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New Data

Emerging experimental literature on choices from budget
sets.
Two advantages on most previous consumer choice data

Large individual level data sets.
Controlled environment (e.g. price variation).

For example:
Risk - Choi et al. (2007a), Choi et al. (2014), Cappelen et al.
(2015).
Ambiguity - Ahn et al. (2014).
Altruism - Andreoni and Miller (2002), Fisman et al. (2007),
Korenok et al. (2013), Fisman et al. (2015a), Fisman et al.
(2015b), Porter and Adams (2015).
Time Preference - Andreoni and Sprenger (2012).
Goods - Harbaugh et al. (2001), Camille et al. (2011),
Burghart et al. (2013).
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Motivation

These rich individual level data sets enable the elicitation of
the distribution of behavioral parameters.
We wish to provide a tool for eliciting approximate stable
preferences parametrically based on the theory of Revealed
Preference.
Outline:

Theory: Introduce a loss function based on Revealed
Preference theory.
Data: Choi et al. (2007a) reveals considerable differences
between the proposed method and a standard
distance-based method.
Experiment: Novel design to compare the two methods.
Back to the data: “Hypothesis testing”.
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Data Set

D =
{(

pi , x i)n
i=1

}
is a finite data set, where x i ∈ <K

+ is the DM’s

chosen bundle at prices pi ∈ <K
++ (income is normalized to 1).
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Revealed Preference Relations

Definition

An observed bundle x i is
1 Directly Revealed Preferred to a bundle x , denoted x iR0

Dx
if pix i ≥ pix .

2 Strictly Directly Revealed Preferred to a bundle x ,
denoted x iP0

Dx if pix i > pix .
3 Revealed Preferred to a bundle x , denoted x iRDx if there

exists a sequence of observed bundles
(
x j , xk , . . . , xm) such

that x iR0
Dx j , x jR0

Dxk , . . . , xmR0
Dx (transitive closure).
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Rationalizability and GARP

Definition
A utility function u(x) rationalizes D if for every observed bundle
x i , u(x i) ≥ u(x) for all x such that x iR0

Dx .

Definition (Generalized Axiom of Revealed Preference)

D satisfies GARP if x iRDx j then ¬
(
x jP0

Dx i).
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Afriat’s Theorem (1967)

Theorem (Afriat (1967), Diewert (1973), Varian (1982a), Teo and
Vohra (2003), Fostel et al. (2004) and Geanakoplos (2013).)
The following conditions are equivalent:

1 There exists a non-satiated utility function that rationalizes
the data.

2 The data satisfies GARP.
3 There exists a non-satiated, continuous, concave,

monotonic utility function that rationalizes the data.

Additional condition: The existence of a piecewise linear
utility function that rationalizes the data set (constructive).
Checking data for GARP is easy (e.g. Varian (1982a)).
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Inconsistent Subjects

By Afriat’s Theorem if D is inconsistent with GARP then it
cannot be rationalized by a non-satiated utility function.
The proportion of consistent subjects is substantial (above
25%).
However, there are many subjects that do not satisfy GARP.
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Generalized Revealed Preference Relations

Definition

Let v ∈ [0,1]n. An observed bundle x i ∈ <K
+ is

1 v−directly revealed preferred to a bundle x ∈ <K
+, denoted

x iR0
D,vx , if v ipix i ≥ pix or x = x i .

2 v−strictly directly revealed preferred to a bundle x ∈ <K
+,

denoted x iP0
D,vx , if v ipix i > pix .

3 v−revealed preferred to a bundle x ∈ <K
+, denoted x iRD,vx ,

if there exists a sequence of observed bundles(
x j , xk , . . . , xm) such that x iR0

D,vx j , x jR0
D,vxk , . . . , xmR0

D,vx .

Fact

Let v′ ≤ v. Then: R0
D,v′ ⊆ R0

D,v, P0
D,v′ ⊆ P0

D,v and RD,v′ ⊆ RD,v.
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GARPv and v-Rationalizability

Definition

Let v ∈ [0,1]n. D satisfies the General Axiom of Revealed
Preference Given v (GARPv) if for every pair of observed
bundles, x iRD,vx j implies not x jP0

D,vx i .

Fact

Let v,v′ ∈ [0,1]n and v ≥ v′. If D satisfies GARPv then D
satisfies GARPv′ .

Definition
Let v ∈ [0,1]n. A utility function u(x) v−rationalizes D, if for every
observed bundle x i ∈ <K

+, x iR0
D,vx implies that u(x i) ≥ u(x). We

say that D is v−rationalizable if such u (·) exists.
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Generalized Afriat’s Theorem

Theorem
The following conditions are equivalent:

1 There exists a non-satiated utility function that
v−rationalizes the data.

2 The data satisfies GARPv.
3 There exists a continuous, monotone and concave utility

function that v−rationalizes the data.

Afriat (1973) provides a non-constructive proof for the
uniform case.
Afriat (1987) states the theorem without a proof.
In his unpublished PhD dissertation Houtman (1995)
considers non-linear pricing (using constructive proof).
We adapt this construction to our setting.

Proof
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Inconsistency Indices

Non-parametric measure for the extent of deviation from
utility maximizing behavior implied by a data set of
consumer choices.
In this work we focus on three well-known indices:

Varian Inconsistency Index (Varian (1990)).
Afriat Inconsistency Index (Afriat (1972, 1973)).
Houtman-Maks Inconsistency Index (Houtman and Maks
(1985)).

There are other indices in the literature.
The indices require aggregation over observations.

Definition

fn : [0,1]n → [0,M], where M is finite, is an Aggregator Function
if fn(1) = 0,fn(0) = M and fn(·) is continuous and weakly
decreasing.
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Varian Inconsistency Index

Example

The minimal adjustments of the budget sets that remove
cycles implied by choices.
We follow Alcantud et al. (2010) and Varian (1990) and use
the Euclidean norm of the adjustments vector (Smeulders
et al. (2014) suggest the generalized mean).

Definition

Let f : [0,1]n → [0,M] be an aggregator function. Varian’s
Inconsistency Index is,

IV (D, f ) = inf
v∈[0,1]n:D satisfies GARPv

f (v)
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Afriat Inconsistency Index

Originally, “Critical Cost Efficiency Index”.
Allows for uniform adjustments only.
Denote the set of vectors with equal coordinates by
I =

{
v ∈[0,1]n : v = v1, ∀ v ∈ [0,1]

}
.

Denote a coordinate of a typical vector v ∈ I by v .

Definition
Afriat’s Inconsistency Index is,

IA(D) = inf
v∈I:D satisfies GARPv

1− v
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Houtman-Maks Inconsistency Index

The maximal subset of observations that satisfies GARP.
Identical to restrict the adjustments vector to belong to
{0,1}n and to aggregate using the sum.

Definition

Let f : [0,1]n → [0,M] be an aggregator function. Houtman-Maks
Inconsistency Index is,

IHM(D, f ) = inf
v∈{0,1}n:D satisfies GARPv

f (v)
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Interpretation

Behavioral interpretations to income adjustments:
Wasted income - Afriat (1972) and Varian (1982b, 1990,
1993).
Measurement error - Varian (1985),Tsur (1989),Cox (1997).
Consideration sets - Houtman (1995), Manzini and Mariotti
(2007), Masatlioglu et al. (2012), Apesteguia and Ballester
(2015) and others.

We remain agnostic.
Adjustments serve as a measurement tool.



Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

Parametric Approach

Simplicity:
The generalized Afriat theorem constructs a well behaved
utility function that v -rationalizes the data.
But, requires 2n parameters.

Non Convex Preferences:
Varian (1982b) constructs non parametric bounds for the
indifference curves assuming convex preferences
Halevy et al. (2016) provide bounds without this assumption.
These bounds are “weak”.

Inconsistent Subjects:
The generalized Afriat theorem applies for every adjustments
vector v .
Varian’s bounds require consistency.

Individual Level Analysis:
Non parametric revealed preferences-based random utility
models are better interpreted on a population level data.
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Outline

Let u be a utility function proposed to represent the subject’s
preferences.
D satisfies GARP: Mis-specification is the tension between
the ranking implied by u and the (partial) ranking implied by
the D.
This requires an incompatibility measure.
D does not satisfies GARP: the tension between the ranking
implied by u and the information in D contains both
mis-specification and inconsistency.
This requires some decomposition of the incompatibility
measure to mis-specification and inconsistency.
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The Money Metric Vector

Based on the Money Metric Utility Function (Samuelson,
1974).
Suggested by Varian (1990) and Gross (1995).

Definition
The normalized money metric vector for a utility function u(·),
v?(D,u), is such that

v?i(D,u) =
m(x i ,pi ,u)

pix i

where
m(x i ,pi ,u) = min{y∈<K

+:u(y)≥u(x i)}p
iy
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The Money Metric Incompatibility Index

Definition

Let f : [0,1]n → [0,M] be an aggregator function.
The Money Metric Index for a utility function u(·) is f (v? (D,u)).
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Minimality of the MMI

Let Uc denote the set of all locally non-satiated, acceptable
and continuous utility functions on <K

+.

Proposition

Let D =
{(

pi , x i)n
i=1

}
, u ∈ Uc and v ∈ [0,1]n.

u (·) v-rationalizes D if and only if v 5 v?(D,u).

Proof 3

The Money Metric Index is minimal.
The Money Metric Index is easy to compute.
When v? (D,u) = 1 the utility function is correctly specified.
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The MMI for a Set of Utility Functions

Definition
Let D be a finite data set, let f (·) be an aggregator function and
let U ⊆ Uc be a set of continuous and locally non-satiated utility
functions.
The Money Metric Index of U is

IM(D, f ,U) = inf
u∈U

f (v? (D,u))

Note that for every U ′ ⊆ U :

IM(D, f ,U) ≤ IM(D, f ,U ′)

Therefore, for every U ⊆ Uc :

IM(D, f ,Uc) ≤ IM(D, f ,U)
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Example - The Problem

x2

x1

u′
u

x1
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Example - The MMI

Area-Based

x2

x1

u′
u

Iu

Iu′

x1
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Implications

Consistent Subjects
IM(D, f ,Uc) = 0.
IM(D, f ,U) is interpreted as a measure of misspecification.

Inconsistent Subjects
By Afriat’s Theorem if D is inconsistent with GARP then it
cannot be rationalized by any non-satiated utility function.
IM(D, f ,U) no longer a measure of misspecification only, it
includes inconsistency as well.
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The Binary Incompatibility Vector

All incompatibilities are treated severely.
The Binary Incompatibility Index may be used in more
general settings of choice from menus.

Definition
The Binary Incompatibility vector for a utility function u(·), is
b?(D,u)., is such that

b?i(D,u) =
{

1, @x : pix i ≥ pix ,u (x) > u
(
x i) ;

0, Otherwise.
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The Binary Incompatibility Index

Definition

Let f : [0,1]n → [0,M] be an aggregator function.
The Binary Incompatibility Index for a utility function u(·) is
f (b? (D,u)).

Proposition

Let D =
{(

pi , x i)n
i=1

}
, u ∈ Uc and b ∈ {0,1}n. u (·)

b-rationalizes D if and only if b 5 b?(D,u).

The Binary Index is minimal.
The Binary Index is easy to compute.
When b? (D,u) = 1 the utility function is correctly specified.
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The BI for a Set of Utility Functions

Definition
Let D be a finite data set, let f (·) be an aggregator function and
let U ⊆ Uc .
The Binary Index of U is

IB(D, f ,U) = inf
u∈U

f (b? (D,u))

Note that for every U ′ ⊆ U :

IB(D, f ,U) ≤ IB(D, f ,U ′)

Therefore, for every U ⊆ Uc :

IB(D, f ,Uc) ≤ IB(D, f ,U)
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The Decomposition of the Incompatibility Indices

Theorem
For every finite data set D and aggregator function f :

1 IV (D, f ) = IM(D, f ,Uc).
2 IHM(D, f ) = IB(D, f ,Uc).
3 If f (v) = 1−mini∈{1,...,n} v i , then IA(D) = IM(D, f ,Uc).

Brief Overview
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Implications of the Decomposition Theorem

We get:

IM(D, f ,U) =IV (D, f ) + (IM(D, f ,U)− IM(D, f ,Uc))

IB(D, f ,U) =IHM(D, f ) + (IB(D, f ,U)− IB(D, f ,Uc))

The former is a measure of inconsistency within choices that
is independent of any parametric restriction and depends
only on the DM.
The latter is a measure of the misspecification induced by
restricting the preferences to a specific parametric form by
the researcher.
Enables to compare misspecification within and between
functional forms since the inconsistency index is fixed.

Example
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Choi et al. (2007a) - Decisions under Uncertainty

Two states of nature (equally probable, exhaustive) and two
associated Arrow securities, each of which promises a
payoff of one unit in one state and nothing in the other.
Each choice problem is characterized by different security
prices.
Each subject encounters 50 choice problems (the
endowment is fixed).
Graphical interface (the chosen bundle must be on the
budget line).
47 subjects, 12 satisfy GARP.

Screenshot Typical Subject
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Choi et al. (2007a) - Functional Form

Disappointment Aversion (Gul (1991)) with CRRA VNM utility
function.
In our case this reduces to

u(x i) = γw
(

max
{

x i
1, x

i
2

})
+ (1− γ)w

(
min

{
x i

1, x
i
2

})
where

γ =
1

2 + β
β > −1

and

w(z) =

{
z1−ρ

1−ρ ρ ≥ 0 (ρ 6= 1)
ln(z) ρ = 1
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Indifference Curves

x2

x1

(a) Disappointment Aversion:
β > 0.

x2

x1

(b) Elation Seeking:
−1 < β < 0.

Figure: Gul (1991) with CRRA.

β = 0 is Expected Utility.
β = 0 and ρ = 0 is Expected Value.
We also consider w(z) = −e−Az where A ≥ 0 (CARA).
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Two Recovery Methods

1 NLLS (distance based loss function):

min
β,ρ

n∑
i=1

∥∥∥∥x i − arg max
x :pi x≤pi x i

(u (x ;β, ρ))
∥∥∥∥

where ‖·‖ is the Euclidean norm.
2 MMI: IM (D, f ,U), using the normalized average

sum-of-squares aggregator, f (v) =
√

1
n
∑n

i=1
(
1− v i

)2.

Reliable Varian Inconsistency Index cannot be provided for 9
of the 47.
An unreliable index underestimates mis-specification, but is
inconsequential for the recovered parameters.
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Consistency vs. Mis-specification

Subject IV β ρ IM
320 0 -0.509 0.968 0.1322
209 0.0288 0.164 0.352 0.0563
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MMI vs. NLLS



Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

MMI vs. NLLS: Observations

When NLLS recovers convex preferences (β > 0) then
usually MMI recovers convex preferences (But, quantitative
differences).
When NLLS recovers non-convex preferences
(−1 ≤ β < 0), no qualitative relation between the recovered
parameters by the two methods.
In some non-convex cases the NLLS recovers extreme
elation seeking.

Distributions
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Motivation and Main Idea

The parameters recovered by the MMI and NLLS are
qualitatively and quantitatively different.
We wish to compare these two methods.
However, we must avoid using any metric in this
comparison.
Predictive success in pairwise choices is the most natural
setting for such a comparison.
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Evaluating based on predictions

x2

x1

u′

u

Iu

Iu′

x1

x1
u

x1
u′
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Part 1: Linear Budget Sets

Subjects make 22 choices from linear budget sets.
A bundle is a portfolio of contingent assets with two equally
probable states (similar to Choi et al. (2007a)).
Budget lines are chosen so as to:

provide a powerful test of consistency (GARP).
identify local risk attitude in the neighborhood of certainty (by
over sampling moderate price ratios).

Power
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Part 1.5: Recovery and Pairwise Choice Construction

For each subject, in the background and without her knowledge:
We recover parameters using the MMI and NLLS:

DA-CRRA functional form.
Similar loss functions to those used earlier.

Then, we construct pairwise choice sets designed to
separate the two sets of parameters.

Each pair included one risky portfolio, where outcomes
differed across states, and one safe portfolio.
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Part 2: Pairwise Choice

Subjects make choices from 9 pairwise menus (represented
as points in the coordinate system).
By construction, for all choice problems, one of the portfolios
is preferred by one set of parameters and the other portfolio
by the other set of parameters.
Recall that each choice is between a risky portfolio and a
safe (certain) portfolio. We over-sampled low-variability
portfolios to identify local risk attitudes.



Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

Details

Location: Experimental Lab at the Vancouver School of
Economics (ELVSE) in October 2014 and February 2015.
Who: 203 UBC undergraduate students.
Duration: approximately 45 minutes including instructions,
the experiment, and payment.
Each subject made 31 choices. One of these choices was
selected randomly to be paid (the state was determined by a
coin flip).
Cost: average payment was $29.53 CAD including a $10
show-up fee
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Results

We first report the results of the second part.
We report results at both the individual level and the
aggregate level.
Our report includes all subjects and all their choices (a
refinement that provides similar results is reported in the
draft).
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Aggregate Results

203 subjects:
# of Observations Correct Predictions by MMI (%) p-value

Complete Sample 1827 986 (54.0%) 0.0004
Low-variability 1218 652 (53.5%) 0.0074
High-variability 609 334 (54.8%) 0.0093

p-value: probability that X or more out of x choices are predicted correctly by chance
alone (coin flip)
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Individual Results

X : number of correct prediction my MMI.
Decisive subject: X ∈ {0,1,2,7,8,9}.
The probability for a subject being decisive by chance is
18%.
For 103 out of 203 subjects, one prediction method is
decisively better than the other (likelihood under random
prediction is close to 0).

X ≥ 7 X ≤ 2 p-value
61 42 0.0378
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Classification by Disappointment Aversion

Let us divide the subjects into two groups:
1 The Definite Disappointment Averse (DDA) group - 150

subjects with βMMI , βNLLS ≥ 0.
2 The Indefinite Disappointment Averse (IDA) group - 53

subjects with βMMI < 0 or βNLLS < 0 or both.
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DDA and IDA: Aggregate Analysis

# Observations # Correct Predictions % Correct Predictions p-value
by MMI by MMI

DDA 1350 706 52.3% 0.0484
IDA 477 280 58.7% < 0.0001
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DDA and IDA: Individual Analysis

DDA (150) IDA (53)
X ≥ 7 X ≤ 2 p-value X ≥ 7 X ≤ 2 p-value

38 30 0.1981 23 12 0.0448
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Elation Seeking

The Definite Elation Seeking (DES) group: 29 subjects with
βNLLS, βMMI < 0.
MMI predicts correctly: 163/261 (62.5%, p < 0.0001).
20 of 29 subjects are decisive.
MMI decisively better predictor in 15/20 (p = 0.0207).
Thus, the MMI recovers a significantly more accurate
representation of subject preferences when the underlying
preferences are non-convex.
For 21 of 29 subjects: βNLLS < βMMI < 0 (for 19/21 the
difference is more than 0.1).
For 6 of 8 subjects for which βMMI < βNLLS < 0, the
difference is less than 0.1.
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Illustrative Discussion

Consider the case where choices exhibit non-convex
preferences (maybe due to some underlying procedure) and
the DA family is mis-specified.
The NLLS usually picks parameters that imply greater
non-convexity than those recovered by the MMI.
Very informally:

NLLS implies “closer is better” achieved by extreme
non-convexities.
MMI implies “smoother is better” that requires weak
non-convexities.

In fact, as the subject’s choices drift farther from the
certainty line, the greater is the difference between the
recovered parameters.
Bottom Line: The parameters recovered by the MMI are
considerably more successful in prediction.

Examples Illustration
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Decomposition Revisited

Non Nested Model:
Suppose U and U ′ are two parametric families.
Then, their respective MMI loss indices are IM(D, f ,U ′) and
IM(D, f ,U).
Recall, they share the same level of inconsistency (IV (D, f )).
By the Decomposition Theorem, the data set D may be
better approximated by U or U ′ depending on the magnitude
of the MMI loss index.

Nested Models:
By the monotonicity of the MMI, an additional parametric
restriction on preferences increases misspecification.
Then, the difference between the MMI indices is a measure
of the marginal misspecification implied by the restriction.

We will use both the data of Choi et al. (2007a) and the data
of Part 1.
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Evaluating Misspecification

Part 1 of the Experiment Choi et al. (2007a)
Original Sample 203 subjects 47 subjects

Consistent 92 (45%) 12 (26%)
Dropped 3 (1.5%) 9 (19%)

Inconsistency Level at most 6% at most 2.5%
Utility index CRRA CARA CRRA CARA

# of Subjects with at most 136 127 26 23
5% misspecification (68%) (63.5%) (68.4%) (60.5%)

# of Subjects with at least 4 10 3 6
10% misspecification (2%) (5%) (7.9%) (15.8%)

Subjects for whom misspecification 149 153 26 27
is more than 90% of the MMI (74.5%) (76.5%) (68.4%) (71.1%)

Subjects for whom misspecification 0 0 1 1
is less than 50% of the MMI (0 %) (0 %) (2.6%) (2.6%)

Mis-specification: IM(D, f ,U)− IV (D, f ) where f is the SSQ
aggregator.
The sample slightly over-represents the less inconsistent
subjects.
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Expected Utility

Expected utility is nested within the disappointment aversion
model, satisfying the restriction that β = 0.
Relative measure of additional misspecification:

γ =
IM(D, f ,EU)− IM(D, f ,DA)

IM(D, f ,DA)− IV (D, f )

Expected utility is rejected if γ > 10%.
Re-samplings were calculated, but cannot be interpreted as
confidence sets.
Subjects with incomputable Varian Index were dropped, as
well as subjects for whom DA is not a reasonable model.

Part 1 of the Experiment Choi et al. (2007a)
CRRA 40.8% (80 of 196) 32.4% (11 of 34)
CARA 44.7% (85 of 190) 45.2% (14 of 31)
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Model Selection DA-CRRA vs. DA-CARA

We calculate the extent of mis-specification implied by each
functional form and select the functional form that better
represents the decision maker’s preferences.
Absolute measure of additional mis-specification:

IM(D, f ,DA− CARA)− IM(D, f ,DA− CRRA)

Part 1 of the Experiment Choi et al. (2007a)
Full Sample 71.4% (145 of 203) 80.9% (38 of 47)

Restricted Sample 88% (103 of 117) 80% (24 of 30)

The second row includes subjects whose Varian Index is
computable and the difference in mis-specification is greater
than 10%.
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Concluding Remarks

A novel interpretation of some inconsistency indices.
A general recovery method based on minimizing the
incompatibility between the ranking information encoded in
choices and the ranking induced by a candidate model.
Application of this methodology to individual level risk data.
A comparison to a distance-based method shows
considerable differences in elicited preferences.
Novel experimental design to compare the two methods by
their predictive success.
The proposed method predicts better than the NLLS,
especially when preferences are non-convex.
Mis-specification is more “important” than inconsistency.
Roughly 40% are well approximated by Expected Utility.
Next step: The integration of stochastic component.
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Thanks
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Proof: First Step

Back

First, suppose there exists a locally non-satiated utility
function u(·) that v-rationalizes D.
If D does not satisfy GARPv then there are two observed
bundles x i , x j such that x iRD,vx j and x jP0

D,vx i .

Therefore, u(x i) ≥ u(x j) and by local non-satiation
u
(
x j) > u

(
x i). Contradiction.

It is left to be shown that if D satisfies GARPv then there
exists a well behaved utility function that v-rationalizes D.
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Proof: Relation-Rationalize

Back

We say that � v-relation-rationalizes D if R0
D,v ⊆� and

P0
D,v ⊆�.

We use Szpilrajn (1930) extension theorem to show that D
satisfies GARPv if and only if there exists a transitive and
reflexive � such that � v-relation-rationalizes D.
Thus, we have to show that for every data set D and
adjustments vector v, if � is transitive and reflexive and
v-relation-rationalizes D then there exists a well behaved
utility function that v-rationalizes D.
Our proof is constructive.
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Proof: Construction Lemma

Back

Consider a family of real functions
{
(zi)

n
i=1
}

(one for each
observation).
Define: x iRx j ⇔ zi(x j) ≤ 0 and x iPx j ⇔ zi(x j) < 0.
Suppose � is transitive and reflexive and satisfies R ⊆ �
and P ⊂ �.
We provide an algorithm to construct

f (x) = min
i∈{1,...,n}

fi + λizi(x)

such that λi > 0 and f (x i) ≥ fi .
To complete the proof we have to:

1 Choose
{
(zi)

n
i=1

}
such that � v-relation-rationalizes D.

2 Show that f (x) v-rationalizes D and is well behaved.
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Proof: Initial Functions Choice

Back

We choose zi(x) = 1
vi

pix − pix i if x 6= x i and zero otherwise.

Since R is R0
D,v and P is P0

D,v we get that �
v-relation-rationalizes D.
Also, it is easy to show that f (·) v-rationalizes D.
However, zi are discontinuous at x i when vi < 1 and
therefore f is not continuous.
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Proof: Adaptation

Back

We redefine ẑi(x) = limy→x zi(y). then ẑi(x) ≥ zi(x) for
x = x i and ẑi(x) = zi(x) otherwise.
We consider f̂ (x) = mini∈{1,...,n} fi + λi ẑi(x) where fi and λi
are the same as in f .
We show that f̂ (x) v-rationalizes D, it is continuous,
acceptable, monotonic and concave.
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Example - Data
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Example - Violations
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Example - Two Options
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Proof

back

Suppose u (·) v?(D,u) - rationalizes D.
Hence, If v 5 v?(D,u) then u (·) v - rationalizes D.
The other direction - Suppose that v is such that u (·) v -
rationalizes D and for observation i , v i > v?i (D,u).
Let x i? be the minimizer of the money metric and note that it
is strictly feasible under v i and u(x i?) ≥ u(x i).
By the non satiation of u (·) there exists a bundle that is
strictly feasible under v i and is strictly better than x i .
Contradiction to u (·) v - rationalizes D.
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Area Based Parametric Recoverability

Intersection Incompatibility Index.
Apesteguia and Ballester (2015) suggest the Consumer
Setting Swaps Index as an extension of the Minimal Swaps
Index.
A corresponding inconsistency measure, a decomposition
theorem and a broader family of utility functions are
required.
Area Inconsistency Index - eliminate the area of overlap
between the budget set and those bundles which are
revealed preferred or monotonically dominate the bundle
(Heufer (2008, 2009)).
Two remarks:

Computation of integrals is much harder than linear
adjustments.
Biased towards non-convex preferences. Inconsistency Index
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Area Inconsistency Index
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x1

x2
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Proof: IV (D, f ) ≤ IM(D, f ,Uc)

The Converse

If IV (D, f ) = 0 then IV (D, f ) ≤ IM(D, f ,Uc).
Otherwise, if IV (D, f ) > 0, suppose that
IV (D, f ) > IM(D, f ,Uc).

There exists u ∈ Uc such that f (v? (D,u)) < IV (D, f ).
u(·) v?(D,u)-rationalizes D.
By the extended Afriat theorem, D satisfies GARPv?(D,u).
IV (D, f ) cannot be the infimum of f (·) on the set of v such
that D satisfies GARPv. Contradiction.
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Proof: IV (D, f ) ≥ IM(D, f ,Uc)

Back

By the extended Afriat theorem, D satisfies GARPv if and
only if there exists u ∈ Uc that v-rationalizes D.
Hence, D satisfies GARPv if and only if v ≤ v? (D,u).
Since f (·) is weakly decreasing, D satisfies GARPv if and
only if f (v? (D,u)) ≤ f (v).
Therefore, D satisfies GARPv if and only if
IM(D, f ,Uc) ≤ f (v).
IM(D, f ,Uc) ≤ infv∈[0,1]n:D satisfies GARPv

f (v)
IV (D, f ) ≥ IM(D, f ,Uc).
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Example - Decomposition of MMI
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u(x1)

u(x2)

p1x1

p2x2

v∗2p2x2

v2p2x2
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Screenshot
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Typical Subject
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CRRA Parameters: Distributions (Choi et al. (2007a))
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power
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Non-convex Preferences: MMI vs. NLLS
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Non-convex Preferences: 4 Examples
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