$.
- Egalitarian: $\alpha \in (0, 1)$ and $\rho \to -\infty$.
- Max Social Welfare: $\alpha = \frac{1}{2}$ and $\rho = 1$.
- We recover by the MMI (Halevy et al. (2017)).

sign RP Terminology

Results Seco

Second Wave

Results Conclusions

Focal Types - Summary

			Our experiment				
			Tex	tual	Graphical		
Types	Andreoni and Miller (ECMT 2002)	Fisman, Kariv and Markovits (AER 2007)	100% of trials, up to 10% deviation from pure behavior	90% of trials, up to 10% deviation from pure behavior	100% of trials, up to 10% deviation from pure behavior	90% of trials, up to 10% deviation from pure behavior	
Selfish	22.7%	26.3%	19.3%	27.4%	27.0%	32.1%	
Max. social welfare	6.2%	2.6%	1.5%	5.2%	0.7%	3.6%	
Egalitarian	14.2%	2.6%	3.0%	6.0%	0%	1.5%	
Altruistic	0%	0%	0%	0%	0%	0%	
Round number to self	N/A	N/A	1.5%	7.4%	0%	0.7%	
Round number to other	N/A	N/A	0%	0%	0%	0%	
Other	58.9%	69.5%	74.7%	54%	72.3%	62.1%	
Total no. of subjects	176	76	135	135	137	137	

Types	Criteria α	Criteria p	Textual	Graphical
Selfish	α>0.9		30.4%	38.7%
Max. social welfare	0.25<α<0.75	0.9<ρ<=1	3.7%	0.7%
Egalitarian		ρ<-1	14.8%	6.6%
Altruistic	α<0.2		0%	0%
Other			51.1%	54.0%
Total			135	137

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation	Experimental Design	RP Terminology	Results	Second Wave ●○○	Results 00000000	Conclusions
Motiv	ration					

- Are the results described so far specific to the modified dictator game settings?
- We compare the two interfaces also in the context of risk.
- Subjects were asked to choose the optimal portfolio of Arrow securities (two equally probable states) from linear budget sets with varying prices (following Choi et al. (2007b)).
- As far as we know, there is no risk preferences experiment using the textual interface.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Subjects and Rewards

- The subjects are 245 undergrads from TAU and BGU.
- The experiments took place between mid November 2016 and the end of January 2017.

	Graphical interface	Textual interface
TAU	65	53
BGU	55	72
Total	120	125

The prizes in one session of the Textual BSU treatment were not recorded, due to technical issues during the session

Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results	Conclusions
				000		

 $\sim c$	\mathbf{n}	ne	rr i i	OTI	<u>nn</u>
_					
\sim					

	Trials	Price Ratios	No. of subjects	% of GARP satisfiers	Average Afriat index			
Choi, Fisman, Gale and Kariv (AER 2007)*	50	Unbounded	47	25.5%	0.066			
Graphic interface	41-50	T>8	13	30.8%	0.04			
9 only symmetric treatment.								

n RP Terminology

Results S

Second Wave

Results Conclusions

Consistency is NOT Procedure Invariant

Risk treatment

	Narrow definition		Broad d	efiniton	Africtinday	Houtman
	num. of subs.	% of subs.	num. of subs.	% of subs.	Alfiat muex	Maks index
Textual interface	49	39.2%	58	46.4%	0.044 (0.073)	0.045 (0.074)
Graphical interface	65	54.2%	67	55.8%	0.03 (0.066)	0.032 (0.07)
Total	114	46.5%	125	51.0%	0.037 (0.07)	0.0387 (0.072)

DG treatment

	Narrow d	lefinition	Broad	definiton	A 6	Houtman	
	num. of subs.	% of subs.	num. of subs.	% of subs.	Airiat index	Maks index	
Textual interface	62	45.9%	69	51.1%	0.11 (0.204)	0.051 (0.094)	
Graphical interface	79	57.7%	87	63.5%	0.027 (0.063)	0.029 (0.069)	
Total	141	51.8%	156	57.4%	0.068 (0.141)	0.04 (0.083)	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Motivation
 Experimental Design
 RP Terminology
 Results
 Second Wave

 0000000
 0000000
 0000000
 0000000
 000

Results Conclusions

Does Problem Variability Affect Consistency?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation Experimental Design R 0000000 000000 0

RP Terminology

Results Se

Second Wave

Results Conclusions

The Effect of Problem Variability by Interface

◆□> ◆□> ◆三> ◆三> 三日 のへで

n RP Terminology

y Results

Second Wave

Results Conclusions

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Consistency Regressions

Narrow Definition

PROBIT			
	(1)	(2)	(3)
VARIABLES	cons. narrow ¹	cons. narrow ¹	cons. narrow ¹
	only textual	only graphical	all subs.
Interface*			4.264*
			(2.420)
Power	4.022***	2.961*	3.322**
	(1.426)	(1.618)	(1.686)
Power * Interface			0.345
			(2.182)
Average slope	0.291***	0.0722	1.718***
	(0.0979)	(0.106)	(0.647)
Average slope * Interface			-2.361***
			(0.880)
Average slope square			-0.200***
			(0.0765)
Average slope square * Interface			0.306***
			(0.102)
Median RT	-0.00442	-0.0278	-0.0295
	(0.0349)	(0.0320)	(0.0354)
Median RT			0.0266
			(0.0488)
Time	-0.000279	0.000934	0.000628
	(0.00109)	(0.00101)	(0.00104)
Time * Interface	(0.000000)	(0.00000)	-0.000891
			(0.00148)
Gender	0.440*	0.0477	0.255
	(0.266)	(0.270)	(0.189)
Age	-0.0115	0.00956	0.00422
Age	(0.0433)	(0.0377)	(0.0386)
Age * Interface	(0.0433)	(0.0377)	-0.0130
Age menjace			(0.0577)
			(0.0377)
Obrapiation	125	119	242
Log Likelihood	70.055	110	125 905
Log Likeimoou	-70.055	-03.94	-122.022

Standard errors in parentheses including controls for economics background, lab, academic major, use of calculator (Textual only) and constant *** pc0.01, ** pc0.05, * pc0.1

10= consistent, 1 = inconsistent

² D= graphical interface, 1 = textual interface

n RP Terminology

Results See

Second Wave

Results Conclusions

Inconsistency Indices Regressions

TOBIT						
	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	AI	HM	AI	HM	AI	HM
	only textual	only textual	only graphical	only graphical	all subs.	all subs.
Interface ¹					0.198	0.277*
					(0.213)	(0.146)
Power	0.255*	0.155*	0.304**	0.302***	0.298**	0.302***
	(0.130)	(0.0813)	(0.149)	(0.109)	(0.150)	(0.104)
Power * Interface	(,	(,	,,	()	-0.0940	-0.145
interface					(0 194)	(0.132)
Average clope	0.0228***	0.0112**	0 199***	0 122***	0 191***	0 126***
incluge slope	(0.00955)	(0.00542)	(0.0590)	(0.0410)	(0.0592)	(0.0400)
Auguan class & Interface	(0.00855)	(0.00343)	(0.0580)	(0.0415)	0.227888	0.144888
Average slope - interface					-0.237	(0.0522)
A					(0.0764)	(0.0523)
Average slope square			-0.0224	-0.0149***	-0.0216	-0.0141++++
			(0.00687)	(0.00494)	(0.00694)	(0.00472)
Average slope square * Interface					0.0304***	0.0175***
					(0.00885)	(0.00604)
Median RT	-0.00149	4.78e-05	-0.00101	4.64e-05	-0.00155	2.59e-05
	(0.00311)	(0.00198)	(0.00312)	(0.00216)	(0.00316)	(0.00206)
median RT * Interface					-0.000243	-0.000246
					(0.00435)	(0.00289)
Time	5.72e-05	4.58e-05	-6.34e-05	-4.79e-05	-4.44e-05	-4.98e-05
	(9.61e-05)	(6.18e-05)	(9.57e-05)	(6.75e-05)	(9.47e-05)	(6.33e-05)
Time * Interface					0.000116	8.32e-05
					(0.000132)	(8.90e-05)
Gender	0.0343	0.0180	0.0184	0.0149	0.0280*	0.0174
	(0.0232)	(0.0149)	(0.0242)	(0.0176)	(0.0165)	(0.0113)
Aae	0.00709*	0.000368	-0.00122	0.000658	-0.00120	0.000436
	(0.00387)	(0.00247)	(0.00322)	(0.00239)	(0.00327)	(0.00230)
Age * Interface	(0.005077	(0.00247)	(0.00522)	(0.00255)	0.00905	0.000250
Age interface					(0.00496)	(0.00241)
					(0.00490)	(0.00341)
Okana antina a	105	105	110	110	242	242
Coservations	125	125	118	118	243	243
Log likelinaoa	∠1.649	58.177	15.178	30.099	30.066	80.056

Standard errors in parentheses including controls for economics background, lab, academic major, use of calculator (Textual only) and constant *** p<0.01, ** p<0.05, * p<0.1

¹0 – graphical interface, 1 – textual interface

n RP Terminology

ninology Results

sults S

Second Wave

Results Con

Focal Types

	Tex	tual	Graphical		
	100% of trials,	90% of trials,	100% of trials,	90% of trials,	
Types	up to 10%	up to 10%	up to 10%	up to 10%	
	deviation from	deviation from	deviation from	deviation from	
	pure behavior	pure behavior	pure behavior	pure behavior	
Cheap corners	6.4%	11.2%	14.2%	21.7%	
Safe bundle	12.8%	22.4%	3.3%	5%	
Equal shares	0.8%	4%	0%	2.5%	
Cutoff	16.8%	20.8%	14.2%	17.5%	
Other	63.2%	41.6%	68.3%	53.3%	
Total no. of subjects	125	125	120	120	

Risk treatment

DG treatment

			Our experiment					
			Tex	tual	Graphical			
Types	Andreoni and Miller (ECMT 2002)	Fisman, Kariv and Markovits (AER 2007)	100% of trials, up to 10% deviation from pure behavior	90% of trials, up to 10% deviation from pure behavior	100% of trials, up to 10% deviation from pure behavior	90% of trials, up to 10% deviation from pure behavior		
Selfish	22.7%	26.3%	19.3%	27.4%	27.0%	32.1%		
Max. social welfare	6.2%	2.6%	1.5%	5.2%	0.7%	3.6%		
Egalitarian	14.2%	2.6%	3.0%	6.0%	0%	1.5%		
Altruistic	0%	0%	0%	0%	0%	0%		
Round number to self	N/A	N/A	1.5%	7.4%	0%	0.7%		
Round number to other	N/A	N/A	0%	0%	0%	0%		
Other	58.9%	69.5%	74.7%	54%	72.3%	62.1%		
Total no. of subjects	176	76	135	135	137	137		

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation Experimental Design RP Terminology Results Second Wave Results Conclusions

Focal Types - Parametric Classification

 In addition, we recover the parameters of a DA-CRRA utility function for each subject:

$$u(x, y) = \gamma w (\max \{x, y\}) + (1 - \gamma) w (\min \{x, y\})$$

where $\gamma = \frac{1}{2+\beta}$ $-1 < \beta < \infty$ and
$$w(x) = \begin{cases} \frac{x^{1-\rho}}{1-\rho} & \rho \ge 0 \quad (\rho \ne 1) \\ ln(x) & \rho = 1 \end{cases}$$

- Corners: either $\beta = -1$ or $\rho = 0$ and $\beta \leq 0$.
- Safe bundle: $\beta \to \infty$.
- Equal shares: $\rho = 1$ and $\beta = 0$
- Cutoff: $\rho = 0$ and $\beta > 0$.
- We recover by the MMI (Halevy et al. (2017)).

gn RP Terminology

Results

Second Wave

Results Cond

Conclusions

Focal Types - Summary

	Tex	tual	Graphical			
	100% of trials,	90% of trials,	100% of trials,	90% of trials,		
Types	up to 10%	up to 10%	up to 10%	up to 10%		
	deviation from	deviation from	deviation from	deviation from		
	pure behavior	pure behavior	pure behavior	pure behavior		
Cheap corners	5.6%	11.2%	14.2%	21.7%		
Safe bundle	13.6%	23.2%	3.3%	5%		
Equal shares	0%	0%	0%	0%		
Cutoff	17.6%	20.8%	14.2%	19.2%		
Other	63.2%	44.8%	68.3%	54.1%		
Total no. of subjects	125	125	120	120		

Types	Criteria B	Criteria p	Textual	Graphical
Chago com ora	β≤0	ρ≤0.2	ρ≤0.2	
cheap corners	β<-0.9	ρ>0	0.4%	11.7%
Safe bundle	β>2	ρ>0.2	12.8%	2.5%
Equal shares	-0.1<β<0.1	0.9<ρ<1.1	1.6%	0%
Cutoff	β>0	ρ≤0.2	28%	15%
Other			51.2%	70.8%
Total			125	120

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results 00000000	Conclusions ●○○
Sum	mary					

- In both contexts: Higher percentage of subjects were consistent when the graphical interface was used (and were less inconsistent).
- In both contexts: The power of the test has an adverse effect on consistency in both interfaces.
- Time spent on the experiment (proxy to fatigue) was negatively correlated with consistency in the dictator game, but not at the risky choice.
- In both contexts: The effect of the slopes differed between interfaces (in a different way).
- The graphical interface seems to encourage corner choices while the textual interface promotes choices on the 45 degree line.

Motivation	Experimental Design	RP Terminology	Results	Second Wave	Results 00000000	Conclusions ○●○
Futur	e					

- Two main goals:
 - To improve the classification (High percentage of others).
 - To improve our understanding of the effect of slopes.
- We asked the subjects (post-experiment) to tell us about their decision rule.
- We gave those descriptions to 6 RAs and asked them to:
 - Classify the subjects based on their answers.
 - Classify the subjects based on their choices.
 - Assess the differences.
- We will use these additional data to improve classification and understand the differences between the interfaces (is it indeed harder to implement decision rules in the Textual interface?)
- In addition, we wish to zoom in on the choices of specific subsets of subjects (i.e. those that encountered steep budget lines in the Textual interface in the Dictator game).

RP Terminology

Results

Second Wave

Results Conclusions 000

Thanks

Textual Methodology - Hebrew

העבר/העבירי למשתתף/ת השני/ה _____ אסימונים בערך של 2 נקודות לאסימון.

> בעית החלטה מספר 33 מתוך 34

> > ▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Textual Methodology - Original

back

1	You Eam	Each of 2 others earns	In Total the 2 others earn
people \$	\$6.00	\$4.50	\$9.00
people			
r people			
people			
people			
	people :	You Earn people \$6.00 people people people People	You Earn Each of 2 others earns people \$6.00 \$4.50 people

sions <-- Clicking this button will submit, at once, ALL of the decsions you made behind EVERY tab.

Graphical Methodology - Hebrew

▲ back

Graphical Methodology - Original

✓ back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Epsilon Afriat Inconsistency Index: Example

▲ back

Consistency Regressions - Narrow Definition

▲ back

	(1)	(2)	(3)	(4)		
VARIABLES	cons. narrow	cons. narrow ¹ cons. narrow ¹ cons. narrow ¹ cons. narrow ¹				
	only textual	only graphical	all subs.	all aubs.		
Interface ²			-6.249**	-5.735**		
			(2.608)	(2.256)		
Power	1.538	1.878	2.316	1.682**		
	(1.003)	(1.575)	(1.521)	(0.840)		
Power * Interface			-0.932			
			(1.781)			
Average slope	0.842*	-0.270	-0.319	0.0638		
	(0.508)	(0.472)	(0.458)	(0.0886)		
Average slope * Interface			1.042	0.648		
			(0.664)	(0.492)		
Average slope square	-0.0761	0.0398	0.0472			
	(0.0560)	(0.0535)	(0.0519)			
Average slope square * Interface			-0.112	-0.0633		
			(0.0743)	(0.0534)		
Median RT	-0.0353	-0.0241	-0.0156	-0.0288		
	(0.0377)	(0.0439)	(0.0431)	(0.0330)		
Median RT			-0.0226	-0.00483		
			(0.0562)	(0.0425)		
Time	0.00343***	0.00391**	0.00338**	0.00384***		
	(0.00130)	(0.00176)	(0.00168)	(0.00134)		
Time * Interface			5.37e-06	-0.000589		
			(0.00205)	(0.00160)		
Gender	-0.319	-0.203	-0.270	-0.282		
	(0.266)	(0.259)	(0.184)	(0.183)		
Age	0.155**	-0.0486	-0.0405	-0.0369		
5	(0.0623)	(0.0551)	(0.0536)	(0.0523)		
Age * Interface			0.190**	0.187**		
			(0.0796)	(0.0786)		
Observations	135	137	272	272		
Log Likelihood	-72.569	-72.135	-146.028	-146.618		

Standard errors in parentheses including controls for economics background, lab, academic major, use of calculator (Textual only) and constant

*** p<0.01, ** p<0.05, * p<0.1

¹0= consistent, 1 = inconsistent

² 0- graphical interface, 1 - textual interface

Consistency Regressions - Narrow Definition

back

PROBIT			
	(1)	(2)	(3)
VARIABLES	Cons. Narrow ¹	Cons. Narrow ¹	Cons. Narrow ¹
	only textual	only graphical	all subs.
· · · · · 2			2 620
Interface			3.639
			(2.414)
Power	3.414**	3.518**	3.497**
	(1.371)	(1.691)	(1.667)
Power * Interface			-0.00471
			(2.147)
Average slope	0.233**	1.726***	1.635**
	(0.0971)	(0.652)	(0.639)
Average slope * Interface			-2.131**
			(0.885)
Average slope square		-0.197***	-0.189**
		(0.0766)	(0.0754)
Average slope square * Interface			0.274***
			(0.103)
Median RT	-0.0118	-0.0172	-0.0205
	(0.0332)	(0.0340)	(0.0338)
median RT * Interface	()	(0.0116
			(0.0469)
Time	0.000770	0.000717	0.000584
	(0.00109)	(0.00106)	(0.00102)
Time * Interface	(0.00105)	(0.00100)	8 470 05
			(0.00147)
Gender	0.202	0.0500	(0.00147)
	0.283	-0.0502	(0.151
	(0.264)	(0.278)	(0.188)
Age	0.00764	0.00990	0.0109
	(0.0436)	(0.0404)	(0.0394)
Age * Interface			0.00287
			(0.0587)
Observations	125	118	243
		- 49	

Standard errors in parentheses including controls for economics background, lab, academic major, use of calculator (Textual only) and constant

*** p<0.01, ** p<0.05, * p<0.1

10 = consistent, 1 = inconsistent

²0 - graphical interface, 1 - textual interface