Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

Parametric Recoverability of Preferences

Yoram Halevy¹ Dotan Persitz² Lanny Zrill³

¹Vancouver School of Economics University of British Columbia

²The Coller School of Management Tel Aviv University

> ³Department of Economics Langara College

November 2016

New Data

- Emerging experimental literature on choices from budget sets.
- Two advantages on most previous consumer choice data
 - Large individual level data sets.
 - Controlled environment (e.g. price variation).
- For example:
 - **Risk** Choi et al. (2007a), Choi et al. (2014), Cappelen et al. (2015).
 - Ambiguity Ahn et al. (2014).
 - Altruism Andreoni and Miller (2002), Fisman et al. (2007), Korenok et al. (2013), Fisman et al. (2015a), Fisman et al. (2015b), Porter and Adams (2015).
 - Time Preference Andreoni and Sprenger (2012).
 - **Goods** Harbaugh et al. (2001), Camille et al. (2011), Burghart et al. (2013).

Motivation

- These rich individual level data sets enable the elicitation of the distribution of behavioral parameters.
- We wish to provide a tool for eliciting approximate stable preferences parametrically based on the theory of Revealed Preference.
- Outline:
 - **Theory:** Introduce a loss function based on Revealed Preference theory.
 - **Data:** Choi et al. (2007a) reveals considerable differences between the proposed method and a standard distance-based method.
 - Experiment: Novel design to compare the two methods.
 - Back to the data: "Hypothesis testing".

$$D = \left\{ \left(p^{i}, x^{i} \right)_{i=1}^{n} \right\}$$
 is a finite data set, where $x^{i} \in \Re_{+}^{K}$ is the DM's chosen bundle at prices $p^{i} \in \Re_{++}^{K}$ (income is normalized to 1).

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing

Revealed Preference Relations

Definition

An observed bundle x^i is

• Directly Revealed Preferred to a bundle x, denoted $x^i R_D^0 x$ if $p^i x^i \ge p^i x$.

Conclusion

- Strictly Directly Revealed Preferred to a bundle x, denoted $x^i P_D^0 x$ if $p^i x^i > p^i x$.
- Severaled Preferred to a bundle x, denoted $x^i R_D x$ if there exists a sequence of observed bundles (x^j, x^k, \ldots, x^m) such that $x^i R_D^0 x^j, x^j R_D^0 x^k, \ldots, x^m R_D^0 x$ (transitive closure).

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

Rationalizability and GARP

Definition

A utility function u(x) rationalizes D if for every observed bundle x^i , $u(x^i) \ge u(x)$ for all x such that $x^i R_D^0 x$.

Definition (Generalized Axiom of Revealed Preference)

D satisfies GARP if $x^i R_D x^j$ then $\neg (x^j P_D^0 x^i)$.

Application

on Experiment

t Hypothesis Testing

ng Conclusion

Afriat's Theorem (1967)

Theorem (Afriat (1967), Diewert (1973), Varian (1982a), Teo and Vohra (2003), Fostel et al. (2004) and Geanakoplos (2013).)

The following conditions are equivalent:

- There exists a non-satiated utility function that rationalizes the data.
- The data satisfies GARP.
- There exists a non-satiated, continuous, concave, monotonic utility function that rationalizes the data.
 - Additional condition: The existence of a piecewise linear utility function that rationalizes the data set (constructive).
 - Checking data for GARP is easy (e.g. Varian (1982a)).

Inconsistent Subjects

- By Afriat's Theorem if *D* is inconsistent with GARP then it cannot be rationalized by a non-satiated utility function.
- The proportion of consistent subjects is substantial (above 25%).
- However, there are many subjects that do not satisfy GARP.

Generalized Revealed Preference Relations

Definition

Let $\mathbf{v} \in [0, 1]^n$. An observed bundle $x^i \in \Re_+^K$ is

- **v**-directly revealed preferred to a bundle $x \in \Re_+^K$, denoted $x^i R_{D,\mathbf{v}}^0 x$, if $v^i p^i x^i \ge p^i x$ or $x = x^i$.
- v−strictly directly revealed preferred to a bundle x ∈ ℜ^K₊, denoted xⁱP⁰_{D,v}x, if vⁱpⁱxⁱ > pⁱx.
- **v**-*revealed preferred* to a bundle $x \in \Re_{+}^{K}$, denoted $x^{i}R_{D,\mathbf{v}}x$, if there exists a sequence of observed bundles $(x^{j}, x^{k}, \dots, x^{m})$ such that $x^{i}R_{D,\mathbf{v}}^{0}x^{j}, x^{j}R_{D,\mathbf{v}}^{0}x^{k}, \dots, x^{m}R_{D,\mathbf{v}}^{0}x$.

Fact

Let $\mathbf{v}' \leq \mathbf{v}$. Then: $R^0_{D,\mathbf{v}'} \subseteq R^0_{D,\mathbf{v}}, \ P^0_{D,\mathbf{v}'} \subseteq P^0_{D,\mathbf{v}}$ and $R_{D,\mathbf{v}'} \subseteq R_{D,\mathbf{v}}$.

GARP_v and v-Rationalizability

Definition

Let $\mathbf{v} \in [0, 1]^n$. *D* satisfies the *General Axiom of Revealed Preference Given* \mathbf{v} (*GARP*_v) if for every pair of observed bundles, $x^i R_{D,v} x^j$ implies not $x^j P_{D,v}^0 x^j$.

Fact

Let $\mathbf{v}, \mathbf{v}' \in [0, 1]^n$ and $\mathbf{v} \ge \mathbf{v}'$. If D satisfies GARP_v then D satisfies GARP_v'.

Definition

Let $\mathbf{v} \in [0, 1]^n$. A utility function $u(x) \mathbf{v}$ -rationalizes D, if for every observed bundle $x^i \in \Re^K_+$, $x^i R^0_{D,\mathbf{v}} x$ implies that $u(x^i) \ge u(x)$. We say that D is \mathbf{v} -rationalizable if such $u(\cdot)$ exists.

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing 00000

Conclusion

Generalized Afriat's Theorem

Theorem

The following conditions are equivalent:

- There exists a non-satiated utility function that \mathbf{v} -rationalizes the data
- The data satisfies GARP_v.
- There exists a continuous. monotone and concave utility function that \mathbf{v} -rationalizes the data.
 - Afriat (1973) provides a non-constructive proof for the uniform case.
 - Afriat (1987) states the theorem without a proof.
 - In his unpublished PhD dissertation Houtman (1995) considers non-linear pricing (using constructive proof).
 - We adapt this construction to our setting.

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

Inconsistency Indices

- Non-parametric measure for the extent of deviation from utility maximizing behavior implied by a data set of consumer choices.
- In this work we focus on three well-known indices:
 - Varian Inconsistency Index (Varian (1990)).
 - Afriat Inconsistency Index (Afriat (1972, 1973)).
 - Houtman-Maks Inconsistency Index (Houtman and Maks (1985)).
- There are other indices in the literature.
- The indices require aggregation over observations.

Definition

 $f_n : [0, 1]^n \to [0, M]$, where *M* is finite, is an *Aggregator Function* if $f_n(1) = 0, f_n(0) = M$ and $f_n(\cdot)$ is continuous and weakly decreasing.

Varian Inconsistency Index

Example

- The minimal adjustments of the budget sets that remove cycles implied by choices.
- We follow Alcantud et al. (2010) and Varian (1990) and use the Euclidean norm of the adjustments vector (Smeulders et al. (2014) suggest the generalized mean).

Definition

Let $f : [0, 1]^n \rightarrow [0, M]$ be an aggregator function. *Varian's Inconsistency Index* is,

$$\mathcal{H}_{V}(D, f) = \inf_{\mathbf{v} \in [0,1]^{n}: D \text{ satisfies } GARP_{\mathbf{v}}} f(\mathbf{v})$$

Afriat Inconsistency Index

- Originally, "Critical Cost Efficiency Index".
- Allows for uniform adjustments only.
- Denote the set of vectors with equal coordinates by $\mathcal{I} = \left\{ \mathbf{v} \in [0, 1]^n : \mathbf{v} = v\mathbf{1}, \forall v \in [0, 1] \right\}.$
- Denote a coordinate of a typical vector $v \in \mathcal{I}$ by v.

Definition

Afriat's Inconsistency Index is,

$$I_A(D) = \inf_{v \in \mathcal{I}: D \text{ satisfies } GARP_v} 1 - v$$

Houtman-Maks Inconsistency Index

Proposed Method

• The maximal subset of observations that satisfies GARP.

Application

Experiment

Hypothesis Testing

Conclusion

Identical to restrict the adjustments vector to belong to {0,1}ⁿ and to aggregate using the sum.

Definition

Introduction

Preliminaries

00000000000000

Let $f : [0, 1]^n \rightarrow [0, M]$ be an aggregator function. *Houtman-Maks Inconsistency Index* is,

$$I_{HM}(D, f) = \inf_{\mathbf{v} \in \{0,1\}^n : D \text{ satisfies } GARP_{\mathbf{v}}} f(\mathbf{v})$$

Interpretation

- Behavioral interpretations to income adjustments:
 - Wasted income Afriat (1972) and Varian (1982b, 1990, 1993).
 - Measurement error Varian (1985), Tsur (1989), Cox (1997).
 - Consideration sets Houtman (1995), Manzini and Mariotti (2007), Masatlioglu et al. (2012), Apesteguia and Ballester (2015) and others.
- We remain agnostic.
- Adjustments serve as a measurement tool.

Parametric Approach

• Simplicity:

- The generalized Afriat theorem constructs a well behaved utility function that *v*-rationalizes the data.
- But, requires 2*n* parameters.

Non Convex Preferences:

- Varian (1982b) constructs non parametric bounds for the indifference curves assuming convex preferences
- Halevy et al. (2016) provide bounds without this assumption.
- These bounds are "weak".

Inconsistent Subjects:

- The generalized Afriat theorem applies for every adjustments vector *v*.
- Varian's bounds require consistency.

Individual Level Analysis:

• Non parametric revealed preferences-based random utility models are better interpreted on a population level data.

- Let *u* be a utility function proposed to represent the subject's preferences.
- *D* satisfies GARP: Mis-specification is the tension between the ranking implied by *u* and the (partial) ranking implied by the *D*.
- This requires an incompatibility measure.
- *D* does not satisfies GARP: the tension between the ranking implied by *u* and the information in *D* contains both mis-specification and inconsistency.
- This requires some decomposition of the incompatibility measure to mis-specification and inconsistency.

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing

The Money Metric Vector

Based on the Money Metric Utility Function (Samuelson, 1974).

Conclusion

• Suggested by Varian (1990) and Gross (1995).

Definition

The normalized money metric vector for a utility function $u(\cdot)$, $\mathbf{v}^*(D, u)$, is such that

$$v^{\star i}(D,u) = \frac{m(x^i,p^i,u)}{p^i x^i}$$

where

$$\textit{m}(\textit{x}^{i},\textit{p}^{i},\textit{u}) = \textit{min}_{\left\{ \textit{y} \in \Re_{+}^{\textit{K}}: \textit{u}(\textit{y}) \geq \textit{u}\left(\textit{x}^{i}\right) \right\}}\textit{p}^{i}\textit{y}$$

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

The Money Metric Incompatibility Index

Definition

Let $f : [0, 1]^n \to [0, M]$ be an aggregator function. The *Money Metric Index for a utility function* $u(\cdot)$ is $f(\mathbf{v}^*(D, u))$.

Introduction Preliminaries Proposed Method Application Experiment Operation Second Sec

 Let U^c denote the set of all locally non-satiated, acceptable and continuous utility functions on ℜ^K_⊥.

Conclusion

Proposition

Let
$$D = \left\{ \left(p^{i}, x^{i} \right)_{i=1}^{n} \right\}$$
, $u \in \mathcal{U}^{c}$ and $\mathbf{v} \in [0, 1]^{n}$.
 $u(\cdot)$ **v**-rationalizes D if and only if $\mathbf{v} \leq \mathbf{v}^{*}(D, u)$.

Proof 3

- The Money Metric Index is minimal.
- The Money Metric Index is easy to compute.
- When $\mathbf{v}^{\star}(D, u) = \mathbf{1}$ the utility function is correctly specified.

The MMI for a Set of Utility Functions

Definition

Let *D* be a finite data set, let $f(\cdot)$ be an aggregator function and let $\mathcal{U} \subseteq \mathcal{U}^c$ be a set of continuous and locally non-satiated utility functions.

Conclusion

The Money Metric Index of $\ensuremath{\mathcal{U}}$ is

$$I_{M}(D, f, \mathcal{U}) = \inf_{u \in \mathcal{U}} f(\mathbf{v}^{\star}(D, u))$$

Note that for every $\mathcal{U}' \subseteq \mathcal{U}$:

$$I_M(D, f, U) \leq I_M(D, f, U')$$

Therefore, for every $\mathcal{U} \subseteq \mathcal{U}^c$:

 $I_M(D, f, \mathcal{U}^c) \leq I_M(D, f, \mathcal{U})$

 Introduction
 Preliminaries
 Proposed Method
 Application
 Experiment
 Hypothesis Testing
 Conclusion

Example - The Problem

 Introduction
 Preliminaries
 Proposed Method
 Application
 Experiment
 Hypothesis Testing
 Conclusion

Example - The MMI

▲ Area-Based

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

Implications

- Consistent Subjects
 - $I_M(D, f, \mathcal{U}^c) = 0.$
 - $I_M(D, f, U)$ is interpreted as a measure of misspecification.
- Inconsistent Subjects
 - By Afriat's Theorem if *D* is inconsistent with GARP then it cannot be rationalized by any non-satiated utility function.
 - I_M(D, f, U) no longer a measure of misspecification only, it includes inconsistency as well.

The Binary Incompatibility Vector

- All incompatibilities are treated severely.
- The Binary Incompatibility Index may be used in more general settings of choice from menus.

Definition

The Binary Incompatibility vector for a utility function $u(\cdot)$, is $\mathbf{b}^*(D, u)$., is such that

$$b^{\star i}(D, u) = \begin{cases} 1, & \exists x : p^{i}x^{i} \ge p^{i}x, u(x) > u(x^{i}); \\ 0, & \text{Otherwise.} \end{cases}$$

The Binary Incompatibility Index

Definition

Let $f : [0, 1]^n \to [0, M]$ be an aggregator function. The *Binary Incompatibility Index for a utility function* $u(\cdot)$ is $f(\mathbf{b}^*(D, u))$.

Proposition

Let
$$D = \left\{ \left(p^{i}, x^{i} \right)_{i=1}^{n} \right\}$$
, $u \in \mathcal{U}^{c}$ and $\mathbf{b} \in \{0, 1\}^{n}$. $u(\cdot)$
b-rationalizes D if and only if $\mathbf{b} \leq \mathbf{b}^{\star}(D, u)$.

• The Binary Index is minimal.

- The Binary Index is easy to compute.
- When $\mathbf{b}^{\star}(D, u) = \mathbf{1}$ the utility function is correctly specified.

Introduction Preliminaries Proposed Method Application Experiment Hypo

Hypothesis Testing

Conclusion

The BI for a Set of Utility Functions

Definition

Let *D* be a finite data set, let $f(\cdot)$ be an aggregator function and let $\mathcal{U} \subseteq \mathcal{U}^c$. The Binary Index of \mathcal{U} is

$$I_{B}(D, f, \mathcal{U}) = \inf_{u \in \mathcal{U}} f(\mathbf{b}^{\star}(D, u))$$

Note that for every $\mathcal{U}' \subseteq \mathcal{U}$:

 $\mathit{I}_{B}(D,f,\mathcal{U}) \leq \mathit{I}_{B}(D,f,\mathcal{U}')$

Therefore, for every $\mathcal{U} \subseteq \mathcal{U}^c$:

 $I_B(D, f, \mathcal{U}^c) \leq I_B(D, f, \mathcal{U})$

IntroductionPreliminariesProposed MethodApplicationExperimentHypothesis TestingConclusionoooooooooooooooo

The Decomposition of the Incompatibility Indices

Theorem

For every finite data set D and aggregator function f:

$$I_V(D, f) = I_M(D, f, \mathcal{U}^c).$$

$$I_{HM}(D,f) = I_B(D,f,\mathcal{U}^c).$$

③ If
$$f(\mathbf{v}) = 1 - \min_{i \in \{1,...,n\}} v^i$$
, then $I_A(D) = I_M(D, f, U^c)$.

Brief Overview

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

Implications of the Decomposition Theorem

• We get:

$$I_{\mathcal{M}}(D, f, \mathcal{U}) = I_{\mathcal{V}}(D, f) + (I_{\mathcal{M}}(D, f, \mathcal{U}) - I_{\mathcal{M}}(D, f, \mathcal{U}^{c}))$$
$$I_{\mathcal{B}}(D, f, \mathcal{U}) = I_{\mathcal{H}\mathcal{M}}(D, f) + (I_{\mathcal{B}}(D, f, \mathcal{U}) - I_{\mathcal{B}}(D, f, \mathcal{U}^{c}))$$

- The former is a measure of inconsistency within choices that is independent of any parametric restriction and depends only on the DM.
- The latter is a measure of the misspecification induced by restricting the preferences to a specific parametric form by the researcher.
- Enables to compare misspecification within and between functional forms since the inconsistency index is fixed.

Choi et al. (2007a) - Decisions under Uncertainty

- Two states of nature (equally probable, exhaustive) and two associated Arrow securities, each of which promises a payoff of one unit in one state and nothing in the other.
- Each choice problem is characterized by different security prices.
- Each subject encounters 50 choice problems (the endowment is fixed).
- Graphical interface (the chosen bundle must be on the budget line).
- 47 subjects, 12 satisfy GARP.

Screenshot
 Typical Subject

Choi et al. (2007a) - Functional Form

Proposed Method

Disappointment Aversion (Gul (1991)) with CRRA VNM utility function.

Application

000000

Experiment

Hypothesis Testing

Conclusion

In our case this reduces to

Preliminaries

$$u(x^{i}) = \gamma w \left(\max\left\{ x_{1}^{i}, x_{2}^{i} \right\} \right) + (1 - \gamma) w \left(\min\left\{ x_{1}^{i}, x_{2}^{i} \right\} \right)$$

where

Introduction

$$\gamma = \frac{1}{2+\beta} \qquad \beta > -1$$

and

$$w(z) = \begin{cases} \frac{z^{1-\rho}}{1-\rho} & \rho \ge 0 \quad (\rho \neq 1) \\ ln(z) & \rho = 1 \end{cases}$$

Indifference Curves

Figure: Gul (1991) with CRRA.

- $\beta = 0$ is Expected Utility.
- $\beta = 0$ and $\rho = 0$ is Expected Value.
- We also consider $w(z) = -e^{-Az}$ where $A \ge 0$ (CARA).

Two Recovery Methods

Preliminaries

Introduction

NLLS (distance based loss function):

Proposed Method

$$\min_{\beta,\rho} \sum_{i=1}^{n} \left\| x^{i} - \arg \max_{x: \rho^{i} x \leq \rho^{i} x^{i}} \left(u\left(x; \beta, \rho\right) \right) \right\|$$

Application

0000

Experiment

Hypothesis Testing

Conclusion

where $\|\cdot\|$ is the Euclidean norm.

- MMI: $I_M(D, f, U)$, using the normalized average sum-of-squares aggregator, $f(\mathbf{v}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (1 v^i)^2}$.
 - Reliable Varian Inconsistency Index cannot be provided for 9 of the 47.
 - An unreliable index underestimates mis-specification, but is inconsequential for the recovered parameters.

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing

Consistency vs. Mis-specification

Subject	I_V	β	ρ	I _M
320	0	-0.509	0.968	0.1322
209	0.0288	0.164	0.352	0.0563

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Conclusion

MMI vs. NLLS

MMI vs. NLLS: Observations

- When NLLS recovers convex preferences (β > 0) then usually MMI recovers convex preferences (But, quantitative differences).
- When NLLS recovers non-convex preferences

 (-1 ≤ β < 0), no qualitative relation between the recovered parameters by the two methods.
- In some non-convex cases the NLLS recovers extreme elation seeking.

Distributions

Motivation and Main Idea

- The parameters recovered by the MMI and NLLS are qualitatively and quantitatively different.
- We wish to compare these two methods.
- However, we must avoid using any metric in this comparison.
- Predictive success in pairwise choices is the most natural setting for such a comparison.

Evaluating based on predictions

Part 1: Linear Budget Sets

- Subjects make 22 choices from linear budget sets.
- A bundle is a portfolio of contingent assets with two equally probable states (similar to Choi et al. (2007a)).
- Budget lines are chosen so as to:
 - provide a powerful test of consistency (GARP).
 - identify local risk attitude in the neighborhood of certainty (by over sampling moderate price ratios).

Part 1.5: Recovery and Pairwise Choice Construction

For each subject, in the background and without her knowledge:

- We recover parameters using the MMI and NLLS:
 - DA-CRRA functional form.
 - Similar loss functions to those used earlier.
- Then, we construct pairwise choice sets designed to separate the two sets of parameters.
 - Each pair included one *risky* portfolio, where outcomes differed across states, and one *safe* portfolio.

Part 2: Pairwise Choice

- Subjects make choices from 9 pairwise menus (represented as points in the coordinate system).
- By construction, for all choice problems, one of the portfolios is preferred by one set of parameters and the other portfolio by the other set of parameters.
- Recall that each choice is between a risky portfolio and a safe (certain) portfolio. We over-sampled low-variability portfolios to identify local risk attitudes.

- Location: Experimental Lab at the Vancouver School of Economics (ELVSE) in October 2014 and February 2015.
- Who: 203 UBC undergraduate students.
- Duration: approximately 45 minutes including instructions, the experiment, and payment.
- Each subject made 31 choices. One of these choices was selected randomly to be paid (the state was determined by a coin flip).
- Cost: average payment was \$29.53 CAD including a \$10 show-up fee

Results

- We first report the results of the second part.
- We report results at both the individual level and the aggregate level.
- Our report includes all subjects and all their choices (a refinement that provides similar results is reported in the draft).

Aggregate Results

203 subjects:

	# of Observations	Correct Predictions by MMI (%)	<i>p</i> -value
Complete Sample	1827	986 (54.0%)	0.0004
Low-variability	1218	652 (53.5%)	0.0074
High-variability	609	334 (54.8%)	0.0093

p-value: probability that X or more out of x choices are predicted correctly by chance alone (coin flip)

Individual Results

- X: number of correct prediction my MMI.
- Decisive subject: $X \in \{0, 1, 2, 7, 8, 9\}$.
- The probability for a subject being decisive by chance is 18%.
- For 103 out of 203 subjects, one prediction method is decisively better than the other (likelihood under random prediction is close to 0).

$X \ge 7$	<i>X</i> ≤ 2	<i>p</i> -value
61	42	0.0378

Classification by Disappointment Aversion

- Let us divide the subjects into two groups:
 - **1** The Definite Disappointment Averse (DDA) group 150 subjects with $\beta_{MMI}, \beta_{NLLS} \ge 0$.
 - 2 The Indefinite Disappointment Averse (IDA) group 53 subjects with $\beta_{MMI} < 0$ or $\beta_{NLLS} < 0$ or both.

DDA and IDA: Aggregate Analysis

	# Observations	# Correct Predictions	% Correct Predictions	<i>p</i> -value
		by MMI	by MMI	
DDA	1350	706	52.3%	0.0484
IDA	477	280	58.7%	< 0.0001

Introduction Preliminaries Proposed Method Application Constraint Hypoth

Hypothesis Testing Conc

DDA and IDA: Individual Analysis

	DDA (15	0)		IDA (53)
$X \ge 7$	<i>X</i> ≤ 2	<i>p</i> -value	$X \ge 7$	<i>X</i> ≤ 2	<i>p</i> -value
38	30	0.1981	23	12	0.0448

Elation Seeking

- The Definite Elation Seeking (DES) group: 29 subjects with $\beta_{NLLS}, \beta_{MMI} < 0.$
- MMI predicts correctly: 163/261 (62.5%, *p* < 0.0001).
- 20 of 29 subjects are decisive.
- MMI decisively better predictor in 15/20 (p = 0.0207).
- Thus, the MMI recovers a significantly more accurate representation of subject preferences when the underlying preferences are non-convex.
- For 21 of 29 subjects: β_{NLLS} < β_{MMI} < 0 (for 19/21 the difference is more than 0.1).
- For 6 of 8 subjects for which β_{MMI} < β_{NLLS} < 0, the difference is less than 0.1.

Illustrative Discussion

- Consider the case where choices exhibit non-convex preferences (maybe due to some underlying procedure) and the DA family is mis-specified.
- The NLLS usually picks parameters that imply greater non-convexity than those recovered by the MMI.
- Very informally:
 - NLLS implies "closer is better" achieved by extreme non-convexities.
 - MMI implies "smoother is better" that requires weak non-convexities.
- In fact, as the subject's choices drift farther from the certainty line, the greater is the difference between the recovered parameters.
- Bottom Line: The parameters recovered by the MMI are considerably more successful in prediction.

Examples (Illustration

Decomposition Revisited

- Non Nested Model:
 - Suppose \mathcal{U} and \mathcal{U}' are two parametric families.
 - Then, their respective MMI loss indices are $I_M(D, f, U')$ and $I_M(D, f, U)$.
 - Recall, they share the same level of inconsistency $(I_V(D, f))$.
 - By the Decomposition Theorem, the data set *D* may be better approximated by \mathcal{U} or \mathcal{U}' depending on the magnitude of the MMI loss index.
- Nested Models:
 - By the monotonicity of the MMI, an additional parametric restriction on preferences increases misspecification.
 - Then, the difference between the MMI indices is a measure of the marginal misspecification implied by the restriction.
- We will use both the data of Choi et al. (2007a) and the data of Part 1.

Evaluating Misspecification

	Part 1 of	the Experiment	Choi et al. (2007a)		
Original Sample	20	3 subjects	47 su	ibjects	
Consistent	ç	92 (45%)	12 (2	26%)	
Dropped	:	3 (1.5%)	9 (1	9%)	
Inconsistency Level	at	most 6%	at mos	st 2.5%	
Utility index	CRRA CARA		CRRA	CARA	
# of Subjects with at most	136	127	26	23	
5% misspecification	(68%)	(63.5%)	(68.4%)	(60.5%)	
# of Subjects with at least	4	10	3	6	
10% misspecification	(2%)	(5%)	(7.9%)	(15.8%)	
Subjects for whom misspecification	149	153	26	27	
is more than 90% of the MMI	(74.5%)	(76.5%)	(68.4%)	(71.1%)	
Subjects for whom misspecification	0 0		1	1	
is less than 50% of the MMI	(0 %)	(0 %)	(2.6%)	(2.6%)	

- Mis-specification: I_M(D, f, U) I_V(D, f) where f is the SSQ aggregator.
- The sample slightly over-represents the less inconsistent subjects.

Expected Utility

- Expected utility is nested within the disappointment aversion model, satisfying the restriction that β = 0.
- Relative measure of additional misspecification:

$$\gamma = \frac{I_M(D, f, EU) - I_M(D, f, DA)}{I_M(D, f, DA) - I_V(D, f)}$$

- Expected utility is rejected if $\gamma > 10\%$.
- Re-samplings were calculated, but cannot be interpreted as confidence sets.
- Subjects with incomputable Varian Index were dropped, as well as subjects for whom DA is not a reasonable model.

	Part 1 of the Experiment	Choi et al. (2007a)
CRRA	40.8% (80 of 196)	32.4% (11 of 34)
CARA	44.7% (85 of 190)	45.2% (14 of 31)

 Introduction
 Preliminaries
 Proposed Method
 Application
 Experiment
 Hypothesis Testing
 Conclusion

Model Selection DA-CRRA vs. DA-CARA

- We calculate the extent of mis-specification implied by each functional form and select the functional form that better represents the decision maker's preferences.
- Absolute measure of additional mis-specification:

 $I_M(D, f, DA - CARA) - I_M(D, f, DA - CRRA)$

	Part 1 of the Experiment	Choi et al. (2007a)
Full Sample	71.4% (145 of 203)	80.9% (38 of 47)
Restricted Sample	88% (103 of 117)	80% (24 of 30)

• The second row includes subjects whose Varian Index is computable and the difference in mis-specification is greater than 10%.

Introduction Preliminaries Proposed Method Application Experiment Hypothesis Testing Occubic O

Concluding Remarks

- A novel interpretation of some inconsistency indices.
- A general recovery method based on minimizing the incompatibility between the ranking information encoded in choices and the ranking induced by a candidate model.
- Application of this methodology to individual level risk data.
- A comparison to a distance-based method shows considerable differences in elicited preferences.
- Novel experimental design to compare the two methods by their predictive success.
- The proposed method predicts better than the NLLS, especially when preferences are non-convex.
- Mis-specification is more "important" than inconsistency.
- Roughly 40% are well approximated by Expected Utility.
- Next step: The integration of stochastic component.

ACHANYELAY ACHANY

Application

Experiment

Hypothesis Testing

Conclusion

Thanks

Preliminaries

Proposed Method

Introduction

Generalized Afriat ●○○○○	Varian Index	MMI Minimality o	Area Index oo	Decomposition	Application	Experiment
Proof: Fir	st Step					

- First, suppose there exists a locally non-satiated utility function u(·) that v-rationalizes D.
- If D does not satisfy GARP_v then there are two observed bundles xⁱ, x^j such that xⁱR_{D,v}x^j and x^jP⁰_{D,v}xⁱ.
- Therefore, $u(x^i) \ge u(x^j)$ and by local non-satiation $u(x^j) > u(x^i)$. Contradiction.
- It is left to be shown that if D satisfies GARP_v then there exists a well behaved utility function that v-rationalizes D.

Generalized Afriat	Varian Index	MMI Minimality o	Area Index 00	Decomposition	Application	Experiment 000
Proof: Relation-Rationalize						

- We say that $\succeq \mathbf{v}$ -relation-rationalizes D if $R_{D,\mathbf{v}}^0 \subseteq \succeq$ and $P_{D,\mathbf{v}}^0 \subseteq \succ$.
- Thus, we have to show that for every data set *D* and adjustments vector v, if *b* is transitive and reflexive and v-relation-rationalizes *D* then there exists a well behaved utility function that v-rationalizes *D*.
- Our proof is constructive.

Generalized Afriat Varian Index MMI Minimality Area Index Decomposition Application Experiment 00 00 0 00 00 00 000 000

Proof: Construction Lemma

Back

- Consider a family of real functions {(*z_i*)ⁿ_{i=1}} (one for each observation).
- Define: $x^i R x^j \Leftrightarrow z_i(x^j) \leq 0$ and $x^i P x^j \Leftrightarrow z_i(x^j) < 0$.
- We provide an algorithm to construct

$$f(x) = \min_{i \in \{1,...,n\}} f_i + \lambda_i z_i(x)$$

such that $\lambda_i > 0$ and $f(x^i) \ge f_i$.

- To complete the proof we have to:
 - Choose $\{(z_i)_{i=1}^n\}$ such that $\succeq \mathbf{v}$ -relation-rationalizes D.
 - Show that f(x) **v**-rationalizes *D* and is well behaved.

Generalized AfriatVarian IndexMMI MinimalityArea IndexDecompositionApplicationExperiment000000000000000000000000000000

Proof: Initial Functions Choice

Back

- We choose $z_i(x) = \frac{1}{v_i} p^i x p^i x^i$ if $x \neq x^i$ and zero otherwise.
- Since *R* is *R*⁰_{D,v} and *P* is *P*⁰_{D,v} we get that *v*-relation-rationalizes *D*.
- Also, it is easy to show that $f(\cdot)$ **v**-rationalizes *D*.
- However, z_i are discontinuous at xⁱ when v_i < 1 and therefore f is not continuous.

Generalized Afriat ○○○○●	Varian Index	MMI Minimality O	Area Index	Decomposition	Application	Experiment
Proof: Ac	aptatio	n				

- We redefine $\hat{z}_i(x) = \lim_{y \to x} z_i(y)$. then $\hat{z}_i(x) \ge z_i(x)$ for $x = x^i$ and $\hat{z}_i(x) = z_i(x)$ otherwise.
- We consider $\hat{f}(x) = \min_{i \in \{1,...,n\}} f_i + \lambda_i \hat{z}_i(x)$ where f_i and λ_i are the same as in f.
- We show that $\hat{f}(x)$ **v**-rationalizes *D*, it is continuous, acceptable, monotonic and concave.

Generalized Afriat	Varian Index ●○○	MMI Minimality o	Area Index	Decomposition	Application	Experiment
Evample	- Data					

3 given budget sets, marked I, II & III The chosen allocations marked A, B & C

Generalized Afriat	Varian Index ○●○	MMI Minimality O	Area Index	Decomposition	Application	Experiment
Example	- Violat	ions				

In the chosen allocations one can identify the following violations:

Then vII_a=0.9 and vIII_a=0.8.

Generalized Afriat	Varian Index ○○●	MMI Minimality o	Area Index	Decomposition	Application	Experiment
Example	- Two C)ntions				

I ■ Back

Two possible aggregators to calculate the severity of the violations

Generalized Afriat	Varian Index	MMI Minimality ●	Area Index	Decomposition	Application	Experiment 000
Proof						

✓ back

- Suppose $u(\cdot) \mathbf{v}^{\star}(D, u)$ rationalizes *D*.
- Hence, If $\mathbf{v} \leq \mathbf{v}^{\star}(D, u)$ then $u(\cdot) \mathbf{v}$ rationalizes D.
- The other direction Suppose that v is such that u(·) v rationalizes D and for observation i, vⁱ > v^{*i} (D, u).
- Let x^{i∗} be the minimizer of the money metric and note that it is strictly feasible under vⁱ and u(x^{i∗}) ≥ u(xⁱ).
- By the non satiation of *u*(·) there exists a bundle that is strictly feasible under *vⁱ* and is strictly better than *xⁱ*.
- Contradiction to $u(\cdot)$ **v** rationalizes *D*.

Generalized Afriat	Varian Index	MMI Minimality	Area Index	Decomposition	Application	Experiment
			••			

Area Based Parametric Recoverability

- Intersection Incompatibility Index.
- Apesteguia and Ballester (2015) suggest the Consumer Setting Swaps Index as an extension of the Minimal Swaps Index.
- A corresponding inconsistency measure, a decomposition theorem and a broader family of utility functions are required.
- Area Inconsistency Index eliminate the area of overlap between the budget set and those bundles which are revealed preferred or monotonically dominate the bundle (Heufer (2008, 2009)).
- Two remarks:
 - Computation of integrals is much harder than linear adjustments.
 - Biased towards non-convex preferences.

00000	000	O		000	000	000	
Area Inconsistency Index							

Area Inconsistency Index

- If $I_V(D, f) = 0$ then $I_V(D, f) \leq I_M(D, f, \mathcal{U}^c)$.
- Otherwise, if $I_V(D, f) > 0$, suppose that $I_V(D, f) > I_M(D, f, \mathcal{U}^c)$.
 - There exists $u \in \mathcal{U}^c$ such that $f(\mathbf{v}^*(D, u)) < I_V(D, f)$.
 - $u(\cdot) \mathbf{v}^*(D, u)$ -rationalizes D.
 - By the extended Afriat theorem, *D* satisfies $GARP_{\mathbf{v}^*(D,u)}$.
 - $I_V(D, f)$ cannot be the infimum of $f(\cdot)$ on the set of **v** such that *D* satisfies *GARP*_v. Contradiction.

- By the extended Afriat theorem, *D* satisfies *GARP*_v if and only if there exists *u* ∈ U^c that v-rationalizes *D*.
- Hence, *D* satisfies $GARP_{\mathbf{v}}$ if and only if $\mathbf{v} \leq \mathbf{v}^{\star}(D, u)$.
- Since f(·) is weakly decreasing, D satisfies GARP_v if and only if f (v^{*} (D, u)) ≤ f(v).
- Therefore, *D* satisfies $GARP_{\mathbf{v}}$ if and only if $I_{\mathcal{M}}(D, f, \mathcal{U}^{c}) \leq f(\mathbf{v})$.
- $I_{\mathcal{M}}(D, f, \mathcal{U}^{c}) \leq \inf_{\mathbf{v} \in [0,1]^{n}: D \text{ satisfies } GARP_{\mathbf{v}}} f(\mathbf{v})$
- $I_V(D, f) \geq I_M(D, f, \mathcal{U}^c).$

✓ Back

0	1					
					000	
Generalized Afriat	Varian Index	MMI Minimality	Area Index	Decomposition	Application	Experiment

Screenshot

Back

Generalized Afriat	Varian Index	MMI Minimality O	Area Index	Decomposition	Application ○●○	Experiment
Typical S	ubject					

Back

Generalized Afriat Varian Index MMI Minimality Area Index Decomposition Application Experiment

CRRA Parameters: Distributions (Choi et al. (2007a))

▲ Back

Generalized Afriat	Varian Index	MMI Minimality O	Area Index	Decomposition	Application	Experiment •০০

power

Back

Afriat Inconsistency Index

Non-convex Preferences: 4 Examples

Back

