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Introduction
[ ]

New Data

@ Emerging experimental literature on choices from budget
sets.

@ Two advantages on most previous consumer choice data

e Large individual level data sets.
e Controlled environment (e.g. price variation).
@ For example:

o Risk - Choi et al. (2007a), Choi et al. (2014), Cappelen et al.
(2015).

o Ambiguity - Ahn et al. (2014).

@ Altruism - Andreoni and Miller (2002), Fisman et al. (2007),
Korenok et al. (2013), Fisman et al. (2015a), Fisman et al.
(2015b), Porter and Adams (2015).

o Time Preference - Andreoni and Sprenger (2012).

o Goods - Harbaugh et al. (2001), Camille et al. (2011),
Burghart et al. (2013).
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Motivation

@ These rich individual level data sets enable the elicitation of
the distribution of behavioral parameters.

@ We wish to provide a tool for eliciting approximate stable
preferences parametrically based on the theory of Revealed
Preference.

@ Qutline:

e Theory: Introduce a loss function based on Revealed
Preference theory.

o Data: Choi et al. (2007a) reveals considerable differences
between the proposed method and a standard
distance-based method.

o Experiment: Novel design to compare the two methods.

o Back to the data: “Hypothesis testing”.



Preliminaries
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Data Set

D= {(pi,xi)7:1} is a finite data set, where x’ € R¥ is the DM’s
chosen bundle at prices p' € SR_’§+ (income is normalized to 1).
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Revealed Preference Relations

An observed bundle x' is

@ Directly Revealed Preferred to a bundle x, denoted x'RYx
if p'x" > p'x.

@ Strictly Directly Revealed Preferred to a bundle x,
denoted x'PYx if p'x’ > p'x.

© Revealed Preferred to a bundle x, denoted x'Rpx if there
exists a sequence of observed bundles (x/, XK. ,x’”) such
that x' RO/, X/ R2xk, ..., x™RYx (transitive closure).
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Rationalizability and GARP

A utility function u(x) rationalizes D if for every observed bundle
x', u(x") > u(x) for all x such that x'R9x.

N

Definition (Generalized Axiom of Revealed Preference)
D satisfies GARP if x'Rpx/ then — (x/ P3x’).

A




Preliminaries
°

Afriat’s Theorem (1967)

Theorem (Afriat (1967), Diewert (1973), Varian (1982a), Teo and
Vohra (2003), Fostel et al. (2004) and Geanakoplos (2013).)
The following conditions are equivalent:
@ There exists a non-satiated utility function that rationalizes
the data.
© The data satisfies GARP.

© There exists a non-satiated, continuous, concave,
monotonic utility function that rationalizes the data.

@ Additional condition: The existence of a piecewise linear
utility function that rationalizes the data set (constructive).

@ Checking data for GARP is easy (e.g. Varian (1982a)).
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Inconsistent Subjects

@ By Afriat’'s Theorem if D is inconsistent with GARP then it
cannot be rationalized by a non-satiated utility function.

@ The proportion of consistent subjects is substantial (above
25%).
@ However, there are many subjects that do not satisfy GARP.
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Generalized Revealed Preference Relations

Let v € [0,1]". An observed bundle x’ € RK is
@ v-—directly revealed preferred to a bundle x € R, denoted
x'RY x,if vip'x' > p'x or x = x'.
Q v-strictly directly revealed preferred to a bundle x € RK,
denoted x'PY x, if vip'x" > p'x.

© v-—revealed preferred to a bundle x € RX, denoted x’ Rpvx,
if there exists a sequence of observed bundles
(x/,xk,...,x™) such that x'RY ,x/, X/ RY x¥, ... . x"RY x.

| A

Fact
/ - RO 0 po 0
Letv' <v. Then: Ry, € Ry, Ppy € Ppyand Apy C Apy.
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GARP, and v-Rationalizability

Definition
Let v € [0,1]". D satisfies the General Axiom of Revealed

Preference Given v (GARPy ) if for every pair of observed
bundles, x'Rpyx/ implies not x/P  x'.

| \

Fact

Letv,v' €[0,1]" and v > V'. If D satisfies GARP, then D
satisfies GARPy:.

| A\

Definition

Let v € [0, 1]". A utility function u(x) v—rationalizes D, if for every
observed bundle x € R, x'R), , x implies that u(x) > u(x). We
say that D is v—rationalizable if such u (-) exists.

N,
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Generalized Afriat's Theorem

The following conditions are equivalent:

@ There exists a non-satiated utility function that
v—rationalizes the data.

@ The data satisfies GARP,.

© There exists a continuous, monotone and concave utility
function that v—rationalizes the data.

@ Afriat (1973) provides a non-constructive proof for the
uniform case.

@ Afriat (1987) states the theorem without a proof.

@ In his unpublished PhD dissertation Houtman (1995)
considers non-linear pricing (using constructive proof).

@ We adapt this construction to our setting.
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Inconsistency Indices

@ Non-parametric measure for the extent of deviation from
utility maximizing behavior implied by a data set of
consumer choices.

@ In this work we focus on three well-known indices:

e Varian Inconsistency Index (Varian (1990)).
o Afriat Inconsistency Index (Afriat (1972, 1973)).
e Houtman-Maks Inconsistency Index (Houtman and Maks

(1985)).
@ There are other indices in the literature.
@ The indices require aggregation over observations.

Definition

f, 1 [0,1]" — [0, M], where M is finite, is an Aggregator Function
if f,(1) = 0,f,(0) = M and f,(+) is continuous and weakly
decreasing.
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Varian Inconsistency Index

@ The minimal adjustments of the budget sets that remove
cycles implied by choices.

@ We follow Alcantud et al. (2010) and Varian (1990) and use
the Euclidean norm of the adjustments vector (Smeulders
et al. (2014) suggest the generalized mean).

Definition

Let f: [0,1]” — [0, M] be an aggregator function. Varian’s
Inconsistency Index is,

Iy(D, f) = inf f(v)
ve[0,1]":D satisfies GARPy
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Afriat Inconsistency Index

@ Originally, “Critical Cost Efficiency Index”.

@ Allows for uniform adjustments only.

@ Denote the set of vectors with equal coordinates by
7= {v €[0,1]": v=11,Yve [0,1]} .

@ Denote a coordinate of a typical vector v € 7 by v.

Definition
Afriat’s Inconsistency Index is,

Ia(D) =

inf
VeZ:D satisfies GARPy
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Houtman-Maks Inconsistency Index

@ The maximal subset of observations that satisfies GARP.

@ I|dentical to restrict the adjustments vector to belong to
{0,1}" and to aggregate using the sum.

Definition

Let f: [0,1]" — [0, M] be an aggregator function. Houtman-Maks
Inconsistency Index is,

Ihm(D, f) = f(v)

inf
ve{0,1}":D satisfies GARPy




Preliminaries

Interpretation

@ Behavioral interpretations to income adjustments:
e Wasted income - Afriat (1972) and Varian (1982b, 1990,
1993).
@ Measurement error - Varian (1985),Tsur (1989),Cox (1997).
o Consideration sets - Houtman (1995), Manzini and Mariotti
(2007), Masatlioglu et al. (2012), Apesteguia and Ballester
(2015) and others.

@ We remain agnostic.
@ Adjustments serve as a measurement tool.
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Parametric Approach

@ Simplicity:
e The generalized Afriat theorem constructs a well behaved
utility function that v-rationalizes the data.
e But, requires 2n parameters.
@ Non Convex Preferences:
e Varian (1982b) constructs non parametric bounds for the
indifference curves assuming convex preferences
e Halevy et al. (2016) provide bounds without this assumption.
e These bounds are “weak”.
@ Inconsistent Subjects:
e The generalized Afriat theorem applies for every adjustments
vector v.
e Varian’s bounds require consistency.
@ Individual Level Analysis:

o Non parametric revealed preferences-based random utility
models are better interpreted on a population level data.
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Outline

@ Let u be a utility function proposed to represent the subject’s
preferences.

@ D satisfies GARP: Mis-specification is the tension between
the ranking implied by u and the (partial) ranking implied by
the D.

@ This requires an incompatibility measure.

@ D does not satisfies GARP: the tension between the ranking
implied by v and the information in D contains both
mis-specification and inconsistency.

@ This requires some decomposition of the incompatibility
measure to mis-specification and inconsistency.
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The Money Metric Vector

@ Based on the Money Metric Utility Function (Samuelson,
1974).
@ Suggested by Varian (1990) and Gross (1995).

Definition
The normalized money metric vector for a utility function u(-),
v*(D, u), is such that

Vv I(D’ U) = T

where

m(x', pl, u) = min{yemﬁ:u(y)zu(xi)}piy




The Money Metric Incompatibility Index

Definition

Let f: [0,1]” — [0, M] be an aggregator function.
The Money Metric Index for a utility function u(-) is f (v* (D, u)).




Proposed Method
[ ]

Minimality of the MMI

@ Let /¢ denote the set of all locally non-satiated, acceptable
and continuous utility functions on R¥.

Proposition

Let D = {(pi,xi)7:1 } ueuUandv e [0,1]"
u(-) v-rationalizes D if and only if v = v*(D, u).

@ The Money Metric Index is minimal.
@ The Money Metric Index is easy to compute.
@ When v* (D, u) = 1 the utility function is correctly specified.



Proposed Method
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The MMI for a Set of Utility Functions

Definition

Let D be a finite data set, let f(-) be an aggregator function and
let 4 C UC be a set of continuous and locally non-satiated utility
functions.

The Money Metric Index of U is

IM(D’ f,U) = JQLf(V*(D) U))

Note that for every U’ C U:
(D, f,U) < Iy(D, f,U")
Therefore, for every U C U°:

(D, F,U°) < Iy(D, f,U)



Proposed Method
Example - The Problem

T2, /




Proposed Method
Example - The MMI
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Implications

@ Consistent Subjects

e Iy(D,f,uc)=0.

e Iu(D,f,U) is interpreted as a measure of misspecification.
@ Inconsistent Subjects

o By Afriat’s Theorem if D is inconsistent with GARP then it
cannot be rationalized by any non-satiated utility function.

e Iy(D, f,U) no longer a measure of misspecification only, it
includes inconsistency as well.
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The Binary Incompatibility Vector

@ All incompatibilities are treated severely.

@ The Binary Incompatibility Index may be used in more
general settings of choice from menus.

Definition

The Binary Incompatibility vector for a utility function u(-), is
b*(D, u)., is such that

1, Ix:p'x' > px,u(x)>u(x');
0, Otherwise.

b*(D, u) = {
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The Binary Incompatibility Index

Definition

Let f: [0,1]” — [0, M] be an aggregator function.
The Binary Incompatibility Index for a utility function u(-) is
f(b* (D, u)).

Proposition

Let D = {(p",x"),f’:1 } ueuandb e {0,1}". u()
b-rationalizes D if and only if b < b*(D, u).

@ The Binary Index is minimal.
@ The Binary Index is easy to compute.
@ When b* (D, u) = 1 the utility function is correctly specified.



The Bl for a Set of Utility Functions

Definition

Let D be a finite data set, let f(-) be an aggregator function and
let C U°C.
The Binary Index of U is

IB(D7 f,U) = ngt{f(b*(D7 U))

Note that for every U’ C U:
Is(D, f,u) < Ig(D, f,u)
Therefore, for every U C U°:

Is(D, f,U°) < Ig(D, f,U)



Proposed Method
L]

The Decomposition of the Incompatibility Indices

For every finite data set D and aggregator function f:

Q@ Iv(D,f) = Iy(D,f,uc).

Q /um(D, ) = Ig(D, f,U°).

@ Iff(v) =1—minicy,_pny V', then Ia(D) = Iy(D, f,U°).
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Implications of the Decomposition Theorem

@ We get:

(D, f,U) =ly(D, f) + (Iu(D, f,U) — Iy(D, f,U°))
/B(D, f,Z/[) :IHM(D, f) + (/B(D, f,Z/[) — IB(D, f,uc))

@ The former is a measure of inconsistency within choices that
is independent of any parametric restriction and depends
only on the DM.

@ The latter is a measure of the misspecification induced by
restricting the preferences to a specific parametric form by
the researcher.

@ Enables to compare misspecification within and between
functional forms since the inconsistency index is fixed.
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Choi et al. (2007a) - Decisions under Uncertainty

@ Two states of nature (equally probable, exhaustive) and two
associated Arrow securities, each of which promises a
payoff of one unit in one state and nothing in the other.

@ Each choice problem is characterized by different security
prices.

@ Each subject encounters 50 choice problems (the
endowment is fixed).

@ Graphical interface (the chosen bundle must be on the
budget line).

@ 47 subjects, 12 satisfy GARP.
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Choi et al. (2007a) - Functional Form

Disappointment Aversion (Gul (1991)) with CRRA VNM utility
function.
In our case this reduces to

u(x’) = yw (max {x{,xé}) +(1=y)w (min {x{,xé})

where

and
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Indifference Curves

(a) Disappointment Aversion: (b) Elation Seeking:
8> 0. -1 < p<0.

Figure: Gul (1991) with CRRA.

@ 3 = 0is Expected Utility.
@ S =0andp=0is Expected Value.
@ We also consider w(z) = —e~4? where A > 0 (CARA).



Application
(]

Two Recovery Methods

@ NLLS (distance based loss function):

~argmax (u(xi i)

x:pix<pixi

where ||-|| is the Euclidean norm.
Q@ MMI: Iy (D, f,U), using the normalized average

sum-of-squares aggregator, f (v \/ > 1 1 — v’) .

@ Reliable Varian Inconsistency Index cannot be provided for 9
of the 47.

@ An unreliable index underestimates mis-specification, but is
inconsequential for the recovered parameters.
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Consistency vs. Mis-specification

[Subject| I | B | p | I |
320 0 -0.509 | 0.968 | 0.1322
209 0.0288 | 0.164 | 0.352 | 0.0563




MMI vs. NLLS

Application
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MMI vs. NLLS: Observations

@ When NLLS recovers convex preferences (5 > 0) then
usually MMI recovers convex preferences (But, quantitative
differences).

@ When NLLS recovers non-convex preferences
(—1 < B < 0), no qualitative relation between the recovered
parameters by the two methods.

@ In some non-convex cases the NLLS recovers extreme
elation seeking.



Experiment
]

Motivation and Main Idea

@ The parameters recovered by the MMI and NLLS are
qualitatively and quantitatively different.

@ We wish to compare these two methods.

@ However, we must avoid using any metric in this
comparison.

@ Predictive success in pairwise choices is the most natural
setting for such a comparison.



Experiment

Evaluating based on predictions
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Part 1: Linear Budget Sets

@ Subjects make 22 choices from linear budget sets.

@ A bundle is a portfolio of contingent assets with two equally
probable states (similar to Choi et al. (2007a)).

@ Budget lines are chosen so as to:

e provide a powerful test of consistency (GARP).
o identify local risk attitude in the neighborhood of certainty (by
over sampling moderate price ratios).



Experiment
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Part 1.5: Recovery and Pairwise Choice Construction

For each subject, in the background and without her knowledge:
@ We recover parameters using the MMI and NLLS:
o DA-CRRA functional form.
e Similar loss functions to those used earlier.
@ Then, we construct pairwise choice sets designed to
separate the two sets of parameters.

e Each pair included one risky portfolio, where outcomes
differed across states, and one safe portfolio.



Experiment
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Part 2: Pairwise Choice

@ Subjects make choices from 9 pairwise menus (represented
as points in the coordinate system).

@ By construction, for all choice problems, one of the portfolios
is preferred by one set of parameters and the other portfolio
by the other set of parameters.

@ Recall that each choice is between a risky portfolio and a
safe (certain) portfolio. We over-sampled low-variability
portfolios to identify local risk attitudes.
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Details

@ Location: Experimental Lab at the Vancouver School of
Economics (ELVSE) in October 2014 and February 2015.

@ Who: 203 UBC undergraduate students.

@ Duration: approximately 45 minutes including instructions,
the experiment, and payment.

@ Each subject made 31 choices. One of these choices was
selected randomly to be paid (the state was determined by a
coin flip).

@ Cost: average payment was $29.53 CAD including a $10
show-up fee
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Results

@ We first report the results of the second part.

@ We report results at both the individual level and the
aggregate level.

@ Our report includes all subjects and all their choices (a

refinement that provides similar results is reported in the
draft).
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Aggregate Results

203 subjects:

| # of Observations | Correct Predictions by MMI (%) [ p-value

Complete Sample 1827 986 (54.0%) 0.0004
Low-variability 1218 652 (53.5%) 0.0074
High-variability 609 334 (54.8%) 0.0093

p-value: probability that X or more out of x choices are predicted correctly by chance
alone (coin flip)
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Individual Results

@ X: number of correct prediction my MMI.

@ Decisive subject: X € {0,1,2,7,8,9}.

@ The probability for a subject being decisive by chance is
18%.

@ For 103 out of 203 subjects, one prediction method is
decisively better than the other (likelihood under random
prediction is close to 0).

X>7| X<2| pvalue
61 42 0.0378
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Classification by Disappointment Aversion

@ Let us divide the subjects into two groups:
@ The Definite Disappointment Averse (DDA) group - 150
subjects with Symi, Bnirs > 0.
@ The Indefinite Disappointment Averse (IDA) group - 53
subjects with Sy, < 0 or Sys < 0 or both.



Experiment
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DDA and IDA: Aggregate Analysis

# Observations | # Correct Predictions | % Correct Predictions | p-value

by MMI by MMI
DDA 1350 706 52.3% 0.0484
IDA 477 280 58.7% < 0.0001
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DDA and IDA: Individual Analysis

DDA (150) IDA (53)
X>7 | X<2|pvalue | X>7| X<2| p-value
38 30 0.1981 23 12 0.0448




Experiment

Elation Seeking

@ The Definite Elation Seeking (DES) group: 29 subjects with
BniLss Bumr < 0.

@ MMI predicts correctly: 163/261 (62.5%, p < 0.0001).

@ 20 of 29 subjects are decisive.

@ MMI decisively better predictor in 15/20 (p = 0.0207).

@ Thus, the MMI recovers a significantly more accurate

representation of subject preferences when the underlying
preferences are non-convex.

@ For 21 of 29 subjects: Bnirs < B < 0 (for 19/21 the
difference is more than 0.1).

@ For 6 of 8 subjects for which Sy < Baniis < 0, the
difference is less than 0.1.



Experiment

lllustrative Discussion

@ Consider the case where choices exhibit non-convex
preferences (maybe due to some underlying procedure) and
the DA family is mis-specified.

@ The NLLS usually picks parameters that imply greater
non-convexity than those recovered by the MMI.

@ Very informally:

e NLLS implies “closer is better” achieved by extreme
non-convexities.

o MMI implies “smoother is better” that requires weak
non-convexities.

@ In fact, as the subject’s choices drift farther from the
certainty line, the greater is the difference between the
recovered parameters.

@ Bottom Line: The parameters recovered by the MMI are
considerably more successful in prediction.
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Decomposition Revisited

@ Non Nested Model:

@ Suppose U/ and U’ are two parametric families.

@ Then, their respective MMI loss indices are Iy(D, f,u') and
(D, f.U).

e Recall, they share the same level of inconsistency (ly(D, f)).

e By the Decomposition Theorem, the data set D may be
better approximated by ¢/ or U4’ depending on the magnitude
of the MMI loss index.

@ Nested Models:

e By the monotonicity of the MMI, an additional parametric
restriction on preferences increases misspecification.

e Then, the difference between the MMI indices is a measure
of the marginal misspecification implied by the restriction.

@ We will use both the data of Choi et al. (2007a) and the data
of Part 1.



Evaluating Misspecification

Hypothesis Testing
o

Part 1 of the Experiment Choi et al. (2007a)
Original Sample 203 subjects 47 subjects
Consistent 92 (45%) 12 (26%)
Dropped 3 (1.5%) 9 (19%)
Inconsistency Level at most 6% at most 2.5%
Utility index CRRA | CARA CRRA | CARA
# of Subjects with at most 136 127 26 23
5% misspecification (68%) (63.5%) (68.4%) | (60.5%)
# of Subjects with at least 4 10 3 6
10% misspecification (2%) (5%) (7.9%) | (15.8%)
Subjects for whom misspecification 149 153 26 27
is more than 90% of the MMI (74.5%) (76.5%) (68.4%) | (71.1%)
Subjects for whom misspecification 0 0 1 1
is less than 50% of the MMI (0 %) (0 %) (2.6%) (2.6%)

@ Mis-specification: Iy(D, f,U) — ly(D, f) where f is the SSQ
aggregator.

@ The sample slightly over-represents the less inconsistent
subjects.
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Expected Utility

@ Expected utility is nested within the disappointment aversion
model, satisfying the restriction that 5 = 0.
@ Relative measure of additional misspecification:

_ Iu(D. f,EU) — Iy(D, f, DA)
B IM(D7 f, DA) - /V(Dv f)

@ Expected utility is rejected if v > 10%.

@ Re-samplings were calculated, but cannot be interpreted as
confidence sets.

@ Subjects with incomputable Varian Index were dropped, as
well as subjects for whom DA is not a reasonable model.

Part 1 of the Experiment | Choi et al. (2007a)
CRRA 40.8% (80 of 196) 32.4% (11 of 34)
CARA 44.7% (85 of 190) 45.2% (14 of 31)
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Model Selection DA-CRRA vs. DA-CARA

@ We calculate the extent of mis-specification implied by each
functional form and select the functional form that better
represents the decision maker’s preferences.

@ Absolute measure of additional mis-specification:

(D, f, DA — CARA) — Iy(D, f, DA — CRRA)

Part 1 of the Experiment

Choi et al. (2007a)

Full Sample

71.4% (145 of 203)

80.9% (38 of 47)

Restricted Sample

88% (103 of 117)

80% (24 of 30)

@ The second row includes subjects whose Varian Index is
computable and the difference in mis-specification is greater

than 10%.
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Concluding Remarks

@ A novel interpretation of some inconsistency indices.

@ A general recovery method based on minimizing the
incompatibility between the ranking information encoded in
choices and the ranking induced by a candidate model.

@ Application of this methodology to individual level risk data.

@ A comparison to a distance-based method shows
considerable differences in elicited preferences.

@ Novel experimental design to compare the two methods by
their predictive success.

@ The proposed method predicts better than the NLLS,
especially when preferences are non-convex.

@ Mis-specification is more “important” than inconsistency.
@ Roughly 40% are well approximated by Expected Utility.
@ Next step: The integration of stochastic component.
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Generalized Afriat
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Proof: First Step

@ First, suppose there exists a locally non-satiated utility
function u(-) that v-rationalizes D.

@ If D does not.satisfy GARPV then there_ are two observed
bundles x’, x/ such that x'Rpyx! and x/ P} x'.

@ Therefore, u(x’) > u(x') and by local non-satiation
u(x') > u(x"). Contradiction.

@ ltis left to be shown that if D satisfies GARP, then there
exists a well behaved utility function that v-rationalizes D.



Generalized Afriat
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Proof: Relation-Rationalize

@ We say that = v-relation-rationalizes D if RS, C= and
0
PDN Cr.

@ We use Szpilrajn (1930) extension theorem to show that D
satisfies GARP, if and only if there exists a transitive and
reflexive = such that = v-relation-rationalizes D.

@ Thus, we have to show that for every data set D and
adjustments vector v, if = is transitive and reflexive and
v-relation-rationalizes D then there exists a well behaved
utility function that v-rationalizes D.

@ Our proof is constructive.



Generalized Afriat
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Proof: Construction Lemma

@ Consider a family of real functions {(z;)i_,} (one for each
observation).

@ Define: xX'Rx/ < zi(x/) < 0and x'Px/ < z(x/) < 0.
@ Suppose = is transitive and reflexive and satisfies R C >

and P C .
@ We provide an algorithm to construct

f(x)= min fi+ X\;zi(x)
ie{1,...,n}

such that \; > 0 and f(x') > f..

@ To complete the proof we have to:

@ Choose {(z);_,} such that = v-relation-rationalizes D.
© Show that f(x) v-rationalizes D and is well behaved.



Generalized Afriat
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Proof: Initial Functions Choice

@ We choose zj(x) = .p'x — p'x"if x # x and zero otherwise.

@ Since Ris R}, and Pis P, we get that >
v-relation-rationalizes D.

@ Also, it is easy to show that f(-) v-rationalizes D.

@ However, z; are discontinuous at x’ when v; < 1 and
therefore f is not continuous.



Generalized Afriat
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Proof: Adaptation

@ We redefine Zj(x) = lim,_,x zi(y). then Z;(x) > z(x) for
x = x" and Z;j(x) = zj(x) otherwise.

® We consider 7(x) = min;cq1_n f: + \iZi(x) where f; and ),
are the same as in f.

@ We show that #(x) v-rationalizes D, it is continuous,
acceptable, monotonic and concave.
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Example - Data

3 given budget sets, marked I, Il & IlI
The chosen allocations marked A, B & C

= Obsl:Income=10,P,=1,P,=1 A(6,4)
7 1 4 14
I ¥ . Obsll.Income—9;,P1—E,Pz—§ B(Z; 6)
1
7 1 11 .10
s - 0bs|l|:|ncome=11§,P1=Z,P2=2 C(lﬂ SE)
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Example - Violations

In the chosen allocations one can identify the following violations:

Ro/P° R GARP Violations
1 =BRCA "BRA = (B,A)
=BROC =BRC = (A, B)
{ . " AROB *ARB = (A, C)
< =AR°C =ARC = (C, A)
< =CR°A "CRA = (C,B)
. G RIB
A
Two alternativesto resolve the violations (there are others):
5 1. Move linel so it will go through C. Then vl_c=0.75.

2. Move both lines |l and 1l so they will go through A.
Thenvll_a=0.9 and vlll_a=0.8.
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Example - Two Options

Two possible aggregators to calculate the severity of the violations

| = |fthe aggregatorisF=Y (1 —v) Harcs Bptian

then option (1) gives (1-0.75) =0.25 _ ischosen, since it
requires less

and option (2) gives [(1-0.9) + (1-0.8)] = 0.3 adjustments

= Ifthe aggregatorisG=Y (1 —v)? Hence, option 2

then option (1) gives (1-0.75)2 = 0.0625 _ is chosen, since it
4 ) . 5 - requires less
and option (2) gives [(1-0.9)? + (1-0.8)?] = 0.05 adjustments




MMI Minimality
°

@ Suppose u(-) v*(D, u) - rationalizes D.
@ Hence, If v = v*(D, u) then u(-) v - rationalizes D.

@ The other direction - Suppose that v is such that u(-) v -
rationalizes D and for observation i, v/ > v*' (D, u).

@ Let x* be the minimizer of the money metric and note that it
is strictly feasible under v’ and u(x"*) > u(x").

@ By the non satiation of u (-) there exists a bundle that is
strictly feasible under v/ and is strictly better than x'.

@ Contradiction to u(-) v - rationalizes D.
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Area Based Parametric Recoverability

@ Intersection Incompatibility Index.

@ Apesteguia and Ballester (2015) suggest the Consumer
Setting Swaps Index as an extension of the Minimal Swaps
Index.

@ A corresponding inconsistency measure, a decomposition
theorem and a broader family of utility functions are
required.

@ Area Inconsistency Index - eliminate the area of overlap
between the budget set and those bundles which are
revealed preferred or monotonically dominate the bundle
(Heufer (2008, 2009)).

@ Two remarks:

o Computation of integrals is much harder than linear

adjustments.
o Biased towards non-convex preferences.
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Area Inconsistency Index
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Proof: Iy(D, f) < Iy(D, f,u°)

e If Iy(D,f)=0then Iy(D, f) < Iy(D, f,U°).
@ Otherwise, if Iy/(D, f) > 0, suppose that

Iv(D, f) > Iy(D, f,U°).
There exists u € U° such that f (v* (D, u)) < Iv(D, f).
u(-) v*(D, u)-rationalizes D.
By the extended Afriat theorem, D satisfies GARPy«(p,v)-
Iv(D, f) cannot be the infimum of f(-) on the set of v such
that D satisfies GARP,. Contradiction.
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Proof: Iy(D, f) > Iy(D, f,u°)

@ By the extended Afriat theorem, D satisfies GARP, if and
only if there exists u € U° that v-rationalizes D.

@ Hence, D satisfies GARPy if and only if v < v* (D, u).

@ Since f(+) is weakly decreasing, D satisfies GARPy if and
only if f (v (D, u)) < f(v).

@ Therefore, D satisfies GARPy if and only if
(D, f,U°) < f(v).

® (D, f,U°) < infyeio 110 satisties carp, F(V)

@ Iy(D,f) > Iu(D,f,uc).



Decomposition
Example - Decomposition of MMI
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Screenshot
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Typical Subject

Scatter plot of log (p/p,) and x /(x +x))
when Prob (x,) = 1/2 for ID 318

1 -0 T T T T T T T
[ ]

- E: ID 318 |
0.8 oo -
0.7} L

0.6} °

0.5 uh @
0.4} °
0.3F L)
0.2

Token share for security 1

0.1F

0 1 1 1 1 I $0.0-0-9 2i99- 1
-25 -2 -15 -1 -05 0 05 1 1.5 2 25

Log price ratio (log (p /p,))
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CRRA Parameters: Distributions (Choi et al. (2007a))




100%

Percentage of Subjects

90%
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O Experimental Data
@ Power Test Data

Subjects with Index > 0.30
1 out of 203 in Experimental Data (0.49%)
442 out of 1000 in Power Test Data (44.2%)

gl
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Afriat Inconsistency Index

Experiment
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Non-convex Preferences: MMI vs. NLLS

(b) MMI
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Non-convex Preferences: 4 Examples

6, Buus =0.03 31, Bus =0
..
L L ..
- .
e .
(a) Subject 1203 (b) Subject 1512
21, Buus =0.37 016, Buus =0.98
.
. —
.
e e

(¢) Subject 2203 (d) Subject 301
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