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1 Preliminaries

A single cooperative game, G = (N ; v) is de�ned by a set of events N and a

single characteristic function v which assigns a real number to every non empty

set of events S ∈ P (N) (P (N) ≡ {S 6= φ|S ⊆ N}) and zero to the empty set.

Typically v(S) is interpreted as the prior the agent hold for the subset of events S.

We extend this de�nition to our setting of multiple priors by de�ning a multi-game

as a set of events and a set of characteristic functions.

De�nition 1. An m-prior Multi-Game G̃ is a pair G̃ = (N ;V ) where V is a

set of characteristic functions V = {v1, v2, . . . , vm} such that for every vj ∈ V ,

vj : P (N)→ R, vj(∅) = 0 and vj(N) = 1.

It will be convenient to denote the single cooperative game that is de�ned by

the jth characteristic function of the multi-game G̃ by G̃j = (N ; vj).

An aggregate additive probability measure of the multi-game G̃ describes the

probability assigned to each event taking all the multiple priors into account.

De�nition 2. x ∈ Rn
+ is an aggregate additive probability measure of the multi-

game G̃ = (N ; {v1, v2, . . . , vm}) if
∑n

i=1 xi = 1.
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De�nition 3. Let G = (N ; v) be a single cooperative game where v is monotonic

and non-negative. Let X be a vector of individual resources (random variable in

Lehrer (2009)). De�ne
∫ cav

Xdv = min{f(X)} where the minimum is taken over

all concave and homogeneous functions f : Rn → R such that for every S ⊆ N ,

f(χS) ≥ v(S).

Lemma 1 (Lemma 1(i) in Lehrer (2009)). For every X,

∫ cav

Xdv = max

{ ∑
S∈P (N)

F (S)v(S)|
∑

S∈P (N)

F (S)χS = X, ∀S ∈ P (N) :F (S) ≥ 0

}

2 Decomposition Lemma

The lemma provides necessary and su�cient condition for the decomposition

of a given e�cient aggregate payo� vector x into m vectors such that the �rst

belongs to the core of the �rst issue, the second to the core of second issue and so

on. This will identify those elements in the multi-core that are trivial and those

that are not.

The following generalizes the Shapley-Bondareva's system of balancing sets to

account for systems of weights whose total weights may di�er across players.

De�nition 4. Let F : P (N)→ R+ be a system of weights. The vector of weights

induced by F is denoted by W F =
∑

S∈P (N) F (S)χ
S
. We say that F1 and F2 are

W-equivalent if W F1 = W F2.

The W-equivalence relation induces a partition on the set of all system of

weights.1 Let us denote the set of all W-equivalence classes by Γ. Further, for

every class γ ∈ Γ, we denote the players weights byW γ and for every characteristic

function v, T γv ≡ max
F∈γ

∑
S∈P (N)

F (S)v(S).

1The set of all systems of Shapley-Bondareva's balancing weights is identical to the class of
functions F such that WF is the vector of ones.
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Lemma 2. Let x ∈ Rn be a an e�cient payo� vector. There exist m vectors

x1, ..., xm such that ∀vj ∈ V : xj ∈ C(G̃j) and
∑

vj∈V xj = x if and only if every

class γ ∈ Γ satis�es
∑
vj∈V

T γvj ≤
∑
i∈N

W γ[i]xi.

To prove this lemma we construct a set of linear inequalities that characterize

the set of all the decompositions of a given payo� vector such that all vectors be-

long to the cores of the respective individual games. We use Farkas' Lemma, or

alternatively, the hyperplane separation theorem, to show that this set of inequal-

ities has a solution if and only if the above condition is satis�ed. We conclude the

proof by proving the following conclusion that establishes that the lemma holds

for a single game as well as for multiple games. Trivially, if one of the games has

an empty core this condition is violated.2

Conclusion 3. Denote by v0 the characteristic function that attaches 0 to every

coalition. Let G = (N ; v) be a cooperative game and let G̃ = (N ; {v, v0}). x ∈ C(G)

if and only if every class γ ∈ Γ satis�es T γv ≤
∑

i∈N W
γ[i]xi.

Conjecture 4. Suppose τ is the Bloch and de Clippel (2010) partition on charac-

teristic functions. v and v′ are members of the same equivalence set in τ if and only

if for every γ, arg maxF∈γ
∑

S∈P (N) F (S)v(S) = arg maxF∈γ
∑

S∈P (N) F (S)v′(S)

2Suppose C(G1) is empty. Consider the W-equivalence class γ where W γ = 1. Then, by
the Bondareva-Shapley Theorem there exists one F1 such that

∑
S∈P (N) F1(S)v1(S) > v1(N).

For ∀j = 2, ...,m let Fj(S) = 0 for every S ⊂ N and Fj(N) = 1 which leads to∑
S∈P (N) Fj(S)vj(S) = vj(N). Then,∑

vj∈V

∑
S∈P (N)

Fj(S)vj(S) =
∑

S∈P (N)

F1(S)v1(S) +
∑

vj∈V \{v1}

∑
S∈P (N)

Fj(S)vj(S) >

v1(N) +

m∑
j=2

vj(N) =

n∑
i=1

xi =

n∑
i=1

W γ [i]xi

Therefore, there exists a γ ∈ Γ such that
∑
vj∈V T

γ
vj >

∑n
i=1W

γ [i]xi which violates the condition
in Lemma 2.

3



3 Concave Integrals

Conclusion 5. For every γ ∈ Γ,
∫ cav

W γdv = T γv .

Lemma 6 (The Sum of Individual Cores is Closed and Convex). C(G̃) is a closed

and convex set.

Proof. The set of vectors that satisfy a weak linear inequality is a closed set.

Therefore. the core of a single game is a closed set. Therefore, the set of vectors

that can be represented as sum of core elements is closed.

Next, let x, y ∈ C(G̃). There exist 2m vectors x1, ..., xm and y1, ..., ym such that

∀vj ∈ V : xj ∈ C(G̃j), yj ∈ C(G̃j) and
∑

vj∈V xj = x and
∑

vj∈V yj = y. The m

vectors λx1+(1−λ)y1, ..., λxm+(1−λ)ym satisfy ∀vj ∈ V : λx1+(1−λ)y1 ∈ C(G̃j)

due to the convexity of the core of a single game. Since these vectors sum to

λx+ (1− λ)y, λx+ (1− λ)y ∈ C(G̃).

Lemma 7. Let G = (N, v) be a cooperative game. Let H be the set of extreme

points of Ĥ where Ĥ = {h ∈ Rn|∀S ∈ P (N) :h(S) ≥ v(S)}. Then, for every vector

Y ∈ Rn,
∫ cav

Y dv = minh∈H Y · h.

Proof. By Lemma 1,

∫ cav

Y dv = max
F∈R2n

{ ∑
S∈P (N)

F (S)v(S)|
∑

S∈P (N)

F (S)χS = Y, ∀S ∈ P (N) :F (S) ≥ 0

}

By the strong duality theorem,

∫ cav

Y dv = min
h∈Rn

{
Y · h|∀S ∈ P (N) :h(S) ≥ v(S)

}

Then,

∫ cav

Y dv = min
h∈Ĥ

Y · h. Moreover, for every Y ∈ U , Y · h is a linear function

of h. Since Ĥ is convex, the minimum is achieved on (at least) one of the extreme

points. Since H = {h ∈ Ĥ|h is an extreme point},
∫ cav

Y dv = min
h∈H

Y · h.
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Lemma 8. For every G = (N, v) with non-empty core there is a neighborhood U

of 1N such that every Y ∈ U satis�es
∫ cav

Y dv = minx∈C(v) Y · x.

Proof. Denote Ĥ = {h ∈ Rn|∀S ∈ P (N) :h(S) ≥ v(S)}. By Lemma 7, there is a

�nite set, H (the set of all extreme points of Ĥ) such that
∫ cav

Y dv = minh∈H Y ·h.

Also, note that C(v) = {h ∈ Ĥ|h(N) = v(N)} and therefore minx∈C(v) Y · x ≥

minh∈Ĥ Y · h. Moreover, by Lemma 7, minh∈Ĥ Y · h = minh∈H Y · h and therefore,

minx∈C(v) Y · x ≥ minh∈H Y · h.

Suppose, to the contrary, that there is a sequence Yn that converges to 1N and

satis�es
∫ cav

Yndv 6= minx∈C(v) Yn · x. Since
∫ cav

Yndv = minhn∈H Yn · hn, we get

minx∈C(v) Yn · x > minhn∈H Yn · hn. As a result, hn(N) > v(N) for all n.

However, since H is �nite, there is a subsequence of Yn that converges to 1n and

its corresponding hn subsequence is constant at h. Let us consider limn→∞
∫ cav

Yndv.

On the one hand, limn→∞
∫ cav

Yndv =
∫ cav

limn→∞ Yndv =
∫ cav

1ndv = v(N), the

last equality is due to Shapley-Bondareva Theorem (G = (N, v) has a non-empty

core). On the other hand, limn→∞
∫ cav

Yndv = limn→∞ Yn · hn = {limn→∞ Yn}·h =

1n · h = h(N). Hence, h(N) = v(N). Contradiction.

Lemma 9 (Alternative Statement). Let x ∈ Rn be an e�cient payo� vector.

x ∈ C(G̃) if and only if every Y ∈ Rn
+ satis�es

∑
vj∈V

∫ cav

Y dvj ≤ Y · x.

Proof. Suppose that x ∈ C(G̃). Then, there exist m vectors x1, ..., xm such that

∀vj ∈ V : xj ∈ C(G̃j) and
∑

vj∈V xj = x. Thus, ∀S ⊆ N : xj(S) ≥ vj(S).

Moreover, for every Y ∈ Rn
+, for every function FY (S) : P (N)→ [0,∞) such that∑

S∈P (N) FY (S)χS = Y , we get
∑

S⊆N FY (S) × xj(S) ≥
∑

S⊆N FY (S)× vj(S).

Note that
∑

S⊆N FY (S) × xj(S) = Y · xj, meaning that, for every Y ∈ Rn
+, for

every function FY (S), Y · xj ≥
∑

S⊆N FY (S)× vj(S). In particular, for every

Y ∈ Rn
+, Y · xj ≥ maxFY (s)

∑
S⊆N FY (S)× vj(S). By Lemma 1, for every Y ∈ Rn

+,

Y ·xj ≥
∫ cav

Y dvj. Summing over all the issues, for every Y ∈ Rn
+,
∑

vj∈V Y ·xj ≥
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∑
vj∈V

∫ cav
Y dvj or Y · x ≥

∑
vj∈V

∫ cav
Y dvj. We have shown that x ∈ C(G̃)

implies that for every Y ∈ Rn
+, Y · x ≥

∑
vj∈V

∫ cav
Y dvj.

Next, suppose x /∈ C(G̃). By Lemma 6 C(G̃) is closed and convex. Thus, by

a separating hyperplane theorem there is a separating Z = (Z1, ..., Zn) between

x and C(G̃). That is, for every w ∈ C(G̃), x · Z < w · Z. Thus, x · Z <

minw∈C(G̃){w ·Z}. For a positive constant c denote Zc = Z+c
c
. Note that Zc →c→∞

1N . Since x(N) = w(N), x · (Z + c) < minw∈C(G̃){w · (Z + c)}. Since c > 0,

x · Zc < minw∈C(G̃){w · Zc}. For every w ∈ C(G̃) there exist w1, ..., wm such that

∀vj ∈ V : wj ∈ C(G̃j) and
∑

vj∈V wj = w. Therefore, for every positive constant

c, x · Zc <
∑

vj∈V minwj∈C(G̃j)
{wj · Zc}.

For every issue vj ∈ V , let Uj be the neighborhood of 1N that satis�es Lemma

8. That is,
∫ cav

Y dvj = minxj∈C(G̃j)
{xj · Y } for every Y ∈ Uj. Let U = ∩jUj.

Therefore,
∫ cav

Y · dvj = minxj∈C(G̃j)
{xj · Y } for every vj ∈ V and Y ∈ U . As a

consequence, for every Y ∈ U ,
∑

vj∈V
∫ cav

Y · dvj =
∑

vj∈V minxj∈C(G̃j)
{xj · Y }.

Note that there is a c large enough such that Zc ∈ U and Zc is non-negative.

This implies that
∑

vj∈V
∫ cav

Zc · dvj =
∑

vj∈V minxj∈C(G̃j)
{xj · Zc}. Therefore,

x · Zc <
∑

vj∈V
∫ cav

Zc · dvj. Hence, x /∈ C(G̃) implies that there exists Y ∈ Rn
+

that does not satisfy
∑
vj∈V

∫ cav

Y dvj ≤ Y · x. Alternatively, if every Y ∈ Rn
+

satis�es
∑
vj∈V

∫ cav

Y dvj ≤ Y · x then x ∈ C(G̃).
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Appendix

Lemma 2

Proof. Suppose m > 1. There exist m vectors x1, ..., xm such that ∀j ∈ {1, ...,m} :

xj ∈ C(G̃j) and
∑m

j=1 xj = x if and only if the following conditions are satis�ed,


∀j ∈ {1, . . . ,m},∀S ∈ P (N)\{N} : χS

′xj ≥ vj(S)

∀j ∈ {1, . . . ,m} : χN
′xj = vj(N)∑m

j=1 xj = x

Or, 
∀j ∈ {1, . . . ,m},∀S ∈ P (N) : χS

′xj ≥ vj(S)

∀j ∈ {1, . . . ,m} : χN
′xj ≤ vj(N)∑m

j=1 xj = x

Since m > 1 then

∀j ∈ {1, . . . ,m− 1},∀S ∈ P (N) : χS
′xj ≥ vj(S)

∀S ∈ P (N) : χS
′[x−

∑m−1
j=1 xj] ≥ vm(S)

∀j ∈ {1, . . . ,m− 1} : χN
′xj ≤ vj(N)

χN
′[x−

∑m−1
j=1 xj] ≤ vm(N)

Or,



∀j ∈ {1, . . . ,m− 1},∀S ∈ P (N) : −χS ′xj ≤ −vj(S)

∀S ∈ P (N) : χS
′[
∑m−1

j=1 xj] ≤ χS
′x− vm(S)

∀j ∈ {1, . . . ,m− 1} : χN
′xj ≤ vj(N)

−χN ′[
∑m−1

j=1 xj] ≤ −χN ′x+ vm(N)
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The next step is to write these systems of inequalities in a compact matrix no-

tation. Let µ : P (N)\∅ → {1, 2, . . . , 2n−1} be an ordering on the set of non-empty

coalitions (non-zero characteristic vectors).3 For clarity we assume, with no loss of

generality, that µ(N) = 2n−1. Denote the inverse function that attaches a unique

coalition to every number in {1, 2, . . . , 2n − 1} by µ−1.

Denote by RS
j (j ∈ {1, . . . ,m− 1} and S ∈ P (N)) the row vector of length

(m− 1)n where the characteristic vector of S lies starting at element (j − 1)n+ 1

while all other elements are zeros. In addition, denote by QS (S ∈ P (N)) the row

vector of length (m−1)n where characteristic vector of S is replicated m−1 times.

First, let A be an m2n×(m− 1)n matrix constructed in the following way. For the

�rst m(2n − 1) rows, if k mod m 6= 0 the kth row corresponds to −Rµ−1(d k
m
e)

k mod m , oth-

erwise it corresponds to Qµ−1( k
m
). Each row j of the next m− 1 rows corresponds

to RN
j while the last row is −QN . Next, let b be a vector of length m2n constructed

in the following way. For the �rst m(2n − 1) rows, if k mod m 6= 0 the kth element

is −vk mod m(µ−1(d k
m
e)), otherwise it corresponds to

∑
i∈µ−1( k

m
) x[i]− vm(µ−1( k

m
)).

Each element j of the next m− 1 elements are vj(N) while the last element is

−
(∑

i∈N x[i] − vm(N)
)
. Finally, let w be a vertical concatenation of x1, ..., xm−1.

Then there exist x1, ..., xm such that ∀j ∈ {1, ...,m} : xj ∈ C(G̃j) and
∑m

j=1 xj = x

3The choice of the speci�c ordering is inconsequential to the rest of the proof.
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if and only if there is a vector w ∈ R(m−1)n that satis�es Aw ≤ b.4

By Farkas' Lemma, or alternatively, by applying the separating hyperplane

theorem to a set of linear inequalities, given a matrix A and a vector b, the system

Aw ≤ b has a solution w, if and only if, for every non-negative vector z, A′z = 0

implies b′z ≥ 0.

Denote Z0 = {z ∈ Rm2n

+ |A′z = 0}. Thus, there exist x1, ..., xm such that

∀vj ∈ V : xj ∈ C(G̃j) and
∑m

j=1 xj = x if and only if every vector z ∈ Z0 satis�es

b′z ≥ 0.5

Denote, Z1 = {z ∈ Z0|∀vj ∈ V : z[m2n − 2m + j] ≥ z[m2n −m+ j]}. Obvi-

ously, Z1 ⊆ Z0. By Lemma 10 (below), for every z such that A′z = 0 there exists ẑ

such that A′ẑ = 0, for all vj ∈ V : ẑ[m2n−2m+ j] ≥ ẑ[m2n−m+ j] and b′z = b′ẑ.

4For N = {1, 2, 3}, V = {v1, v2, v3} and µ such that µ({1}) = 1, µ({2}) = 2, µ({3}) =
3, µ({1, 2}) = 4, µ({1, 3}) = 5, µ({2, 3}) = 6, µ({1, 2, 3}) = 7:

A =



−1 0 0 0 0 0
0 0 0 −1 0 0
1 0 0 1 0 0
0 −1 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 1 0
0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 1 0 0 1
−1 −1 0 0 0 0
0 0 0 −1 −1 0
1 1 0 1 1 0
−1 0 −1 0 0 0
0 0 0 −1 0 −1
1 0 1 1 0 1
0 −1 −1 0 0 0
0 0 0 0 −1 −1
0 1 1 0 1 1
−1 −1 −1 0 0 0
0 0 0 −1 −1 −1
1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1
−1 −1 −1 −1 −1 −1



; w =


x1[1]
x1[2]
x1[3]
x2[1]
x2[2]
x2[3]

 ; b =



−v1({1})
−v2({1})

x[1]− v3({1})
−v1({2})
−v2({2})

x[2]− v3({2})
−v1({3})
−v2({3})

x[1]− v3({3})
−v1({1, 2})
−v2({1, 2})

x[1] + x[2]− v3({1, 2})
−v1({1, 3})
−v2({1, 3})

x[1] + x[3]− v3({1, 3})
−v1({2, 3})
−v2({2, 3})

x[2] + x[3]− v3({2, 3})
−v1({1, 2, 3})
−v2({1, 2, 3})

x[1] + x[2] + x[3]− v3({1, 2, 3})
v1({1, 2, 3})
v2({1, 2, 3})

−(x[1] + x[2] + x[3]− v3({1, 2, 3}))



.

5The matrix A′ has (m− 1)n rows, one for each player-issue pair (excluding the last issue),
and m2n columns, one for each non-empty coalition-issue pair (the grand coalition pairs appear
twice). In the �rst m(2n − 1) columns, A′[k, l] = −1 if the player corresponding to the row
is a member of the coalition corresponding to the column (k mod n ∈ µ−1(d lme), where k
mod n = 0 refers to Player n) and both the row and column correspond to the same issue
(d kne = l mod m) while A′[k, l] = 1 if the player corresponding to the row is a member of the

coalition corresponding to the column (k mod n ∈ µ−1(d lme)) and the column corresponds to
the mth issue (l mod m = 0), otherwise A′[k, l] = 0. In the last m columns, A′[k, l] = −1 if
the column corresponds to the mth issue (l mod m = 0) while A′[k, l] = 1 if both the row and
column correspond to the same issue (d kne = l mod m), otherwise A′[k, l] = 0.

9



Thus, there exist x1, ..., xm such that ∀vj ∈ V : xj ∈ C(G̃j) and
∑m

j=1 xj = x if

and only if every vector z ∈ Z1 satis�es b
′z ≥ 0.

Every z ∈ Z1 is a vector of length m2n. For every l ∈ {1, . . . ,m2n − 2m}, we

refer to z[l] as zl mod m(µ−1(d l
m
e)) (l mod m = 0 corresponds to the mth issue).

In addition, we denote zj(N) = z[m2n − 2m+ j]− z[m2n −m+ j] ≥ 0. Then, we

can interpret every zj as a coalitional weight function as de�ned in De�nition 4.

A′z = 0 is a system of (m− 1)× n equations, one for each player in each game

(except the last). A pair of zj and zm satis�es the ((j − 1)× n+ i)th equation if

and only if Player i's total weight in issue j equals her total weight in the last

issue. Therefore, by De�nition 4, z ∈ Z1 if and only if all the zjs are non-negative

and W-equivalent. Thus, there exist x1, ..., xm such that ∀vj ∈ V : xj ∈ C(G̃j) and∑m
j=1 xj = x if and only if every vector z ∈ Rm2n

+ that induces non-negative and

W-equivalent zjs satis�es b
′z ≥ 0.

b′z =
∑

S∈P (N)

zm[S]
∑
i∈S

xi −
∑

vj∈V \vm

∑
S∈P (N)

zj[S]vj(S)−
∑

S∈P (N)

zm[S]vm(S)

Denote the equivalence class of the zjs by γ

b′z =
∑
i∈N

W γ[i]xi −
∑
vj∈V

∑
S∈P (N)

zj[S]vj(S)

Thus, there exist x1, ..., xm such that ∀vj ∈ V : xj ∈ C(G̃j) and
∑m

j=1 xj = x if

and only if for every m W-equivalent coalition weight functions F1, . . . , Fm,

∑
S∈P (N)

F1(S)v1(S) + · · ·+
∑

S∈P (N)

Fm(S)vm(S) ≤
∑
i∈N

W γ[i]xi

Thus, there exist x1, ..., xm such that ∀vj ∈ V : xj ∈ C(G̃j) and
∑m

j=1 xj = x if

and only if for every γ ∈ Γ:
∑

vj∈V T
γ
vj
≤
∑

i∈N W
γ[i]xi.
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We complete the proof by showing that the lemma holds for a single game.

Denote by v0 the characteristic function that attaches 0 to every coalition. Let

G = (N ; v) be a cooperative game and let G̃ = (N ; {v, v0}). We show that

x ∈ C(G) if and only if every class γ ∈ Γ satis�es T γv ≤
∑

i∈N W
γ[i]xi. First,

x ∈ C(G) if and only if x is an e�cient payo� vector of G̃ since C(G(N ; v0)) = {0}.

Also, x ∈ C(G) if and only if there exist two vectors x1 = x and x2 = 0 such that

∀vj ∈ V : xj ∈ C(G̃j) and
∑

vj∈V xj = x. Then, by Lemma 2, x ∈ C(G) if

and only if every class γ ∈ Γ satis�es
∑
vj∈V

T γvj ≤
∑
i∈N

W γ[i]xi. Since, for every

class γ ∈ Γ, Tv0 = 0 then x ∈ C(G) if and only if every class γ ∈ Γ satis�es

T γv ≤
∑
i∈N

W γ[i]xi.

Lemma 10. For every vector x of length m2n de�ne

κ(x) ≡ min
vj∈V
{x[m2n − 2m+ j]− x[m2n −m+ j]}

Let z be a non-negative vector of length m2n such that A′z = 0 and κ(z) < 0. Then,

there exists ẑ, a non-negative vector of length m2n, such that A′ẑ = 0, κ(ẑ) = 0

and b′z = b′ẑ.

Proof. For every j ∈ {1, . . . ,m2n−2m}∪{m2n−m+1, . . . ,m2n} de�ne ẑ[j] ≡ z[j]

and for every j ∈ {m2n − 2m+ 1, . . . ,m2n −m} de�ne ẑ[j] ≡ z[j]− κ(z).

First, since z is a non-negative vector of length m2n and since κ(z) < 0, it must

be that ẑ is a non-negative vector of length m2n.

Second, let us show that A′ẑ = 0. For every k ∈ {1, . . . , (m− 1)n} denote the
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corresponding issue by Ik = d k
n
e. Then, for every k ∈ {1, . . . , (m− 1)n}

m2n∑
l=1

A′[k, l]ẑ[l]−
m2n∑
l=1

A′[k, l]z[l] =
m2n∑
l=1

A′[k, l](ẑ[l]− z[l]) =

=
m2n−m∑

l=m2n−2m+1

A′[k, l](ẑ[l]− z[l]) =

= −(ẑ[m2n − 2m+ Ik]− z[m2n − 2m+ Ik]) + (ẑ[m2n −m])− z[m2n]−m) =

= κ(z)− κ(z) = 0

Thus, for every k ∈ {1, . . . , (m − 1)n},
∑m2n

l=1 A
′[k, l]ẑ[l] =

∑m2n

l=1 A
′[k, l]z[l].

Therefore, A′ẑ = A′z and we conclude that A′ẑ = 0.

Next, let us show that κ(ẑ) = 0. Recall that,

κ(ẑ) ≡min
vj∈V
{ẑ[m2n − 2m+ j]− ẑ[m2n −m+ j]} =

min
vj∈V
{z[m2n − 2m+ j]− κ(z)− z[m2n −m+ j]} =

min
vj∈V
{z[m2n − 2m+ j]− z[m2n −m+ j]} − κ(z) =

κ(z)− κ(z) = 0

Last, let us show that b′z = b′ẑ,

b′ẑ − b′z =
m2n∑
l=1

b′[l](ẑ[l]− z[l]) =
m2n−m∑

l=m2n−2m+1

b′[l](ẑ[l]− z[l]) =

= −κ(z)
m2n−m∑

l=m2n−2m+1

b′[l] = −κ(z)
(m−1∑
j=1

−vj({N}) + (
n∑
i=1

x[i]− vm({N}))
)

=

= κ(z)
( m∑
j=1

vj({N})−
n∑
i=1

x[i]
)

Since x is an e�cient payo� vector,
∑m

j=1 vj({N}) =
∑n

i=1 x[i]. Hence, b′ẑ−b′z = 0,
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meaning that b′ẑ = b′z.
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